Привет всем! Сегодня очень интересная статья о тонкой настройке видеокарты для высокой производительности в компьютерных играх. Согласитесь друзья, что после установки драйвера видеокарты вы один раз открыли «Панель управления Nvidia» и увидев там незнакомые слова: DSR, шейдеры, CUDA, синхроимпульс, SSAA, FXAA и так далее, решили туда больше не лазить. Но тем не менее, разобраться во всём этом можно и даже нужно, ведь от данных настроек напрямую зависит производительность . Существует ошибочное мнение, что всё в этой мудрёной панели настроено правильно по умолчанию, к сожалению это далеко не так и опыты показывают, правильная настройка вознаграждается весомым увеличением кадровой частоты. Так что приготовьтесь, будем разбираться в потоковой оптимизации, анизотропной фильтрации и тройной буферизации. В итоге вы не пожалеете и вас будет ждать награда в виде увеличения FPS в играх.

Настройка видеокарты Nvidia для игр

Темпы развития игрового производства с каждым днем набирают все больше и больше оборотов, впрочем, как и курс основной денежной единицы в России, а поэтому актуальность оптимизации работы железа, софта и операционной системы резко повысилась. Держать своего стального жеребца в тонусе за счет постоянных финансовых вливаний не всегда удается, поэтому мы с вами сегодня и поговорим о повышении быстродействия видеокарты за счет ее детальной настройки. В своих статьях я неоднократно писал о важности установки видеодрайвера, поэтому , думаю, можно пропустить. Я уверен, все вы прекрасно знаете, как это делать, и у всех вас он давно уже установлен.

Итак, для того, чтобы попасть в меню управления видеодрайвером, кликайте правой кнопкой мыши по любому месту на рабочем столе и выбирайте в открывшемся меню «Панель управления Nvidia».

После чего, в открывшемся окне переходите во вкладку «Управление параметрами 3D».

Здесь мы с вами и будем настраивать различные параметры, влияющие на отображение 3D картинки в играх. Не трудно понять, что для получения максимальной производительности видеокарты придется сильно порезать изображение в плане качества, так что будьте к этому готовы.

Итак, первый пункт «CUDA – графические процессоры ». Здесь представлен список видеопроцессоров, один из которых вы можете выбрать, и он будет использоваться приложениями CUDA. CUDA (Compute Unified Device Architecture) – это архитектура параллельных вычислений использующаяся всеми современными графическими процессорами для увеличения вычислительной производительности.

Следующий пункт «DSR - Плавность » мы пропускаем, потому что он является частью настройки пункта "DSR - Степень”, а его в свою очередь нужно отключать и сейчас я объясню почему.

DSR (Dynamic Super Resolution) – технология позволяющая рассчитывать картинку в играх в более высоком разрешении, а затем масштабирующая полученный результат до разрешения вашего монитора. Для того чтобы вы поняли для чего эта технология вообще была придумана и почему она не нужна нам для получения максимальной производительности, я попробую привести пример. Наверняка вы часто замечали в играх, что мелкие детали, такие как трава и листва очень часто мерцают или рябят при движении. Связано это с тем, что, чем меньше разрешение, тем меньше число точек выборки для отображения мелких деталей. Технология DSR позволяет это исправить за счет увеличения числа точек (чем больше разрешение, тем больше число точек выборки). Надеюсь, так будет понятно. В условиях максимальной производительности эта технология нам не интересна так, как затрачивает довольно много системных ресурсов. Ну а с отключенной технологией DSR, настройка плавности, о которой я писал чуть выше, становится невозможна. В общем, отключаем и идем дальше.

Далее идет анизотропная фильтрация . Анизотропная фильтрация – алгоритм компьютерной графики, созданный для улучшения качества текстур, находящихся под наклоном относительно камеры. То есть при использовании данной технологии текстуры в играх становятся более четкие. Если сравнивать антизотропную фильтрацию со своими предшественниками, а именно с билинейной и трилинейной фильтрациями, то анизотропная является самой прожорливой с точки зрения потребления памяти видеокарты. Данный пункт имеется только одну настройку – выбор коэффициента фильтрации. Не трудно догадаться, что данную функцию необходимо отключать.

Следующий пункт – вертикальный синхроимпульс . Это синхронизация изображения с частотой развертки монитора. Если включить данный параметр, то можно добиться максимально плавного геймплея (убираются разрывы изображения при резких поворотах камеры), однако зачастую возникают просадки кадров ниже частоты развертки монитора. Для получения максимального количества кадров в секунду данный параметр лучше отключить.

Заранее подготовленные кадры виртуальной реальности . Функция для очков виртуальной реальности нам не интересна, так как VR еще далека до повседневного использования обычных геймеров. Оставляем по умолчанию – использовать настройку 3D приложения.

Затенение фонового освещения . Делает сцены более реалистичными за счет смягчения интенсивности окружающего освещения поверхностей, которые затенены находящимися рядом объектами. Функция работает не во всех играх и очень требовательна к ресурсам. Поэтому сносим ее к цифровой матери.

Кэширование шейдеров . При включении данной функции центральный процессор сохраняет скомпилированные для графического процессора шейдеры на диск. Если этот шейдер понадобится еще раз, то GPU возьмет его прямо с диска, не заставляя CPU проводить повторную компиляцию данного шейдера. Не трудно догадаться, что если отключить этот параметр, то производительность упадет.

Максимальное количество заранее подготовленных кадров . Количество кадров, которое может подготовить ЦП перед их обработкой графическим процессором. Чем выше значение, тем лучше.

Многокадровое сглаживание (MFAA) . Одна из технологий сглаживания используемая для устранения "зубчатости” на краях изображений. Любая технология сглаживания (SSAA, FXAA) очень требовательна к графическому процессору (вопрос лишь в степени прожорливости). Выключаем.

Потоковая оптимизация . Благодаря включению этой функции приложение может задействовать сразу несколько ЦП. В случае, если старое приложение работает некорректно попробуй поставить режим "Авто” или же вовсе отключить эту функцию.

Режим управления электропитанием . Возможно два варианта – адаптивный режим и режим максимальной производительности. Во время адаптивного режима энергопотребление зависит напрямую от степени загрузки ГП. Этот режим в основном нужен для снижения энергопотребления. Во время режима максимальной производительности, как не трудно догадаться, поддерживается максимально возможный уровень производительности и энергопотребления независимо от степени загрузки ГП. Ставим второй.

Сглаживание – FXAA, Сглаживание – гамма-коррекция, Сглаживание – параметры, Сглаживание – прозрачность, Сглаживание - режим . Про сглаживание я уже писал чуть выше. Выключаем всё.

Тройная буферизация . Разновидность двойной буферизации; метод вывода изображения, позволяющий избежать или уменьшить количество артефактов (искажение изображения). Если говорить простыми словами, то увеличивает производительность. НО! Работает эта штука только в паре с вертикальной синхронизацией, которую, как вы помните, мы до этого отключили. Поэтому этот параметр тоже отключаем, он для нас бесполезен.

Центральный процессор всегда считался сердцем компьютера. Эта небольшая микросхема отвечает за выполнение всех важных операций, заданных программами операционной системы, и координирует работу компонентов ПК. Однако современные графические чипы по своей мощности (да и по количеству транзисторов) давно обогнали ЦП, и попытки переложить часть работы центрального процессора на плечи видеокарты в последнее время предпринимаются все чаще и чаще. Активнее всего на этом поприще проявляет себя компания NVIDIA , видеокарты которой с недавних пор перестали быть просто ускорителями игровой графики. Они рассчитывают физические процессы, кодируют видео и даже участвуют в глобальных программах, связанных с распределенными вычислениями.

Наш сегодняшний рассказ о том, что могут предложить своим владельцам современные графические платы, а также о том, насколько это важно, да и важно ли вообще.

Все началось пару лет назад, когда NVIDIA прямо заявила, что графические платы нового поколения должны уметь нечто большее, чем просто выводить на экран красивую картинку. А через некоторое время компания представила набор компонентов для разработчиков под названием CUDA (Compute Unified Device Architecture). Новая платформа открывала перед видеокартами широкое поле для маневров. Теперь графические чипы могли попробовать себя в следующих задачах: декодирование видео, научные и инженерные расчеты, медицинские исследования, финансовые вычисления.

Чтобы повысить ценность платформы в глазах обывателей, NVIDIA возложила на видеокарты ускорение физики. Почти во всех современных играх есть подсистема, которая симулирует физические законы реального мира, что, в свою очередь, повышает реалистичность игрового процесса. Возьмем, к примеру, The Elder Scrolls 4: Oblivion . Физический движок этой игры учитывает массу и плотность объектов, силу трения, гравитационное воздействие и другие параметры. Что это дает? Вода ведет себя почти как настоящая, тела убитых врагов плавают на ее поверхности, деревья гнутся на ветру, одежда повторяет движения тела.

В автомобильных симуляторах речь идет о тех параметрах, от которых напрямую зависит скорость, управляемость и тормозной путь машины. Именно поэтому игрок чувствует разницу между Lamborghini Murcielago и Ford Mustang GT.

Физические вычисления - это головная боль для процессора. Ведь ему и так приходится нелегко, а тут еще заставляют просчитывать множество параметров, связанных с взаимодействием объектов. Современный графический чип с большим числом потоков куда лучше подходит для этих целей.

Осознав это, NVIDIA твердо вознамерилась, используя CUDA и свои видеокарты, поднять игровую физику на новый уровень. Поначалу компания использовала движок Havok FX . Но после того, как Intel купила Havok, NVIDIA оказалась в затруднительном положении.

Спасательный круг

А потом под руку NVIDIA подвернулась фирма Ageia , которая потерпела крах со своим физическим ускорителем PhysX и медленно, но верно шла ко дну. NVIDIA подсуетилась и в феврале 2008 года выкупила бедствующую компанию. Графического гиганта заинтересовали не столько железные разработки Ageia, сколько программный набор PhysX SDK , который использовал аппаратные возможности чипа PhysX, но мог прекрасно обходиться и без него (в этом случае расчет физических эффектов ложился на процессор). Не прошло и полугода, как технология PhysX задышала с новой силой. Первым делом NVIDIA прикрутила ее поддержку к своим топовым решениям. С каждой новой версией драйверов совместимость с PhysX обретали и другие модели видеокарт.

В середине августа 2008 года NVIDIA выпустила GeForce Power Pack , активирующий PhysX на платах серий GeForce 8xxx , GeForce 9xxx и GTX 2xx . Тем самым компания расширила пользовательскую базу до 80 миллионов человек во всем мире. Загрузить этот программный пакет может любой желающий, а находится он на странице www.nvidia.ru/theforcewithin .

В Power Pack входят: драйвера, бесплатная игра Warmonger - Operation: Downtown Destruction , демоверсия игры Metal Knight Zero , дополнительные уровни для Unreal Tournament 3 , клиент проекта распределенных вычислений Folding@home , пробная версия видеокодера Elemental Technologies Badaboom , а также несколько демоприложений, показывающих возможности технологии PhysX. С нашими впечатлениями от игр и демок, входящих в состав Power Pack, вы можете ознакомиться в разделе, посвященном тестированию.

Пара слов о Badaboom. Просматривать видео любых форматов умеет только персональный компьютер. Остальным устройствам (консолям, плеерам, КПК и прочим) требуется перекодирование ролика в понятный им вид. Существует множество программ-кодировщиков, но все они используют ресурсы центрального процессора. Поэтому на преобразование стандартного полуторачасового фильма уходит порядочно времени. Badaboom - тоже кодировщик, но он задействует шейдерные процессоры видеокарт, благодаря чему процесс перегона форматов протекает как минимум вдвое быстрее (в зависимости от используемой видеокарты). Что самое приятное, при этом ЦП свободен для выполнения любых других задач. К примеру, при кодировании клипа из H.264 в MP4 процессор загружен всего на 6%.

У программы предельно простой интерфейс, в наличии много предустановок (для самых популярных устройств). Без минусов, правда, не обошлось: текущая версия Badaboom поддерживает ограниченное количество входных форматов. И, разумеется, владельцы видеокарт от AMD , а также интегрированных решений Intel использовать программу не смогут - Badaboom работает только с платами NVIDIA.

Еще повоюют?

Намерения NVIDIA тверды как никогда. Компания хочет, чтобы ее физическая платформа использовалась в как можно большем числе игр. Intel, в свою очередь, заявляет, что с ускорением физических эффектов прекрасно справятся многоядерные процессоры. На ее стороне - армия опытных программистов, которую компания получила после покупки компании Havok.

Сейчас Intel работает над архитектурой Larrabee . У первых графических чипов нового семейства будет свыше десяти ядер на одном кристалле. Разумеется, сфера применения таких процессоров не ограничивается одной лишь обработкой графики. Они будут использоваться для научных расчетов, моделирования природных процессов и, конечно же, ускорения физики в играх. Что немаловажно, программируется Larrabee теми же самыми командами, что и обычные процессоры архитектуры x86. Это сильно упростит написание приложений, совместимых с новыми графическими чипами Intel.

Компания AMD также не намерена сидеть в стороне. Уже сейчас ее процессоры и видеочипы оптимизируются под физический движок Havok. Как показывает практика, Havok очень хорошо дружит с процессорами AMD, особенно с четырехъядерными Phenom X4 . К началу 2009 года компания планирует выпустить видеокарту, которая для ускорения вычислений будет использовать стандартные средства DirectX 11 .

Практика

Допустим, вы счастливый обладатель платы GeForce 8-й, 9-й или 200-й серии. Как включить ускорение физики средствами видеокарты в играх? В каких приложениях можно оценить преимущество технологии NVIDIA PhysX? Действительно ли результаты столь впечатляющие, как обещала NVIDIA? Мы попробуем ответить на все эти вопросы.

Постановка задачи проста: доказать, что современные видеокарты NVIDIA справляются с обработкой физики лучше, чем последнее поколение процессоров, или опровергнуть это утверждение. Поэтому набор основных компонентов для тестового стенда был очевиден: взятый с пылу с жару ЦП Intel Core i7-920 , пара мощных видеокарт ZOTAC GeForce GTX 280 AMP! Edition и другая парочка графических плат, но уже послабее - две ZOTAC GeForce 9800 GTX+ . В остатке: материнская плата ASUS P6T Deluxe и 6 Гб оперативной памяти от OCZ . Испытания проводились в 64-битной версии Windows Vista Ultimate .

Набор тестовых приложений был следующим:

Unreal Tournament 3 с установленным PhysX-дополнением;

Сетевой экшен с полностью разрушаемым окружением Warmonger - Operation: Downtown Destruction;

Пре-альфа-версия игры Metal Knight Zero - многопользовательского сетевого шутера, в котором все окружение можно разрушить;

Бенчмарк Nurien , основанный на технологиях одноименной социальной сетевой игры (разрабатывается).

Все они входят в состав GeForce Power Pack (в случае с Unreal Tournament 3 речь идет только о дополнении PhysX) и могут быть свободно скачаны с сайта компании.

Установка

Для начала следует обзавестись самыми свежими драйверами для видеокарты. На момент написания статьи была доступна версия GeForce 180.48 , которая включала в себя драйвера PhysX 8.10.13 . То есть нужно скачать всего один инсталляционный файл.

Тестовый стенд
Материнская плата ASUS P6T Deluxe (Intel X58, Socket LGA1366, DDR3-1333, PCIe, PCI, SATA RAID, IDE, FDD, GbLAN, Sound, USB, FireWire, ATX)
Память 3x OCZ OCZ3P16002GK DDR3 2 Гб (1600 МГц, 7-7-7-24)
Видеокарты 2x ZOTAC GeForce GTX 280 AMP! Edition 1024 Гб (NVIDIA GeForce GTX 280, PCIe x16)
2x ZOTAC GeForce 9800 GTX+ 1024 Гб (NVIDIA GeForce 9800 GTX+, PCIe x16)
Жесткий диск Seagate Barracuda 7200.10 ST3400620AS 400 Гб (SATA, 16 Мб)
Оптический привод Nec DV-5800C (IDE)
Блок питания Antec TruePower Quattro (1000 Вт)
Драйвер для материнской платы Intel Chipset Software Installation Utility 9.1.1.1010
Драйвера видеокарты NVIDIA GeForce 180.48
Операционная система Windows Vista Ultimate 64-bit Edition, Service Pack 1

После установки драйверов надо открыть Панель управления NVIDIA (кликнуть правой кнопкой на рабочем столе и выбрать соответствующий пункт) и перейти на закладку с настройками PhysX. Здесь можно включить или выключить аппаратную обработку физики, а также, когда в системе установлено две (и более) видеокарты, выбрать режим их совместной работы. Если платы одинаковые, то доступно два режима: SLI , при котором обе видеокарты делят между собой как графическую, так и физическую нагрузку, и мульти-GPU , когда одна плата берет на себя всю графику, а вторая - всю физику. Если в системе установлены разные видеокарты (например, в первом разъеме PCIe x16 - GeForce 9800 GTX, во втором - GeForce 9600 GT), то разумно будет повесить обработку физики на слабейшую из них.

Тестирование

Все тестовые забеги мы проводили в разрешении 1280x1024 при включенной 16-кратной анизотропной фильтрации, но без сглаживания. Столь низкое разрешение было выбрано не потому, что в нашем распоряжении не оказалось мониторов с большей диагональю. Дело в том, что в таком режиме объективнее всего отслеживается влияние центрального процессора на уровень fps в играх.

Давайте пройдемся по результатам наших испытаний.

Unreal Tournament 3

Оригинальный UT3 очень хорошо оптимизирован и не содержит каких-либо экстраординарных физических спецэффектов. Поэтому мы использовали PhysX-дополнение, которое включает в себя три новых уровня: Tornado, Lighthouse PhysX и Heat Ray PhysX. На первой карте хозяйничает гигантский смерч. Он свободно перемещается по уровню, снося все на своем пути и норовя догнать игроков. Вторая карта представляет собой один большой маяк, в котором можно раскурочить буквально каждую стену, лестницу и перекрытие. Ну а третий уровень - классическая карта Heat Ray c возможностью частичного разрушения и поддержкой еще нескольких физических эффектов.

Что же мы видим: тестирование только началось, а Core i7-920 уже посрамлен. Обе платы демонстрируют троекратное преимущество над процессором. Добавление второй видеокарты, которая занимается исключительно обработкой физики, приводит к увеличению производительности на 20-50% в зависимости от модели платы.

Warmonger - Operation: Downtown Destruction

Эта игра также базируется на движке Unreal Engine 3 , но по числу физических «присадок» заметно опережает UT3. Разрушается здесь абсолютно все, а надежных укрытий не существует в принципе, так как любой камень, за которым вы решили спрятаться, может быть превращен в пыль после нескольких удачных залпов противника. Дым от оружия стелется по направлению ветра, а туман рассеивается от череды взрывов.

На этом этапе видеокарты NVIDIA лишь укрепили свои позиции - все то же троекратное преимущество. Процессор Intel начинает потихоньку сгорать от стыда. Интересно, что система с GeForce 9800 GTX+ после установки еще одной платы получает чуть ли не 100-процентный прирост, тогда как добавочная GeForce GTX 280 увеличивает fps лишь на 30%.

Metal Knight Zero

Рассказывать о Metal Knight Zero особо нечего. Бегаем, стреляем, наблюдаем, как объекты разлетаются на мелкие кусочки в соответствии с законами физики. Плюс к тому, здесь в полной мере реализована симуляция ткани: флаги и прочие тряпки развеваются на ветру и рвутся точно так же, как и в реальной жизни.

Американская компания nVidia Corporation произвела на свет множество инноваций, как в технической сфере, так и в сфере программного обеспечения, однако, мало какая новая наработка имела такое же значение, как физический движок nVidia PhysX. Изначально, PhysX разрабатывался не nVidia, а небольшой калифорнийской компанией Ageia Technologies. Тогда ещё PhysX не имел большинства своих возможностей, но потенциал был виден невооружённым глазом.

В феврале 2008 года Ageia Technologies была приобретена nVidia Corporation и полностью вошла в её состав. Разумеется, все наработки Ageia Technologies также перешли в полную собственность nVidia. Руководством последней было принято решение переименовать PhysX в nVidia PhysX и сосредоточится на его активной разработке. Движок был оптимизирован для ускоренного проведения физических расчётов на графических чипах, имеющих также разработанную nVidia архитектуру CUDA. Кроме всего прочего, nVidia PhysX может производить вычисления и расчёты не только на графических чипах, но и на самых обычных центральных процессорах. На сегодняшний день данный физический движок доступен на всех популярнейших платформах, таких как Windows, Mac OS, Linux, Xbox 360, PlayStation 3 и даже Wii, однако аппаратное ускорение доступно только на платформе Windows.

Что такое nVidia PhysX

Чем же по своей сути является nVidia PhysX и благодаря чему он получил такую широкую популярность? PhysX является кроссплатформенным физическим движком, избавляющим игровых разработчиков от необходимости долгой, дорогой и трудоёмкой самостоятельной разработки собственного программного обеспечения, отвечающего за физическое взаимодействие различных тел.

Пример работы движка можно nVidia PhysX

Отличительной особенностью nVidia PhysX является то, что его необходимо скачивать и устанавливать отдельно, в то время как другие физические движки устанавливаются вместе с самой игрой. Сам движок состоит из трёх частей:

  • Rigid body, отвечающий за обработку твёрдых тел;
  • Cloth, отвечающий за обработку тканей;
  • Fluid, отвечающий за обработку различных жидкостей.

Каждый из этих компонентов реализован на высшем уровне. Например, Cloth обеспечивает максимально реалистичное поведение тканей при взаимодействии с другими тканями и иными предметами, а также их разрывы и разделение на несколько частей. Ярким примером может служить игра Mirror’s Edge, где благодаря этой технологии была реализована реалистичное физическое поведение не только тканей, но и брезента, строительной плёнки и других подобных материалов. На сегодняшний день nVidia PhysX широко используется в более чем 150 игровых проектов. Можно с уверенностью сказать, что nVidia PhysX является самым широко распространённым физическим движком в мире.

Предлагаем Вашему вниманию полное описание контрольной панели драйвера. Обращаем ваше внимание на то, что некоторые настройки доступны только при определенных типах применяемого оборудования. В данном обзоре мы постарались отразить все возможные настройки.

Главное окно панели

Главное окно представлено на иллюстрации:

Панель переходов находится слева и позволяет перемещаться по нужным пунктам настройки одним кликом. Меню Вид позволяет включить расширенный вид, который дает наиболее полный доступ ко всем возможностям настроек драйвера или настроить пользовательский вид панели, оставив только те пункты, которыми вы предполагаете пользоваться. Так же, в нижней левой части панели, предоставлен доступ к справочной системе контрольной панели (ссылка «Информация о системе»):

из которой вы сможете узнать о версиях файлов, установленных драйверов и другого программного обеспечения NVIDIA, а также характеристиках видеокарты.

Категория «Параметры 3D»

Регулировка изображений с просмотром

Доступны следующие настройки:

  • Настройки согласно 3D приложению — данная опция позволяет управлять качеством и скоростью отображения средствами 3D приложений. Однако, включенные по умолчанию оптимизация трилинейной фильтрации и оптимизация выборки при анизотропии сохраняется при любых настройках приложения.
  • Расширенные настройки 3D изображений — используются расширенные настройки драйвера, установленные самими пользователями. Ссылка «Перейти» открывает доступ к вкладке «Управление параметрами 3D». Именно управление дополнительными опциями драйвера позволяет добиться максимального качества изображения.
  • Пользовательские установки с упором на… : — наиболее интересная опция, позволяющая упрощенное управление дополнительными опциями драйвера для начинающих пользователей:

Значение Производительность соответствует максимальной скорости работы и включает в себя настройки: вертикальная синхронизация выключена, все оптимизации (оптимизация трилинейной фильтрации, оптимизация мип-фильтра при анизотропии, оптимизация выборки при анизотропии) включены, отрицательный уровень детализации: запрет отрицательного уровня — включен, фильтрация текстур — «качество», управление анизотропной фильтрацией и сглаживанием осуществляется приложениями.

Значение Баланс имеет следующие настройки: сглаживание — 2х, анизотропная фильтрация — 4х, все оптимизации (оптимизация трилинейной фильтрации, оптимизация мип-фильтра при анизотропии, оптимизация выборки при анизотропии) включены, отрицательный уровень детализации — включен, фильтрация текстур — «качество», вертикальная синхронизация — управляется приложениями.

Значение Качество имеет следующие настройки: оптимизация трилинейной фильтрации — включена, сглаживание — 4х, анизотропная фильтрация — 8х, отрицательный уровень детализации — разрешен, фильтрация текстур — «качество», вертикальная синхронизация — управляется приложениями.

Все режимы снабжены подробными пояснениями к их применению, а вращающийся логотип компании демонстрирует применение тех или иных настроек.

Для более детальной настройки используется окно Управление параметрами 3D .

Управление параметрами 3D

Глобальные параметры

Возможные настройки закладки Глобальные параметры :

Анизотропная фильтрация. Возможные значения — «Выкл.», «Управление от приложения», «2х—16х» (зависит от модели видеоадаптера). Анизотропная фильтрация на сегодня является самой продвинутой техникой компенсирующей искажение пикселей, а в сочетании с трилинейной фильтрацией дает наилучшее качество фильтрации. Активация любого значения кроме «Управление от приложения» позволяет игнорировать настройки приложений. Но не следует забывать, что это очень ресурсоемкая настройка, существенно снижающая производительность.

Вертикальный синхроимпульс. Возможные значения — «Вкл.» и «Выкл», «Использовать настройку 3D приложения». Под вертикальной синхронизацией (совершенно непонятно, зачем NVIDIA отошла от этого термина) понимают синхронизацию вывода изображения с частотой развертки монитора. Включение вертикальной синхронизации позволяет добиться максимально плавного изображения картинки на экране, выключение позволяет получить максимальное кол-во кадров в секунду, нередко приводя к срыву (смещению) изображения из-за того, что видеоадаптер начал прорисовку следующего кадра, тогда как еще не закончен вывод предыдущего. В силу использования двойной буферизации, включение вертикальной синхронизации может вызывать падение количества кадров в секунду и ниже частоты развертки монитора в некоторых приложениях.

Включение масштабируемых текстур. Возможные значения — «Нет» и «Билинейная», «Трилинейная». Нет — не включать масштабируемые текстуры в приложениях, которые их не поддерживают. Билинейная — лучшая производительность за счет падения качества. Трилинейная — хорошее качество изображения с более низкой производительностью. Использовать данную опцию в режиме принудительной билинейной фильтрации крайне не рекомендуется, поскольку качество изображения, получаемое при форсировании опции, просто удручающее.

Затенение фонового освещения. Включение технологии имитации глобального освещения (затенения) Ambient Occlusion. Традиционная модель освещения в 3D графике вычисляет вид поверхности исключительно по её характеристикам и характеристикам источников света. Объекты на пути света отбрасывают тени, но они не влияют на освещение других объектов сцены. Модель глобального освещения увеличивает реалистичность изображения, вычисляя интенсивность света, доходящего до поверхности, причем значение яркости каждой точки поверхности зависит от взаимного расположения других объектов сцены. К сожалению, честный объемный расчет затенения, вызванного объектами, расположенными на пути лучей света, все еще остается за пределами возможностей современного «железа». Поэтому была разработана технология ambient occlusion, позволяющая с помощью шейдеров рассчитывать взаимозатенение объектов в плоскости «виртуальной камеры» при сохранении приемлемой производительности, впервые использованная в игре Crysis. Данная опция позволяет применить эту технологию для изображения игр, не имеющих встроенной поддержки ambient occlusion. Каждая игра требует отдельной адаптации алгоритма, поэтому само включение опции осуществляется в профилях драйвера, а опция панели лишь разрешает использование технологии в целом. Со списком поддерживаемых игр можно ознакомиться на сайте NVIDIA . Поддерживается для графических процессоров G80 (GeForce 8X00) и новее начиная с драйвера 185.81 в Windows Vista и Windows 7. Может снизить производительность на 20-50 %. Возможные значения — «Вкл.» и «Выкл.».

Максимальное количество заранее подготовленных кадров — позволяет ограничить управлять максимальным числом подготовленных центральным процессором кадров при отлюченном. В случае возникновения проблем с замедленной реакцией мыши или джойстика, необходимо уменьшить значение по-умолчанию (3). Увеличение значения может помочь достижению более плавной картинки при низкой частоте кадров.

Ограничение расширения. Возможные значения — «Включено» и «Выключено». Применяется для решения проблем совместимости со старыми OpenGL приложениями из-за переполнения памяти, отведенной в них для хранения сведений о возможностях видеокарты. В случае аварийного завершения приложений, попробуйте включить ограничение расширения.

Потоковая оптимизация — позволяет управлять количеством, используемых приложениями GPU , в большинстве случаев изменения значения по-умолчанию (Авто) не требует. Однако, некоторые старые игры могут некорректно работать в таких конфигурациях. Поэтому и дана возможность управлять этой опцией.

Режим управления электропитанием . Возможные значения — «Адаптивный» (по-умолчанию) и «Максимальная производительность». С видеокартами GeForce 9X00 и более новыми, имеющими разделение на режимы производительности, для создающих небольшую нагрузку на графический процессор игр и программ драйвер не переводит видеокарту в режим производительности 3D. Это поведение можно изменить, выбрав режим «Максимальная производительность», тогда при любом использовании 3D видеокарта будет переходить в 3D режим. Эти функции доступны лишь при иcпользовании драйвера 190.38 и выше в Windows Vista и Windows 7.

Сглаживание — гамма-коррекция. Возможные значения «Вкл.» и «Выкл.». Позволяет выполнять гамма-коррекцию пикселов при сглаживании. Доступна на видеоадаптерах, основанных на графическом процессоре G70 (GeForce 7X00) и новее. Улучшает цветовую гамму приложений.

Сглаживание — прозрачность. Возможные значения — «Выкл.», «Множественная выборка», «Избыточная выборка». Управляет улучшенной технологией сглаживания, позволяющей уменьшить эффект «лесенки» на краях прозрачных текстур. Обращаем ваше внимание на то, что под словосочетанием «Множественная выборка», скрывается более привычный термин «Мультисэмплинг», а под «Избыточная выборка» — «Суперсемплинг». Последний метод имеет наиболее серьезное влияние на производительность видеоадаптера. Опция работоспособна на видеокартах семейства GeForce 6x00 и новее, при использовании драйверов версии 91.45 и выше.

Сглаживание — параметры. Пункт активен только если пункт «Сглаживание — режим» установлен в значение «Увеличение настройки приложения» или «Замещение настроек приложения». Возможные значения — «Управление от приложения» (что равнозначно значению «Управление от приложения» пункта «Сглаживание — режим»), и от 2х до 16х, включая «фирменные» Q/S режимы (зависит от возможностей видеокарты). Данная установка серьезно влияет на производительность. Для слабых карт рекомендуется использование минимальных режимов. Следует отметить, что для режима «Увеличение настройки приложения» эффект будут иметь только варианты 8x, 16x и 16xQ.

Сглаживание — режим . Включение полноэкранного сглаживания изображения (FSAA). Сглаживание используется для минимизации эффекта «ступенчатости», возникающего на границах трехмерных объектов. Возможные значения:

  • «Управление от приложения» (значение по-умолчанию) — сглаживание работет, только если приложение/игра прямо его запросит;
  • «Нет» — полностью запретить использование полноэкранного сглаживания;
  • «Замещение настроек приложений» — принудительно применить к изображению сглаживание, заданное в пункте «Сглаживание - параметры», независимо от использования или неиспользования сглаживания приложением. «Замещение настроек приложений» не будет иметь эффекта на игры, использующие технологию Deferred shading , и приложения DirectX 10 и выше. Оно также может приводить к искажениям изображения в некоторых играх;
  • «Увеличение настройки приложения» (доступно лишь для видеокарт GeForce 8X00 и более новых) — позволяет улучшить сглаживание, запрашиваемое приложениями, в проблемных местах при меньших, чем при использовании «Замещения настроек приложений» затратах производительности.

Сообщения об ошибках. Определяет, могут ли приложения проверять наличие ошибок рендеринга. Значение по-умолчанию «Выкл.», т.к. многие OpenGL приложения довольно часто проводят такую проверку, что снижает общую производительность.

Соответствующая привязка текстуры. Возможные значения — «Выкл.» , «Используются аппаратные средства», «Используется спецификация OpenGL ». Под «привязкой текстуры» понимают привязку координат текстуры, выходящих за ее пределы. Они могут быть привязаны к краям изображения или внутри него. Вы можете отключить привязку в случае появления дефектов текстур в некоторых приложениях. В большинстве случаев изменение данной опции не требуется.

Тройная буферизация. Возможные значения — «Вкл.» и «Выкл.». Включение тройной буферизации позволяет поднять производительность при использовании вертикальной синхронизации. Однако следует помнить, что не все приложения позволяют форсировать тройную буферизацию, и повышается нагрузка на видеопамять. Работает только для приложений OpenGL .

Ускорение нескольких дисплеев. Возможные значения — «Режим однодисплейной производительности», «Режим многодисплейной производительности» и «Режим совместимости». Настройка определяет дополнительные параметры OpenGL при использовании нескольких видеокарт и нескольких дисплеев. Панель управления назначает параметр по умолчанию. В случае проблем с работой приложений OpenGL в конфигурациях с несколькими видеокартами и дисплеями, попробуйте изменить настройку на режим совместимости.

Фильтрация текстур — анизотропная оптимизация фильтрации. Возможные значения — «Вкл.» и «Выкл.». При её включении драйвер форсирует использование точечного мип-фильтра на всех стадиях, кроме основной. Включение опции несколько ухудшает качество картинки и немного увеличивает производительность.

Фильтрация текстур. Возможные значения — «Высокое качество», «Качество», «Производительность», «Высокая производительность». Позволяет управлять технологией Intellisample. Параметр оказывает существенное влияние на качество изображения и скорость:

  • «Высокая производительность» — предлагает максимально возможную частоту кадров, что дает лучшую производительность.
  • «Производительность» — настройка оптимальной производительности приложений с хорошим качеством изображения. Дает оптимальную производительность и хорошее качество изображения.
  • «Качество» — стандартная установка, которая дает оптимальное качество изображения.
  • «Высокое качество» — дает наилучшее качество изображения. Применяется для получения изображений без использования программных оптимизаций фильтрации текстур.

Фильтрация текстур — о трицательное отклонение УД (уровня детализации). Возможные значения — «Разрешить» и «Привязка». Для более контрастной фильтрации текстуры в приложениях иногда используется отрицательное значение уровня детализации (LOD). Это повышает контрастность неподвижного изображения, но на движущихся объектах появляется эффект «шума». Для получения более качественного изображения при использовании анизотропной фильтрации желательно настроить опцию на «привязку», чтобы запретить отрицательного отклонение УД.

Фильтрация текстур — т рилинейная оптимизация. Возможные значения — «Вкл.» и «Выкл.». Включение данной опции позволяет драйверу снижать качество трилинейной фильтрации для повышения производительности, в зависимости от выбранного режима Intellisample.

Программные настройки

Закладка имеет два поля:

Выберите программу для настройки.

В этом поле вы можете видеть возможные профили приложений, служащих для замещения глобальных параметров настройки драйвера. При запуске соответствующего исполняемого файла, автоматически активируются настройки для конкретного приложения. Некоторые профили могут содержать настройки, недоступные для изменения пользователями. Как правило, это адаптация драйвера под конкретное приложение или устранение проблем с совместимостью. По умолчанию отображаются только те приложения, которые установлены в системе.

Укажите настройки для этой программы.

В этом поле вы можете изменить настройки для конкретного профиля приложения. Перечень доступных настроек полностью идентичен глобальным параметрам. Кнопка «Добавить» служит для добавления собственных профилей приложений. При её нажатии открывается окно проводника Windows, с помощью которого вы выбираете исполняемый файл приложения. После этого, в поле «Укажите настройки для этой программы» вы сможете выставить персональные настройки для приложения. Кнопка «Удалить» служит для удаления профилей пользовательских приложений. Обращаем ваше внимание, что удалить/изменить изначально присутствующие профили приложений средствами драйвера нельзя, для этого придется воспользоваться сторонними утилитами, такими как nHancer.

Установка конфигурации PhysX

Позволяет включить или отключить обработку физических эффектов с использованием технологии NVIDIA PhysX средствами видеокарты, при условии что она основана на графическом процессоре G80 (GeForce 8X00) или более новом. Поддержка включена по-умолчанию, отключение может потребоваться при решении проблем с приложениями, некорректно использующими PhysX (например, игрой Mirror`s Edge без патчей). При наличии более одного графического процессора NVIDIA в системе, пользователю предоставляется возможность выбора GPU , на котором будет происходить обработка физических эффектов, если только не используется режим SLI . Более подробно о особенностях применения NVIDIA PhysX , вы сможете ознакомиться в специальном разделе FAQ нашего сайта.

Дополнительно, начиная с версии драйвера 195.62, можно включить отображение индикатора ускорения PhysX в играх. Для этого в верхнем меню «Параметры 3D» отметьте «Показать визуальный индикатор PhysX ». Статус ускорения выводится в левом верхнем углу изображения.

Если вы любите поиграть в современные игры, то наверняка высокое качество графики имеет для вас решающее значение. Прорисовка трехмерных объектов, большое количество полигонов и шейдеров, прекрасный уровень симуляции физических объектов – все это немаловажные моменты, на которые вы наверняка обращаете внимание при игре.

Одним из проприетарных движков для симуляции физики трехмерных объектов является PhysX от NVidia. В отличие от большинства современных движков, которые входят в состав дистрибутива с игрой, PhysX требуется инсталлировать отдельно. Устанавливается PhysX в качестве дискретного драйвера. Также для обработки графики может использоваться специальная плата, установленная отдельно. В этом случае драйвер движка во время работы будет задействовать ее ресурсы. В случае же отсутствия такого аппаратного компонента, все задачи, связанные с вычислениями, будут возложены «на плечи» центрального процессора.

Непосредственно движок Физикс включает в себя три основных компонента, осуществляющие обработку физики:

  • обработку жидкостей;
  • обработку тканей;
  • обработку твердых тел.

В случае инсталляции библиотеки PhysX SDK вы можете собственноручно понаблюдать за работой этих трех составных частей движка в отношении обработки полигональных объектов.

PhysX используется исключительно на видеокартах семейства NVidia начиная с серии GeForce 8 и более поздних с минимальным объемом видеопамяти в 256 Мб и числом ядер в 32 штуки. Если вы хотите задействовать графический адаптер NVidia для обработки графики с помощью PhysX, другие видеокарты в системе должны быть также оснащены NVidia GPU.

Возможные проблемы и их решения

Довольно часто во время установки драйвера PhysX появляются ошибки с порядковыми номерами 1316 или 1714. Такая проблема связана с некорректным удалением старых драйверов при их переустановке на видеокарту NVidia. Такая проблема наблюдается в ОС Win 7 и выше. При этом, PhysX не устанавливается совсем. Стоит отметить, при использовании специальных программных комплексов и утилит для очистки системы (Reg Organizer, Driwer Cleaner, Drive Sweeper) проблему решить не удается. Скорее всего, вам придется удалить старые библиотеки NVidia из памяти ПК целиком.

У автора данной статьи такая проблема с PhysX возникла, когда было принято решение заменить видеокарту GeForce GTX 560 на GTX 670. Разумеется, старый драйвер к новой видеокарте попросту не подойдет, и операционка начнет выбрасывать различные ошибки. Вашему вниманию представлена инструкция, как с этим бороться.

Не имеет значения, удалили вы старую версию PhysX либо нет, как бы то ни было, запускаем приложение Driver Cleaner или Driver Sweeper, при этом последней версии.

В перечне драйверов выставляем галочку рядом с опцией NVidia – PhysX и кликаем на кнопке «Анализ».

Вручную выделяем все те пункты, которые были найдены приложением, осуществляем очистку и приступаем к следующей операции. Если программе ничего не удалось найти, также приступаем к следующему шагу.

Проверяем папку C:\Progam Filess (x86) для 64-битной системы или Progam Filess для 32-х разрядной ОС соответственно и находим там каталог NVidia Corporation. Если в нем есть папка PhysX, удаляем ее.

Корректно установить PhysX на Windows 7 пока что не удастся, нужно еще заняться чисткой реестра. Воспользуемся комбинацией клавиш Win+R и запустим команду regedit . В результате откроется редактор реестра. Важно понимать, что в случае некорректного удаления ключей в реестре можно лишиться надежной работоспособности системы, либо операционка вообще перестанет запускаться. Поэтому прежде, чем приступать к ручной чистке, сделайте с помощью тех же утилит для работы с ключами реестра, о которых шла речь ранее.

После того, как драйвера были удалены из системы, а реестр был почищен специальным программным комплексом, автору данной статьи удалось найти еще с добрый десяток оставшихся ключей в реестре, поэтому все чистим только ручками.

Нажимаем Правка -> Найти . Задаем в поле поиска значение «physx» и жмем «Найти далее»

Если в открытой ветке все поля имеют какое-либо отношение к PhysX, удаляем всю папку целиком. Если вы видите, что в ветке есть ключи, относящиеся к другим программным продуктам или технологиям, удалите только те ключи, в названии или значении которых встречается искомое слово. Все остальные ключи находим с помощью команды «Найти далее».

На весь процесс полной ручной очистки у вас уйдет около часа, поэтому запаситесь терпением. Согласитесь, намного легче аккуратно произвести ручную очистку, чем целиком. Да и на настройку дополнительного ПО (архиваторов, файловых менеджеров, драйверов к комплектующим) уйдет гораздо больше времени, так что игра стоит свеч.

Когда реестр будет очищен, перезагрузите компьютер и можете приступать к инсталляции новой версии PhysX с сайта компании NVidia, доступной для скачивания. Теперь вы знаете, как грамотно и абсолютно корректно переустановить PhysX на ОС линейки Виндовс. После этого проблема с ошибками должна исчезнуть, и все остальное пойдет «как по маслу».