Приобретал я NiZn аккумуляторы (не по этой ссылке, правда). AA были заявлены как 2800 мВт*ч (просто элементы в зеленой оболочке с падписью как на матричном принтере напечатанной), AAA - 1150 мВт*ч (эти в нормальной оболочке, под брендом UltraCell). В реале элементы AA выдали 1400-1480 мА*ч (т.е., весьма похоже на элементы PowerGenix) или 2250 мВт*ч при разряде током 500 мА. AAA элементы выдали 560-580 мА*ч (или 900 мВт*ч) при разряде током 200 мА. Так что тут обычное китайское приукрашивание характеристик, но не более. Примерно 10-15% из них имели высокий саморазряд (продавцы без проблем высылали замену).

Насчет же зарядки Z4... она явно была сделана изначально под Li-ion, и только затем добавлены дополнительные напряжения для LeFePO4, NiZn, NiMH. Что касается ее схемотехники, то это стандартный блокинг-генератор, преобразующий 220 В в примерно 12 В, и импульсный преобразователь на MC34063 с 12 В в нужное напряжение (от 1,46 до 4,20 В в зависимости от положения переключателя). Никакого микропроцессора или специализированного контроллера заряда нет - это просто тупой стабилизатор напряжения с ограничением по току. Для указанной микросхемы свист, шипение и т.п. звуковые эффекты - вполне нормальное явление, они вызваны самим принципом работы микросхемы (частота преобразования не фиксирована, и ее изменение и слышно как свист и шипение). На безопасность не влияет. Гораздо больше внимания надо уделять тому, чтобы не включить одновременно сеть и внешний источник питания. Они никак не развязаны, т.е. предсказать результат будет сложно.

MC34063 выдает запрограммированное переключателем напряжение (1,46 В для NiMH, 1,86 В для NiZn, 3,63 В для LiFePO4 и 4,20 В для Li-ion), которое затем из одной точки подается на все 4 аккумулятора через резисторы по 0,3 Ом. Собственно, вся развязка аккумуляторов друг от друга - это эти резисторы (бывает и хуже - просто параллельное включение). Хочу заметить, что 1,46 В мало для зарядки NiMH, а 1,86 В - для зарядки NiZn. Чтобы нормально их заряжать этим ЗУ, надо его доработать напильником (впаять пару резисторов, которые приведут к тому, что напряжение поднимется до 1,49 В и 1,91 В соответственно). Для Li-ion ничего дорабатывать не надо.

Про 1200 мА - вранье, общий ток вряд ли превысит 500-600 мА на все аккумуляторы (это ограничение заложено в схеме токоограничения MC34063). В принципе, можно его немного сдвинуть (сама микросхема может до 750 мА выдавать без опасности перегрева), но потянет ли это преобразователь 220-12 - неизвестно.

Насчет индикаторов - на них можно не смотреть. Они отключаются тупо по напряжению (1,42 В для NiMH и 1,80 В для NiZn, и только для Li-ion при 4,20 В). 1,42 В и 1,80 В - это очень мало, фактически, аккумуляторы при этом заряжены, от силы, наполовину. Даже когда индикаторы погасли, аккумуляторы продолжают заряжаться как ни в чем не бывало. Для полной зарядки пары AA NiZn аккумуляторов надо часов 20 (после доработки время снижается примерно до 10 часов), более точно можно определить мультиметром (напряжение на аккумуляторе достигнет 1,85-1,86 В).

Итог: NiZn аккумуляторы достаточно интересны, хотя и могут оказаться неподходящими для определенной техники (не рекомендую использовать их в устройствах, работающих от 2 аккумуляторов - в них может стоять повышающий преобразователь, который не может выдать напряжение ниже, чем на входе, а 3,7 В может оказаться слишком много для микросхем, рассчитанных на 3,3 В). Зарядка же - конструктор для любителя. После доработки годится для зарядки нечетного количества NiZn аккумуляторов (нормальные ЗУ их, обычно, только парами заряжают).

    *Примечание:



    К сожалению маркетинговые игры в завышение емкости аккумуляторов стали уже нормой для производителей. Вообще говоря,производители аккумуляторов предлагают поставщикам завышать емкость, по крайней мере на 30%, при маркировке этикеток аккумуляторов 1800мАч 2300мАч и даже больше! В этом может быть ничего страшного для магазина игрушек, но такая тактика маркетинга способна выжить 1 неделю в нашем магазине с отзывами и обзорами клиентов, и именно поэтому мы гарантируем нашим Turnigy 1500mAh Ni-Zn аккумуляторам по меньшей мере, 1500мАч емкости.

    примечание переводчика:

    http://habrahabr.ru/post/89264/


    Turnigy Ni-ZN (Nickel-Zinc) batteries offer high voltage and excellent cycle life when compared with Ni-CD/Ni-MH batteries.

    The nominal voltage of these Turnigy Ni-ZN cells is 1.6V compared to that of only 1.2V with Ni-CD/Ni-MH. This means more power for your device and longer usable capacity. Our Ni-ZN cells provide on average 50% more usable capacity per cycle compared to a standard Ni-CD/Ni-MH cell of the same rated capacity.

    Category: Rechargeable AA battery
    Capacity: 1500mAh
    Voltage: 1.6V
    Chemistry: Ni-ZN High Voltage
    Weight: 25g
    Dimensions: 49x14mm

    *Note: When charging these Ni-ZN cells, set your charger to Ni-CD/Ni-MH mode using CV (constant voltage) charge function. Set the cutoff voltage to 1.9V per cell.

    We guarantee our cells are true to their capacity!
    Sadly battery marketing is an evil game, with overstated capacity being the industry norm. Generally speaking, battery factories will suggest vendors to overstate the capacity by at least 30%, marking 1800mAh cells with 2300mAh labels or more!
    While this might work for toy stores, such marketing tactics wouldnt survive 1 week in our store with customer feedbacks and reviews, and thats why we guarantee our TURNIGY 1500mAh Ni-ZN cells to be at least 1500mAh!


    Turnigy Ni-Zn (никель-цинковые) батареи обеспечивают высокое напряжение и отличный жизненный цикл по сравнению с Ni-CD/Ni-MH батареями.

    Номинальное напряжение этих Turnigy Ni-Zn аккумуляторов 1,6В в отличии от 1,2В у Ni-CD/Ni-MH. Это означает больше мощности и больше полезной емкости. Наши Ni-Zn аккумуляторы обеспечивают в среднем на 50% больше полезной емкости за один цикл по сравнению со стандартным Ni-CD/Ni-MH аккумулятором той же номинальной мощности.

    *Примечание: При зарядке этих Ni-Zn аккумуляторов, установить зарядное устройство в режим Ni-CD/Ni-MH функции заряда CV (постоянное напряжение) . Установить напряжение отсечки 1,9 В на "банку".


    Мы гарантируем что наши аккумуляторы соответствуют заявленной емкости!

    К сожалению маркетинговые игры в завышение емкости аккумуляторов стали уже нормой для производителей. Вообще говоря,производители аккумуляторов предлагают поставщикам завышать емкость, по крайней мере на 30%, при маркировке этикеток аккумуляторов 1800мАч 2300мАч и даже больше!
    В этом может быть ничего страшного для магазина игрушек, но такая тактика маркетинга способна выжить 1 неделю в нашем магазине с отзывами и обзорами клиентов, и именно поэтому мы гарантируем нашим Turnigy 1500mAh Ni-Zn аккумуляторам по меньшей мере, 1500мАч емкости.

    примечание переводчика: беглый поиск выдал много разного, вот ссылка на обзор аналогичного аккумулятора другого производителя:

    http://habrahabr.ru/post/89264/

Исследования свойств покрытия, полученного с помощью кислого электролита. Покрытие цинк-никель можно получить как с помощью щелочного, так и с помощью кислого электролита.

Щелочные процессы для нанесения сплава цинк-никель придают поверхности блеск, отличаются высокой рассеивающей и кроющей способностью даже при обработке деталей сложной конфигурации. Эти свойства делают щелочные электролиты цинкования экономически выгодными и удобными в использовании.

Катодный выход по току щелочных процессов обычно варьируется в пределах 40-60% для свежих растворов, по мере использования электролита этот показатель снижается в силу скопления в ванне продуктов органического распада, а также образования углекислого натрия. Как правило, никель вводится в раствор посредством запатентованных добавок, что удорожает стоимость процесса получения покрытия.

Катодный выход по тока кислотных процессов для осаждения сплава цинк-никель составляет около 95%. Никель, входящий в состав раствора для обработки, содержится в солях, широко доступных на отраслевом рынке. Корректировка электролита (с целью увеличения концентрация никеля) выполняется с помощью растворимых никелевых анодов либо никелевых солей. В связи с этим стоимость кислотного процесса оказывается гораздо более низкой, чем стоимость щелочного, с учетом потребления химикатов. Кроме того, кислотный электролит обеспечивает большую производительность благодаря более высокому выходу по току. И, как известно, кислые растворы для нанесения сплава цинк-никель идеально подходят для осаждения покрытия на изделия из чугунного литья под действием постоянного тока, например, для осаждения гальванического покрытия на тормозные скобы.

Процесс получения покрытия цинк-никель из кислого электролита отличается определенными сложностями, что делает его менее удобным для применения в промышленных условиях. Цинковые аноды растворяются в кислых хлористых электролитах, вызывая трудности с контролированием концентрации цинка в растворе.

Чтобы сделать возможным использование растворимых никелевых анодов, применяется двойное выпрямление тока. В последнее время появились запатентованные нерастворимые аноды, позволяющие избежать двойного выпрямления. При обеднении электролита цинком или никелем используются специальные соли. Применение этих мер увеличит стоимость процесса (по сравнению с методом, использующим растворимые аноды), однако в первом случае значительно упрощается процедура получения покрытия в целом, а общая ее общая стоимость составит половину стоимости щелочного процесса.

Распределение сплава при заданной плотности тока в кислом электролите зависит от типа проводящей соли и наличия в растворе комплексообразователя. Чтобы добиться состава сплава, необходимого в соответствии с требованиями автомобильной отрасли в отношении коррозионной стойкости, на обрабатываемые изделия необходимо нанести слой, на 12-15% состоящий из никеля, равномерно распределенного по поверхности детали. По мнению Болдвина и его коллег, сплав, в котором содержание никеля превышает 21%, не способен обеспечить катодную защиту стальной поверхности. Что касается внешнего вида, сплав цинк-никель с содержанием никеля более 21% образует при электрохимическом осаждении слой черного цвета.

ОПЫТЫ И ВЫВОДЫ

В ходе экспериментов были исследованы три различных щелочных процесса нанесения сплава цинк-никель, описанных в Таблице I. Все они широко используются на современных производственных предприятиях. Раствор I был приготовлен на основе хлористого аммония, раствор II, не содержащий комплексообразователя, - на основе хлористого калия. В основе раствора III также использовался хлористый калий, однако в электролит был также добавлен мягкий комплексообразователь.

Таблица I.

Результаты исследования кислых электролитов для осаждения сплава цинк-никель

Электролит 1 Электролит 2 Электролит 3
Zn, г/л 32 55 36
Ni, г/л 25 29 30
NH4Cl , г/л 253 - -
KCl, г/л - 245 232
Гидроксид аммония, мл/л 60 - -
Борная кислота, г/л - 20 20
рН 5,7 5,4 5,5
Запатентованные добавки 60 мл/л 180 мл/л 25 мл/л
Комплексообразователь - - 200-350 мл/л

Катоды из малоуглеродистой стали, размерами 20 на 8 см, подвергли электрохимической обработке в 500-миллилитровой ячейке Тосея (также известной, как длинная ячейка Хула) при магнитном перемешивании. Продолжительность обработки составила 10 минут, плотность тока - 10 А. Содержание сплава было исследовано посредством рентгенографии с помощью спектрометра Seiko, модель SE 5120. Замеры делались в нескольких точках, расположенных на расстоянии 2 см друг от друга на участке высокой плотности тока.

Результаты исследований образца, обработанного в электролите 1 на основе хлористого аммония, приведены на рисунке 1. Как видно из таблицы, образец демонстрирует отклонение от нормы, типичное при осаждении цинка с элементами группы железа. При снижении плотности тока отмечается сокращение содержания никеля в осажденном слое. Повышение температуры раствора увеличивает содержание никеля в покрытии, но не изменяет характеристик покрытия.

Рисунок 1.
Электролит 1. Отношение распределения сплава к плотности тока.

С практической точки зрения, участки на катоде, начинающиеся от края высокой плотности и заканчивающиеся на расстоянии 10 см от него, являются индикатором плотности тока обрабатываемой поверхности. Это свойство позволяет наносить сплав с содержанием от 10 до 15 %, который обеспечивает необходимый уровень коррозионной стойкости и так называемую протекторную защиту стали.


Результаты исследований образца, обработанного в электролите 2, приведены в рисунке 2. Поведение раствора 2 при осаждении сплава отличается от поведения раствора 1. Электролит 2 характеризуется отклонением от нормы при любых плотностях тока, однако при минимальной плотности тока ему свойственно поведение, близкое к нормальному осаждению. При повышении температуры это свойство усиливается.

Таблица II. Зависимость состава сплава от плотности тока

4,0 ASD 2,0 ASD 1,0 ASD 0,2 ASD
Электролит 1 % Ni 12,0 12,3 4,3 1,2
(хлористый аммоний) Толщина
слоя, µм
13,8 7,0 4,3 1,2
Электролит 2 % Ni 12,1 12,2 13,4 15,5

(хлорид калия с/без комплексообразователя)

Толщина слоя, µм14,38,23,81,1

Что касается практического применения, электролит 2 экономически не выгоден. Содержание никеля в слое, полученном при стандартной плотности тока, варьируется от 6 до 15%.

Несмотря на то, что этот раствор обеспечивает высокую коррозионную стойкость и протекторную защиту стали, он представляет собой определенные сложности с точки зрения соответствия требованиям к осажденным сплавам согласно стандартам автомобилестроения. Кроме того, при выполнении процесса необходимо поддерживать рабочую температуру раствора на уровне 33 ±2°C во избежание превышения 20%-ной концентрации никеля, которое негативно сказывается на внешнем виде осажденного слоя, равно как на его способности обеспечивать протекторную защиту стали.

На рисунке 3 отображены результаты испытаний образцов, обработанных в растворе 3. Характеристики полученного покрытия схожи с результатами испытаний покрытий, полученных с помощью электролита 2, однако склонность к стандартному поведению подавляется путем увеличения концентрации комплексообразователя. Чтобы получить покрытие, соответствующее требованием автопроизводителей, следует тщательно контролировать концентрацию никеля и комплексообразователя в растворе. Как показывает практический опыт, электролит 3 позволяет осадить в подвесочной линии слой с содержанием никеля, варьирующимся от 12 до 14%. Способность раствора осаждать сплавы с содержанием никеля от 12 до 14% без добавления черных высоколегированных сплавов при низких плотностях тока в барабанах зависит от конфигурации изделия, силы тока и перемешивания.


Рисунок 2. Электролит 2. Распределение сплава.

Для проведения рентгенографии образцы из малоуглеродистой стали были обработаны электрохимическим способом в стандартной ячейке Хула с перемешиванием «пропеллером» при 2 А в течение 10 минут. Составы сплавов в зависимости от плотности тока приведены в Таблице II. Химический состав и толщина осажденного сплава были определены с помощью рентгенографии с помощью дифрактомера D8 Discover, оснащенного детектором GADDS, производства компании «Bruker Analytical X-Ray Systems, Inc.».



Рисунок 4.

На Рис. 4 представлен результат рентгенографии образца, обработанного в электролите 1. Вне зависимости от плотности тока в сплаве зафиксированы фазы Ni 5 Zn 21. Изменения плотности тока никак не отражаются на фазах сплава, лишь незначительно меняя текстуру образуемого сплава. Качественный анализ рентгеновского снимка выявил единственно просматриваемую при 4 ASD ориентацию - ориентацию (330). При увеличении плотности тока появляется ориентация (600), которая продолжает рост даже при снижении плотности тока.


Рисунок 5.

Рис. 5 представляет собой результат рентгенографии сплава цинк-никель, осажденного из электролита 2. При любой плотности тока присутствует единственная фаза Ni 5 Zn 21. Изменения плотности тока значительно сказываются на текстуре поверхности. Качественный анализ снимка показал, что ориентация (600) является доминирующей, среди тех, которые удалось зафиксировать при 4 ASD. При снижении плотности тока усиливается ориентация (330). При 0,2 ASD ориентация 330 преобладает над ориентацией (600).

Слой, осажденный из раствора на основе калия, обладает характеристиками, противоположными характеристикам покрытия, полученного с помощью электролита на основе хлористого аммония.

ЗАКЛЮЧЕНИЕ

Слой, полученный путем осаждения сплава цинк-никель из кислого электролита, имеет фазу Ni 5 Zn 21 при массовой доле никеля от 12 до 15%. Покрытия, осажденные из хлористого аммония, обладают кристаллической ориентацией по отношению к плотности тока, противоположной ориентации, зафиксированной у покрытий, полученных с помощью раствора на основе хлорида калия. Влияние этого фактора на такие свойства покрытия, как внутреннее напряжение и пластичность, а также возможность последующего осаждения, нуждается в дополнительном исследовании.

Растворы хлористого аммония для осаждения сплава цинк-никель позволяют получить покрытия, содержание никеля в которых при заданной плотности тока являются более предпочтительными для предприятия с экономической точки зрения. Кроме того, электролиты на основе хлористого аммония, подходят как для обработки в барабанах, так и для применения на подвесочной линии. В случаях, когда в силу каких-либо причин использование хлористого аммония запрещено, предприятие может эффективно заменить его раствором на основе хлорида калия, предлагаемого многими поставщиками.

Чтобы контролировать состав сплава на участках минимальной плотности тока, рекомендуется использовать мягкий комплексообразователь. Несмотря на то, что на отраслевом рынке имеется большое количество технологий на основе хлорида калия, не требующих использования комплексообразователя, они не нашли широкого применения на промышленных предприятиях в силу повышенного содержания никеля под воздействием минимальной плотности тока и необходимости поддерживать строго определенную температуру.


Откопал свой старенький Olympus Camedia C-500 Zoom , который я долго считал не рабочим, из-за одного глюка, если можно его так назвать... При включении фотоаппарата он быстро разряжался или вообще не включался. Но до недавнего времени, проверяя его на различных батарейках и аккумуляторах, я определил, что дело вовсе не в фотоаппарате, а низком напряжении в Ni-Mh аккумуляторах.

Olympus C-500 отлично работает на щелочных батарейках, а вот с аккумуляторами Ni-Cd и Ni-Mh он отказывает включаться, точнее, не со всеми аккумуляторами. Проверяя различия технических характеристик и сравнивая с эталонными (работающими аккумуляторами), было замечено, что у многих элементов питания сильно проседает напряжение при нагрузке, так как у Ni-Cd и Ni-Mh оно составляет 1,2 Вольт. И тут я задумался об их замене на альтернативные перезаряжаемые источники питания на NIZN аккумуляторы + отзыв от меня.

NIZN (NI-ZN) аккумуляторы - никель-цинковые аккумуляторы в отличии от Ni-Cd и Ni-Mh:

  1. выдают 1,6 Вольт а не 1,2, что делает их идеальным решением для
  2. NiZn имеет высокое напряжение и в конце разряда
  3. небольшой ресурс (250-370 циклов заряд-разряд)
  4. отдают 80-85 % от указанной энергии
  5. для достижения MAX числа циклов рекомендуется заряжать на 80-90 %
  6. маленькое внутреннее сопротивление (единицы миллиом) = большие зарядные и разрядные токи
  7. штатная зарядка за 2 часа
  8. заряжать до 1,8 Вольт и ждать пока упадет до 1,6 - НЕ ДО ЗАРЯЖАТЬ !

Имеют NIZN аккумуляторы память

Нет! У NIZN аккумуляторов отсутствует эффект памяти , который присутствовал в Ni-Cd, теперь не придется контролировать процесс заряда - разряда и до разряжать батареи если в потребителе (например фотоаппа)

NIZN аккумуляторы купить

Сегодня можно купить на китайских торговых площадках. На aliexpress есть неплохой проверенный продавец элементов питания под маркой PKCELL (оф. сайт производителя www.pkcell.net), который уже попал под тест-обзор на сайте mysku.ru пользователей Rimlyanin и Melafon :

Зарядка NIZN

Производитель PKCELL предлагает свое решение зарядного устройства для своих NIZN аккумуляторов, но я настаиваю обойтись без них, и прочитать несколько рекомендаций по зарядке NIZN без предлагаемого производителем зарядного устройства:

  1. По максимальному напряжению. Если ваше зарядное устройство поддерживает, выставить значение ограничения по напряжению 1,9 Вольт. (Voltage Cut-Off).
  2. Так же как в первом случае, установить зарядное устройство в режим Ni-CD/Ni-MH функции заряда CV (постоянное напряжение) . Установить напряжение отсечки 1,9 В на "банку".)
  3. Ограничение по емкости заряда, тут все просто, выключить режим и указать рекомендуемую 80-90% емкости.
  4. Можно заряжать используя режим для заряда LiFe аккумуляторов, но будьте внимательны - при этом режиме количество аккумуляторов Ni-Zn должно быть два на одну банку LiFe.
  5. Зная постоянный ток заряда зарядного устройства, можно отслеживать процесс зарядки по времени.

Зарядное устройство для Ni-Zn можно собрать саму по очень простой схеме:

В схеме можно произвести замену, что сделает ее дешевле и проще:

  1. Стабилитрон 2С107А заменить на резистор 240 Ом 0.125 Вт
  2. Резистор k47 (470 Ом) оставить 0.125 Вт
  3. конденсатор m1 (0,1 мкФ) убрать
  4. Сопротивление 1.0E (1 Ом) замкнуть, тем самым исключив его из схемы

При этом напряжение на выходе составит 1,888 Вольт, что еще лучше. При полном заряде аккумулятора ток заряда будет стремиться к нулю.

Мне же удалось зарядить Ni-Zn с помощью китайской интеллектуальной зарядки BM110, не смотря на обещанные продавцом поддержку только Ni-Cd и Ni-Mh аккумуляторов, в процессе заряда BM110 закончила заряд при достижении напряжения на NiZn аккумуляторе 1,9 вольт.

ОДНО НО, мы вставляем аккумуляторы и BM110 показывает Full , но стоит кнопкой MODE включить режим CHARGE и запустится процесс заряда учитывающий NiZn аккумулятор, который продлится до достижения напряжения 1,9 вольт.

Зарядное устройство BM110 было приобретено на Aliexpress у продавца Shenzhen City Boda International Trading Co.,Ltd. ссылка на товар BM110 Intelligent Digital Battery Charger Tester LCD Multifunction for 4 AA AAA Rechargeable AKKU +free shipping . (покупал за 31.29$, на сегодня цена товара 24.34$)

Разрядка пока не проверялась, но есть отзыв реального пользователя:

Лучше использовать специальную от хоббитов. Но при эксперименте BM110 зарядила NiZn полностью и потом разрядила, показав заявленную емкость. Правда, нет гарантий, что она не убьет их при долгой эксплуатации. Но как временную можно использовать.

- guru (пользователь форума forum.trackchecker.ru)

Важно знать

Не допускать напряжения разряда ниже 1,5 Вольт , дальше напряжение стремительно падает и 1.3 похоже предел, но доводить до этого не рекомендую. На эту тему есть хороший график разряда Ni-Zn аккумуляторов

Здесь представлен:

  1. разряд 10 шт. Ni-Zn аккумуляторов PowerGenix (голубые графики)
  2. разряд 10 шт. Ni-Mh аккумуляторов Eneloop (черные графики)

Приобретенные мною Ni-Zn аккумуляторы PKCELL показали 1,74 Вольт, продавцом поставляются в упаковке показанной выше или как в моем случае в прозрачный термоусаживающий пакет.

Реальная емкость приобретенных мною аккумуляторов PKCELL 1500 мА, по замерам заряд - разряд BM110:

На фото тот самый момент, когда разрядка на некоторых аккумуляторах уже закончилась, а другие вот вот начнут заряжаться или уже начали.

Возможно это сделано, что бы конкурировать с емкостью Ni-Mh аккумуляторов. Показатели неплохие, судя по информации из других источником, так как это нормальные показатели их емкости (см.

В течение целых пятидесяти лет портативные устройства для автономной работы могли полагаться исключительно на никель-кадмиевые источники питания. Но кадмий очень токсичный материал, и в 1990-х на смену никель-кадмиевой технологии пришла более экологичная никель-металл-гидридная. По сути эти технологии очень схожи, и большинство характеристик никель-кадмиевых аккумуляторов передались по наследству никель-металл-гидридным. Но тем не менее, для некоторых применений никель-кадмиевые аккумуляторы остаются незаменимыми и используются по сей день.

1. Никель-кадмиевые аккумуляторы (NiCd)

Изобретенный Вальдмаром Юнгнером в 1899 году, никель-кадмиевый аккумулятор имел несколько преимуществ по сравнению со свинцово-кислотным, единственным существовавшим тогда аккумулятором, однако был более дорогим из-за стоимости материалов. Развитие этой технологии было довольно медленным, но в 1932 году был сделан значительный прорыв - в качестве электрода стал использоваться пористый материал с активным веществом внутри. Дальнейшее усовершенствование было сделано в 1947 году и решило проблему газопоглощения, что позволило создать современную герметичную необслуживаемую никель-кадмиевую батарею.

На протяжении многих лет именно NiCd батареи служили в качестве источников питания для двухсторонних радиостанций, экстренной медицинской техники, профессиональных видеокамер и электроинструмента. В конце 1980-х были разработаны ультраемкие NiCd аккумуляторы, которые потрясли мир своей емкостью, на 60% превышающей показатель стандартной батареи. Это было достигнуто благодаря размещению большего количества активного вещества в батарее, но добавились и недостатки - повысилось внутреннее сопротивление и уменьшилось количество циклов заряда/разряда.

NiCd стандарт остается одним из самых надежных и непритязательных среди аккумуляторных батарей, и авиационная отрасль остается верной этой системе. Тем не менее, долговечность этих аккумуляторов зависит от надлежащего обслуживания. NiCd, и отчасти NiMH аккумуляторы, подвержены эффекту “памяти”, который приводит к потере емкости, если периодически не делать полный цикл разряда. При нарушении рекомендованного режима зарядки аккумулятор будто помнит, что в предыдущие циклы работы его емкость не была использована полностью, и при разряде отдает электроэнергию только до определенного уровня. (Смотрите: Как восстановить никелевый аккумулятор ). В таблице 1 перечислены преимущества и недостатки стандартного никель-кадмиевого аккумулятора.

Преимущества Надежный; большое количество циклов при правильном обслуживании
Единственный аккумулятор, способный к ультрабыстрой зарядке с минимальным стрессом
Хорошие нагрузочные характеристики, прощает их преувеличение
Длительный срок хранения; возможность хранения в разряженном состоянии
Отсутствие специальных требований к хранению и транспортировке
Хорошая производительность при низких температурах
Самая низкая стоимость одного цикла работы среди всех аккумуляторов
Доступен в широком диапазоне размеров и вариантов исполнения
Недостатки Относительно низкая удельная энергоемкость в сравнении с более новыми системами
Эффект “памяти”; необходимость периодического обслуживания для его избежания
Кадмий является токсичным материалом, необходима специальная утилизация
Высокий саморазряд; нуждается в подзарядке после хранения
Низкое напряжение ячейки в 1,2 вольта, требует построения многоячеечных систем для обеспечения высокого напряжения

Таблица 1: Преимущества и недостатки никель-кадмиевых батарей.

2. Никель-металл-гидридные аккумуляторы (NiMH)

Исследования никель-металл-гидридной технологии начались еще в 1967 году. Однако нестабильность металл-гидрида тормозила разработку, что в свою очередь привело к развитию никель-водородной (NiH) системы. Новые гидридные сплавы, обнаруженные в 1980-х, решили проблемы с безопасностью, и позволили создать аккумулятор с удельной энергоемкостью на 40% большей, чем у стандартного никель-кадмиевого.

Никель-металл-гидридные аккумуляторы не лишены недостатков. Например, их процесс зарядки более сложен, чем у NiCd. С саморазрядом в 20% за первые сутки и последующей ежемесячной в 10%, NiMH занимают одну из лидирующих позиций в своем классе. Модифицируя гидридный сплав, можно добиться снижения саморазряда и коррозии, но это добавит недостаток в виде уменьшения удельной энергоемкости. Но в случае использования в электротранспорте, эти модификации весьма полезны, так как повышают надежность и увеличивают срок службы батарей.

3. Использование в потребительском сегменте

NiMH батареи в данный момент являются одними из самых легкодоступных. Такие гиганты отрасли как Panasonic, Energizer, Duracell и Rayovac признали необходимость присутствия на рынке недорогого и долговечного аккумулятора, и предлагают никель-металл-гидридные источники питания разных типоразмеров, в частности АА и ААА. Производителями тратятся большие усилия, чтобы отвоевать часть рынка у щелочных батарей.

В этом сегменте рынка никель-металл-гидридные батареи являются альтернативой перезаряжаемым щелочным батареям , которые появились еще в 1990 году, но из-за ограниченного жизненного цикла и слабых нагрузочных характеристик не снискали успеха.

В таблице 2 сравниваются удельная энергоемкость, напряжение, саморазряд и время работы батареек и аккумуляторов потребительского сегмента. Представленные в АА, ААА и других типоразмерах, эти источники питания могут использоваться в портативных устройствах. Даже если у них может немного различается номинальный вольтаж, состояние разряда, как правило, наступает при одинаковом для всех фактическом значении напряжения в 1 В. Эта широта значений напряжения допустима, так как портативные устройства имеют некоторую гибкость в плане диапазона напряжений. Главное – необходимо вместе использовать только однотипные электрические элементы. Проблемы безопасности и несовместимость напряжения препятствуют развитию литий-ионных батарей в АА и ААА типоразмере.

Таблица 2: Сравнение различных батарей типоразмера АА.

* Eneloop является торговой маркой корпорации Sanyo, основанной на NiMH системе.

Высокий показатель саморазряда NiMH является причиной продолжающейся озабоченности потребителей. Фонарь или портативное устройство с батареей NiMH разрядится, если не пользоваться им несколько недель. Предложение заряжать устройство перед каждым использованием навряд ли найдет понимание, особенно в случае с фонарями, которые позиционируются как источники резервного освещения. Преимущество щелочной батареи со сроком хранения в 10 лет тут видится бесспорным.

В никель-металл-гидридной батарее от Panasonic и Sanyo под торговой маркой Eneloop удалось значительно уменьшить саморазряд. Eneloop может храниться без подзарядки в шесть раз дольше чем обычная NiMH. Но недостатком такой улучшенной батареи является немного меньшая удельная энергоемкость.

В таблице 3 приведены преимущества и недостатки никель-металл-гидридной электрохимической системы. В таблице не учтены характеристики Eneloop и других потребительских торговых марок.

Преимущества На 30-40 процентов большая емкость по сравнению с NiCd
Менее склонны к эффекту “памяти”, могут быть восстановлены
Простые требования к хранению и транспортировке; отсутствие регулирования этих процессов
Экологически чистые; содержат только умеренно токсичные материалы
Содержание никеля делает утилизацию самоокупающейся
Широкий диапазон рабочих температур
Недостатки Ограниченный срок службы; глубокие разряды способствуют ее уменьшению
Сложный алгоритм зарядки; чувствительны к перезаряду
Особые требования к режиму подзарядки
Выделяют тепло во время быстрой зарядки и разряда мощной нагрузкой
Высокий саморазряд
Кулоновская эффективность на уровне 65% (для сравнения у литий-ионных - 99%)

Таблица 3: Преимущества и недостатки NiMH батарей.

4. Железо-никелевые аккумуляторы (NiFe)

После изобретения в 1899 году никель-кадмиевого аккумулятора шведский инженер Вальдмар Юнгнер продолжил исследования и пытался заменить дорогой кадмий более дешевым железом. Но низкая эффективность заряда и чрезмерное газообразование водорода заставили его отказаться от дальнейшего развития NiFe батареи. Он даже не стал патентовать эту технологию.

Железо-никелевый аккумулятор (NiFe) использует в качестве катода гидрат окиси никеля, анода - железо, а электролита - водный раствор гидроксида калия. Ячейка такого аккумулятора генерирует напряжение в 1,2 В. NiFe устойчив к излишнему перезаряду и глубокому разряду; может эксплуатироваться в качестве резервного источника питания в течение более чем 20 лет. Устойчивость к вибрациям и высоким температурам сделали этот аккумулятор самым используемым в горной промышленности в Европе; также он нашел свое применение для обеспечения питания железнодорожной сигнализации, также используется как тяговой аккумулятор для погрузчиков. Можно отметить, что во время Второй мировой войны именно железо-никелевые батареи использовались в немецкой ракете “Фау-2”.

NiFe имеет низкую удельную мощность - примерно 50 Вт/кг. Также к недостаткам стоит отнести плохую производительность при низких температурах и высокий показатель саморазряда (20-40 процентов в месяц). Именно это, вкупе с высокой стоимостью производства, побуждает производителей оставаться верными свинцово-кислотным батареям.

Но железо-никелевая электрохимическая система активно развивается и в недалеком будущем способна стать альтернативой свинцово-кислотной в некоторых отраслях. Перспективно выглядят экспериментальная модель ламельной конструкции, в ней удалось снизить саморазряд аккумулятора, он стал практически невосприимчив к пагубному воздействию пере- и недозарядки, а его срок службы ожидается на уровне 50 лет, что сопоставимо с 12-летним сроком службы свинцово-кислотной батареи в режиме работы при глубоких циклических разрядах. Ожидаемая цена такой NiFe батареи будет сравнима с ценой литий-ионной, и всего в четыре раза превышать цену свинцово-кислотной.

NiFe аккумуляторы, равно как и NiCd и NiMH , требуют особых правил зарядки - кривая напряжения имеет синусоидальную форму. Соответственно, использовать зарядное устройство для свинцово-кислотного или литий-ионного аккумулятора не выйдет, это даже может навредить. Как и все батареи на основе никеля, NiFe боятся перезаряда - он вызывает разложение воды в электролите и приводит к ее потере.

Сниженную в результате неправильной эксплуатации емкость такого аккумулятора можно восстановить путем приложения высоких токов разрядки (соразмерных значению емкости аккумулятора). Данную процедуру необходимо проводить до трех раз с длительностью периода разряда в 30 минут. Также следует следить за температурой электролита - она не должна превышать 46°С.

5. Никель-цинковые аккумуляторы (NiZn)

Никель-цинковый аккумулятор похож на никель-кадмиевый тем, что использует щелочной электролит и никелевый электрод, но отличается по напряжению - NiZn обеспечивает 1,65 В на ячейку, в то время как NiCd и NiMH имеют показатель в 1,20 В на ячейку. Заряжать NiZn аккумулятор необходимо постоянным током с значением напряжения 1,9 В на ячейку, также стоит помнить, что этот вид аккумуляторов не рассчитан для работы в режиме подзарядки. Удельная энергоемкость составляет 100Вт/кг, а количество возможных циклов - 200-300 раз. NiZn не имеет в своем составе токсичных материалов и может быть легко утилизирован. Выпускается в различных типоразмерах, в том числе в АА.

В 1901 году Томас Эдисон получил патент США на перезаряжаемую никель-цинковую батарею. Позже его разработки были усовершенствованны ирландским химиком Джеймсом Драммом, который установил эти аккумуляторы на автомотрисы, которые курсировали по маршруту Дублин-Брей с 1932 по 1948 год. NiZn не получил должного развития из-за сильного саморазряда и короткого жизненного цикла, вызванного образованиями дендритов, что также часто приводило к короткому замыканию. Но совершенствование состава электролита уменьшило эту проблему, что дало повод снова рассматривать NiZn для коммерческого использования. Низкая стоимость, высокая выходная мощность и широкий диапазон рабочих температур делают эту электрохимическую систему крайне привлекательной.

6. Никель-водородные аккумуляторы (NiH)

Когда в 1967 началась разработка никель-металл-гидридных батарей, исследователи столкнулись с нестабильностью гидритов металла, что вызвало сдвиг в сторону развития никель-водородного (NiH) аккумулятора. Ячейка такого аккумулятора включает в себя инкапсулированный в сосуд электролит, никелевый и водородный (водород заключен в стальной баллон под давлением в 8207 бар) электроды.