В работе, датированной 1892 годом, Д. И. Ивановский приходит к выводу, что мозаичная болезнь табака вызывается «бактериями, проходящими через фильтр Шамберлана, которые, однако, не способны расти на искусственных субстратах». На основании этих данных были определены критерии, по которым возбудителей заболеваний относили к этой новой группе: фильтруемость через «бактериальные» фильтры, неспособность расти на искусственных средах, воспроизведения картины заболевания фильтратом, освобождённым от бактерий и грибов . Возбудитель мозаичной болезни называется Д. И. Ивановским по-разному, термин «вирус» ещё не был введён, иносказательно их называли то «фильтрующимися бактериями», то просто «микроорганизмами».

Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно - ящура , был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году , при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком , он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде это название и стало обозначать данную группу микроорганизмов.

Природа вирусов

Вирусы обладают уникальными свойствами, которые позволяют выделить их из общей массы микроорганизмов:

Общая вирусология изучает основные принципы строения, размножения вирусов, их взаимодействие с клеткой-хозяином, происхождение и распространение вирусов в природе. Один из важнейших разделов общей вирусологии - молекулярная вирусология, изучающая структуру и функции вирусных нуклеиновых кислот, механизмы экспрессии вирусных генов, природу устойчивости организмов к вирусным заболеваниям, молекулярную эволюцию вирусов.

  • Частная вирусология

Частная вирусология исследует особенности определённых групп вирусов человека, животных и растений и разрабатывает меры борьбы с вызываемыми этими вирусами болезнями.

  • Молекулярная вирусология

В 1962 г. вирусологи многих стран собрались на симпозиуме в США , чтобы подвести первые итоги развития молекулярной вирусологии. На этом симпозиуме звучали не совсем привычные для вирусологов термины: архитектура вирионов, нуклеокапсиды, капсомеры. Начался новый период в развитии вирусологии - период молекулярной вирусологии.

Молекулярная вирусология, или молекулярная биология вирусов, - составная часть общей молекулярной биологии и в то же время - раздел вирусологии. Это и неудивительно. Вирусы - наиболее простые формы жизни, и поэтому вполне естественно, что они стали и объектами изучения, и орудиями молекулярной биологии. На их примере можно изучать фундаментальные основы жизни и её проявления.

С конца 50-х годов, когда начала формироваться синтетическая область знаний, лежащая на границе неживого и живого и занимающаяся изучением живого, методы молекулярной биологии хлынули обильным потоком в вирусологию. Эти методы, основанные на биофизике и биохимии живого, позволили в короткие сроки изучить строение, химический состав и репродукцию вирусов.

Поскольку вирусы относятся к сверхмалым объектам, для их изучения нужны сверхчувствительные методы. С помощью электронного микроскопа удалось увидеть отдельные вирусные частицы, но определить их химический состав можно, только собрав воедино триллионы таких частиц. Для этого были разработаны методы ультрацентрифугирования . Современные ультрацентрифуги - это сложноустроенные приборы, главной частью которых являются роторы, вращающиеся со скоростью в десятки тысяч оборотов в секунду.

Здесь нет надобности рассказывать о других методах молекулярной вирусологии, тем более что они меняются и совершенствуются из года в год быстрыми темпами Если в 60-х годах основное внимание вирусологов было фиксировано на характеристике вирусных нуклеиновых кислот и белков, то к началу 80-х годов была расшифрована полная структура многих вирусных генов и геномов и установлена не только аминокислотная последовательность, но и третичная пространственная структура таких сложных белков, как гликопротеид гемагглютинина вируса гриппа. В настоящее время можно не только свя.

С 1974 года начала бурно развиваться новая отрасль биотехнологии и новый раздел молекулярной биологии - генная, или генетическая, инженерия . Она немедленно была поставлена на службу вирусологии.

Семейства, включающие вирусы человека и животных

  • Семейство: Poxviridae (поксвирусы)
  • Семейство: Iridoviridae (иридовирусы)
  • Семейство: Herpesviridae (вирусы герпеса)
  • Семейство: Aflenoviridae (аденовирусы)
  • Семейство: Papovaviridae (паповавирусы)
  • Предполагаемое семейство: Hepadnaviridae (вирусы, подобные вирусу гепатита В)
  • Семейство: Parvoviridae (парвовирусы)
  • Семейство: Reoviridae (реовирусы)
  • Предполагаемое семейство: (вирусы с двухцепочечной РНК, состоящей из двух сегментов)
  • Семейство: Togaviridae (тогавирусы)
  • Семейство: Coronaviridae (коронавирусы)
  • Семейство: Paramyxoviridae (парамиксовирусы)
  • Семейство: Rhabdoviridae (рабдовирусы)
  • Предполагаемое семейства: (Filoviridae) (вирусы Марбург и Эбола)
  • Семейство: Orthomyxoviridae (вирусы гриппа)
  • Семейство: Bunyaviridae (буиьявирусы)
  • Семейство: Arenaviridae (аренавирусы)
  • Семейство: Retroviridae (ретровирусы)
  • Семейство: Picornaviridae (пикорнавирусы)
  • Семейство: Caliciviridae (калицивирусы)

Литература

  • Белоусова Р.В., Преображенская Э.А., Третьякова И.В. Ветеринарная вирусология. - КолосС, 2007. - 448 с. - ISBN 978-5-9532-0416-3
  • Букринская А.Г. Вирусология. - М.: Медицина, 1986. - 336 с.
  • Вирусология: В 3-х т. Т. 1: Пер. с англ. / Под ред. Б. Филдса, Д. Найпа, при участии Р. Ченока, Б. Ройзмана, Дж. Мелника, Р. Шоупа. - М.: Мир, 1989. - 492 с. - ISBN 5-03-000283-9
  • Вирусология: В 3-х т. Т. 2: Пер. с англ. / Под ред. Б. Филдса, Д. Найпа, при участии Р. Ченока, Б. Ройзмана, Дж. Мелника, Р. Шоупа. - М.: Мир, 1989. - 496 с. - ISBN 5-03-000284-7
  • Вирусология: В 3-х т. Т. 3: Пер. с англ. / Под ред. Б. Филдса, Д. Найпа, при участии Р. Ченока, Б. Ройзмана, Дж. Мелника, Р. Шоупа. - М.: Мир, 1989. - 452 с. - ISBN 5-03-000285-5

См. также

  • Генетика вирусов

Wikimedia Foundation . 2010 .

Синонимы :
  • Энтомология
  • Оккам

Смотреть что такое "Вирусология" в других словарях:

    вирусология - вирусология … Орфографический словарь-справочник

    ВИРУСОЛОГИЯ - (от вирусы и...логия) наука о вирусах. Общая вирусология изучает природу вирусов, их строение, размножение, биохимию, генетику. Медицинская, ветеринарная и сельскохозяйственная вирусология исследует патогенные вирусы, их инфекционные свойства,… … Большой Энциклопедический словарь

    ВИРУСОЛОГИЯ - ВИРУСОЛОГИЯ, наука о ВИРУСАХ. Существование вирусов было установлено в 1892 г. русским ботаником Д. Ивановским, который обнаружил, что возбудитель болезни «табачная мозаика» может проходить сквозь фарфоровый фильтр, непроницаемый для БАКТЕРИЙ.… … Научно-технический энциклопедический словарь

    ВИРУСОЛОГИЯ - ВИРУСОЛОГИЯ, и, жен. Наука о вирусах. | прил. вирусологический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    ВИРУСОЛОГИЯ - (от вирусы и...логия), наука о вирусах. Возникла в кон. 19 в. как ветвь микробиологии в связи с открытием Д. И. Ивановским в 1892 способности возбудителя мозаичной болезни табака проходить через фильтры, задерживающие бактерии. Позднее эти… … Биологический энциклопедический словарь

    вирусология - сущ., кол во синонимов: 4 биология (73) инфрамикробиология (1) медицина (189) … Словарь синонимов

    вирусология - — EN virology The study of submicroscopic organisms known as viruses. (Source: MGH) Тематики охрана окружающей среды EN… … Справочник технического переводчика

В. занимает значительное место в биологии и медицине, т. к. вирусы вызывают многие заболевания людей, животных, растений, поражают плесневые грибы, простейшие организмы и бактерии, а также в связи с тем, что на модели вирусов изучаются основные проблемы генетики и молекулярной биологии.

История

Основоположник В.- русский ученый Д. И. Ивановский. Изучая мозаичную болезнь табака и использовав при этом метод фильтрации, он установил в 1892 г., что фильтрат из растертой взвеси листьев, пораженных этой болезнью, не содержал видимых в микроскоп микроорганизмов, однако вызывал типичные признаки мозаичной болезни у здоровых растений. На основании этих опытов Ивановский сделал вывод, что мозаичная болезнь табака вызывается мельчайшими микроорганизмами, проходящими через керамические фильтры, задерживающие все известные в то время бактерии, что они не способны расти на искусственных питательных средах, применяемых в бактериологии, и передаются в серии последовательных пассажей (прививок). В 1902 г. Ивановский обнаружил кристаллические включения в клетках табачных растений, пораженных мозаичной болезнью, в дальнейшем другими учеными было подтверждено, что это скопление вирусных частиц.

Использование метода фильтрации позволило в дальнейшем установить прохождение через керамические фильтры возбудителей других известных заболеваний человека и животных: ящура [Ф. Леффлер и Фрош (P. Frosch), 1898], желтой лихорадки [Рид (W. Reed, 1901) с сотр.]. В 1911 г. Ф. Раус доказал вирусную этиологию саркомы кур, т. е. впервые экспериментально установил, что вирусы могут вызывать неопластические процессы.

Для изучения вирусов, поражающих животных и растения, использовались в качестве модели соответствующие виды животных и растений. Для изучения и выделения вирусов, вызывающих заболевания человека, применялись восприимчивые к этому вирусу лабораторные животные (мыши, крысы, морские свинки, кролики, хорьки и т. д.). Широко использовались приемы введения различного инфекционного материала в роговицу глаза, кожу, мозг, дыхательные пути, а также принцип повторных пассажей на различных видах животных. Так, используя экспериментальных животных, выделили и изучили вирусы бешенства, оспы, герпеса, ящура, гриппа, энцефалитов, полиомиелита, хориоменингита и др. Однако к концу 30-х годов возможности этого метода были исчерпаны, т. к. не удавалось выделить многие вирусы, к к-рым экспериментальные животные были невосприимчивы, или нельзя было получить большого количества вирусов, очищенных от тканевых элементов, и в высоких концентрациях.

В 1931 г. был предложен метод культивирования вирусов на 8-13-дневном курином эмбрионе Вудраффом (М. F. Woodruff) и Э. Гудпасчером. В 40-х годах метод получил широкое распространение в вирусологии, т. к. имел ряд преимуществ: простота применения, большая чувствительность, возможность накопления большого количества вируса, относительная герметичность, предохраняющая от контаминации, относительная простота очистки от примесей, возможность быстрого определения наличия вируса в жидкостях эмбриона по данным реакции гемагглютинации.

Методом культивирования в курином эмбрионе (в клетках амниотической оболочки, в отдельных органах зародыша и клетках желточного мешка) были изучены вирусы гриппа человека и животных, чумы птиц, коровьей оспы, герпеса человека, энцефаломиелита лошадей и др. Эндерс, Роббинс, Уэллер (J. F. Enders, F. С. Robbins, Т. H. Weller, 1948-1952) применили для выделения и изучения вирусов метод культур клеток и тканей. Этот метод стал широко использоваться в различных вирусологических исследованиях и за несколько лет обогатил науку не только открытием сотен неизвестных ранее вирусов, но расширил возможности производства более качественных вирусных вакцин и диагностических препаратов; метод тканевых культур открыл новые возможности изучения различных аспектов и этапов процесса взаимодействия вируса и клетки (см. Культивирование вирусов , Культуры клеток и тканей).

Дальнейший прогресс В., и в частности изучение структуры, физиологии, биохимии и генетики вирусов, зависел от получения их в концентрированном и очищенном виде и был связан с внедрением новых физ.-хим. методов исследования: дифференциального и градиентного центрифугирования, молекулярно-адсорбционной и ионообменной хроматографии, электрофореза на бумаге и в полиакриламидном геле, радиоактивных изотопов и ряда других.

Быстрый прогресс В. был обусловлен применением электронных микроскопов с высокой разрешающей способностью (до 1,0-0,5 нм, в сочетании с методами оттенения и двойного оттенения, ультратонких срезов, позитивного и негативного контрастирования, а также авторадиографии, цитохим. и иммунохим. методов исследования. Использование комплекса перечисленных методов позволило изучить структурную организацию вирионов различных вирусов, предложить новую классификацию вирусов, основанную на их строении и биохим, составе, изучить закономерности репродукции вирусов и определить детали их онтогенеза, охарактеризовать основные параметры субвирусных компонентов (нуклеиновых кислот, белков и др.), начать углубленные исследования по генетике вирусов и приступить к разработке рациональных подходов к химиотерапии вирусных инфекций.

Развитие В. способствовало изучению и решению общебиол. проблем: доказательству генетической функции нуклеиновых кислот, расшифровке генетического кода, пониманию важнейших механизмов регуляции синтеза клеточных макромолекул, установлению передачи информации от клетки к клетке и др.

Практическое здравоохранение получило ряд надежных вакцин для специфической профилактики не только оспы, что было известно еще задолго до рождения В. как науки, но и желтой лихорадки, полиомиелита, кори; появились новые средства для неспецифического воздействия на вирусные инфекции, напр, интерферон (см.).

Основные направления современной вирусологии

Основные направления современной общей и мед. вирусологии: дальнейшее изучение тонкой структуры вирусов, их биохимии и генетики, репликации вирусных нуклеиновых кислот, взаимодействия вируса с клеткой, углубленное изучение противовирусного иммунитета, совершенствование методов выделения вирусов и диагностики вирусных заболеваний, разработка основ химиотерапии и химиопрофилактики вирусных инфекций; изучение экологии вирусов, разработка более совершенных методов профилактики, поиски и испытание препаратов для лечения вирусных заболеваний.

Особое внимание будет сосредоточено на изучении вирусов, вызывающих неопластические процессы, а также латентных вирусных инфекций и скрытого вирусного носительства, поисках возбудителей инфекционного и сывороточного гепатита, разработке профилактики гриппа.

В 30-х годах в СССР были созданы первые вирусологические лаборатории: по изучению вирусов растений- при Украинском ин-те защиты растений (1930), по изучению вирусов животных - в Ин-те экспериментальной ветеринарии в Москве в 1930 г. (Н. Ф. Гамалея), Центральная вирусологическая лаборатория НКЗ РСФСР в Москве (Л. А. Зильбер) и отдел вирусологии в Ин-те эпидемиологии и микробиологии им. Л. Пастера в Ленинграде (А. А. Смородинцев) в 1935 г. В послевоенные годы в СССР созданы и функционируют профильные научно-исследовательские, научно-производственные и практические учреждения. По данным на 1-е января 1973 г., в СССР исследования по общей и мед. В. проводились в 60 научных, научно-производственных учреждениях и учебных заведениях. Наиболее значительные: Ин-т вирусологии им. Д. И. Ивановского АМН СССР, Ин-т полиомиелита и вирусных энцефалитов АМН СССР, Ин-т эпидемиологии и микробиологии им. Н. Ф. Гамалеи АМН СССР, Ин-т экспериментальной и клинической онкологии АМН СССР, Ин-т молекулярной биологии АН СССР, Ин-т микробиологии АН СССР, Всесоюзный ин-т гриппа М3 СССР, Московский научно-исследовательский ин-т вирусных препаратов М3 СССР, Свердловский научно-исследовательский ин-т вирусных инфекций М3 РСФСР, Ин-т вирусологии и микробиологии АН Украинской ССР, Одесский научно-исследовательский ин-т вирусологии и эпидемиологии им. И. И. Мечникова М3 Украинской ССР, Ин-т инфекционных болезней М3 Украинской ССР, Ин-т микробиологии им. А. Кирхенштейна АН Латвийской ССР; во всех научно-исследовательских ин-тах микробиологии и эпидемиологии союзных республик созданы вирусологические лаборатории и отделы.

Наиболее крупные зарубежные учреждения, проводящие научные исследования по общей и мед. В.: National Institute for Medical Research (Лондон), National Communicable Disease Centre (Атланта, США), National Institute of Health (Токио), National Institute of Health (Бетесда, США), Institute of Epidemiology and Microbiology (Прага), Institute of Virology (Братислава), Institute Pasteur (Париж), Institute Inframicrobiology (Бухарест), Institute of Virology (Глазго, Англия), State Institute of Hygiene (Будапешт), Virus Research Centre (Пуна, Индия), Queensland Institute of Medical Research (Брисбейн, Австралия).

Результаты научных исследований по общей и мед. В. публикуются в следующих научных журналах: Доклады АН СССР (Москва), Бюллетень экспериментальной биологии и медицины (Москва), Вопросы вирусологии (Москва), Журнал микробиологии, эпидемиологии и иммунологии (Москва), Вестник АМН СССР (Москва), Archiv fur die gesamte Virusforschung (Вена), Acta Virologica (Прага), Virology (Нью-Йорк), Ann. Institute Pasteur (Париж), Revue Romanine de Virologie (Бухарест), Inter. Journal of Cancer (Хельсинки), Journal of Virology (Вашингтон), Advances Virus Research (Питтсбург, США), Journal of the National Cancer Institute (Бетесда, США), Intervirology (Берн).

В 1950 г. Советом Министров СССР была учреждена премия им. Д. И. Ивановского, присуждаемая АМН СССР раз в три года за лучшие работы в области В. За последние годы этой премии были удостоены следующие ученые: в 1969 г.- В. М. Жданов и С. Я. Гайдамович за руководство «Вирусология»; в 1973 г.- В. Д. Соловьев и Т. А. Бектемиров за монографию «Интерферон в теории и практике медицины».

Первые монографии по вирусологии: Rivers Т., Filterable Viruses, Baltimore, 1928; Hauduroy P., Les Ultra Virus, Paris, 1929; Гамалея H. Ф. Фильтрующиеся вирусы, М., 1930.

Результаты научных исследований по В. обсуждаются на конференциях, сессиях, проводимых профильными ин-тами, а такя^е на международных конгрессах.

В СССР первая научная конференция по вирусным болезням растений состоялась в марте 1935 г. в Харькове, первая научная конференция по ультрамикробам, фильтрующимся вирусам и бактериофагам - в декабре 1935 г. в Москве. В 1966 г. на 9-м Международном конгрессе по микробиологии впервые был избран Международный комитет по номенклатуре вирусов.

1-й Международный конгресс по В. состоялся в 1968 г. в Хельсинки, 2-й - в 1971 г. в Будапеште (был принят устав секции вирусологов, учрежденной в рамках Международной ассоциации микробиологов), 3-й в 1975 г. в Мадриде.

Развитие В. привело к открытию новых вирусов, количество которых быстро возрастало, в связи с чем создавались коллекции вирусов - музеи, где хранились вирусы, выделенные как в данной стране, так и полученные из других стран. Наиболее крупные коллекции вирусов: в СССР (Москва, Ин-т вирусологии АМН СССР) - Государственная коллекция вирусов, основана в 1956 г. как филиал Всесоюзного музея живых культур и условнопатогенных микроорганизмов; в США (Вашингтон) - коллекция вирусов и риккетсий, основана в 1959 г. на базе коллекции типовых культур (American type culture collection, Washington 7, Rockville, Maryland, USA); в ЧССР (Прага, Ин-т эпидемиологии и микробиологии) - Чехословацкая национальная коллекция типовых культур, основана в 1969 г. (Czechoslovak National collection of type cultures of the Institute Epidemiology and Microbiology, Prague); в Японии (Токио) - Японская коллекция культур микроорганизмов, основана в 1962 г. (The Japanes Federation of Culture collection of Microorganisms, Tokyo, Japan); в Англии (Лондон) - каталог национальной коллекции типовых культур, основан в 1936 г. (Medical Research Council, Catalog of the National collection of Type cultures, London, England); в Швейцарии (Лозанна, Международный центр живых культур) имеется международный каталог вирусов.

Преподавание В. в мед. вузах СССР проводится кафедрами микробиологии на II и III курсах, а по вирусным инфекциям лекции и клинические занятия проводят кафедры инфекционных болезней на V курсе.

На биол, ф-тах Московского и Киевского ун-тов созданы в течение последних 10 лет кафедры В., где готовят специалистов-вирусологов и ведется преподавание В. в течение одного семестра студентам других ф-тов.

Прогресс мед. В. в СССР сопровождался ростом числа специалистов высокой квалификации: с 1946 по 1960 г. подготовлено 16 докт, наук, с 1961 по 1972 г.- 140, кандидатов наук соответственно 217 и 836 (из них 54% путем обучения в аспирантуре). Важное значение в подготовке кадров вирусологов (специализация и усовершенствование) сыграла созданная в 1955 г. кафедра В. при ЦИУ, к-рая подготовила с октября 1955 г. по 1964 г.- 688 специалистов, а с 1965 г. по январь 1974 г.- 933, гл. обр. для обеспечения вирусологической работы в сан.-эпид, станциях.

Библиография: Авакян А. А. и Быковский А. Ф. Атлас анатомии и онтогенеза вирусов человека и животных, М., 1970, библиогр.; Бешенство, под ред. В. Д. Соловьева, М., 1954, библиогр.; Гаврилов В. И., Семенов Б. Ф. и Жданов В. М. Хронические вирусные инфекции и их моделирование, М., 1974, библиогр.; Гамалея Н. Ф. Фильтрующиеся вирусы, М.-Л., 1930; Гендон Ю. 3. Генетика вирусов человека и животных, М., 1967, библиогр.; Жданов В. М. и Гайда мо-вич С. Я. Вирусология, М., 1966; Жданов В.М.,Соловьев В. Д. и Эпштейн Ф. Г. Учение о гриппе, М., 1958; Зильбер Л. А. Учение о вирусах (общая вирусология), М., 1956; Иванове-к и й Д. И. О двух болезнях табака, Сельское хоз. и лесоводство, т. 169, № 2, с. 104, 1892; Косяков П. Н. и P о в н о в а 3. И. Противовирусный иммунитет, М., 1972; Морозов М. А. и Соловьев В. Д. Оспа, М., 1948; Першин Г. Н. и Б огдановаН. С. Химиотерапия вирусных инфекций, М., 1973, библиогр.; С о-ловьев В. Д. Весенне-летний клещевой энцефалит, М., 1944, библиогр.; С о-ловьев В. Д. и Баландин PI. Г. Биохимические основы взаимодействия вируса и клетки, М., 1969, библиогр.; они же, Клетка и вирус, М., 1973, библиогр.; Соловьев В. Д. и Б ек-темиров Т. А. Интерферон в теории и практике медицины, М., 1970, библиогр.; Тихоненко Т. И. Биохимия вирусов, М., 1965, библиогр.; Ш у б л а д- з e А. К. и Г а й д а м о в и ч С. Я. Краткий курс практической вирусологии, 2-е изд., М., 1954; Шубладзе А. К., Бычкова E. Н. и Баринский И. Ф. Вирусемия при острых и хронических инфекциях, М., 1974; Comprehen sive virology, ed. by H. Fraenkel-Conrat a. R. R. Wagner, v. 1 - 4, N. Y., 1974, bibliogr.; Starke G. u. HlinakP. Grundriss der allgemeinen Virologie, Jena, 1974, Bibliogr.

В. Д. Соловьев, А. М. Жуковский.

Общая вирусология изучает природу вирусов, их строение, размножение, биохимию, генетику. Медицинская, ветеринарная и сельскохозяйственная вирусология исследует патогенные вирусы, их инфекционные свойства, разрабатывает меры предупреждения, диагностики и лечения вызываемых ими заболеваний.

Вирусология решает фундаментальные и прикладные задачи и тесно связана с другими науками. Открытие и изучение вирусов, в частности бактериофагов, внесло огромный вклад в становление и развитие молекулярной биологии. Раздел вирусологии, изучающий наследственные свойства вирусов, тесно связан с молекулярной генетикой. Вирусы не только предмет изучения, но и инструмент молекулярно-генетических исследований, что связывает вирусологию с генетической инженерией. Вирусы - возбудители большого количества инфекционных заболеваний человека, животных, растений, насекомых. С этой точки зрения вирусология тесно связана с медициной, ветеринарией, фитопатологией и другими науками.

Возникнув в конце XIX века как ветвь патологии человека и животных, с одной стороны, и фитопатологии - с другой, вирусология стала самостоятельной наукой, по праву занимающей одно из основных мест среди биологических наук.

Вирусология - молодая наука, ее история насчитывает немногим более 100 лет. Начав свой путь как наука о вирусах, вызывающих болезни человека, животных и растений, в настоящее время вирусология развивается в направлениях изучения основных законов современной биологии на молекулярном уровне, основываясь на том, что вирусы являются частью биосферы и важным фактором эволюции органического мира.

ИСТОРИЯ ВИРУСОЛОГИИ

История вирусологии необычна тем, что один из ее предметов - вирусные болезни - стал изучаться задолго до того, как были открыты собственно вирусы. Начало истории вирусологии - это борьба с инфекционными заболеваниями и только впоследствии - постепенное раскрытие источников этих болезней. Подтверждением тому служат работы Эдуарда Дженнера гг.) по предупреждению оспы и работы Луи Пастера гг.) с возбудителем бешенства.

К концу XIX-го столетия выяснилось, что целый ряд заболеваний человека, таких как бешенство, оспа, грипп, желтая лихорадка являются инфекционными, однако их возбудители не обнаруживались бактериологическими методами.

Благодаря работам Роберта Коха гг.), который впервые использовал технику чистых бактериальных культур, появилась возможность различать бактериальные и небактериальные заболевания. В 1890 г. на X конгрессе гигиенистов Кох вынужден был заявить, что «…при перечисленных болезнях мы имеем дело не с бактериями, а с организованными возбудителями, которые принадлежат к совсем другой группе микроорганизмов». Это высказывание Коха свидетельствует, что открытие вирусов не было случайным событием. Не только опыт работы с непонятными по своей природе возбудителями, но и понимание сущности происходящего способствовали тому, что была сформулирована мысль о существовании оригинальной группы возбудителей инфекционных заболеваний небактериальной природы. Оставалось экспериментально доказать ее существование.

Определенный период времени в зарубежных публикациях открытие вирусов связывали с именем голландского ученого Бейеринка гг.) который также занимался изучением мозаичной болезни табака и опубликовал свои опыты в 1898 г. Профильтрованный сок зараженного растения Бейеринк поместил на поверхность агара, проинкубировал и получил на его поверхности бактериальные колонии. После этого верхний слой агара с колониями бактерий был удален, а внутренний слой был использован для заражения здорового растения. Растение заболело. Из этого Бейеринк сделал вывод, что причиной заболевания являются не бактерии, а некая жидкая субстанция, которая могла проникнуть внутрь агара, и назвал возбудителя «жидкий живой контагий». В связи с тем, что Ивановский только подробно описал свои опыты, но не уделил должного внимания небактериальной природе возбудителя, возникло недопонимание ситуации. Известность работы Ивановского приобрели только после того, как Бейеринк повторил и расширил его опыты и подчеркнул, что Ивановский впервые доказал именно небактериальный характер возбудителя самой типичной вирусной болезни табака. Сам Бейеринк признал первенство Ивановского и в настоящее время приоритет открытия вирусов Д.И. Ивановским признан во всем мире.

Слово ВИРУС означает яд. Этот термин применял еще Пастер для обозначения заразного начала. Следует отметить, что в начале 19 века все болезнетворные агенты назывались словом вирус. Только после того, как стала понятна природа бактерий, ядов и токсинов терминами «ультравирус», а затем просто «вирус» стали обозначать «новый тип фильтрующегося возбудителя». Широко термин «вирус» укоренился в 30-е годы нашего столетия.

Вирусы − уникальный класс, мельчайший класс инфекционных агентов, которые проходят через бактериальные фильтры и отличаются от бактерий по своей морфологии, физиологии и способу размножения.

Вирусы − внеклеточные формы жизни, надцарство Безядерных (аккариоты), царство Вира.

В настоящее время ясно, что вирусы характеризуются убиквитарностью, то есть повсеместностью распространения. Вирусы поражают представителей всех царств живого: человека, позвоночных и беспозвоночных животных, растения, грибы, бактерии.

ПРИРОДА ВИРУСОВ

Вирусы – внеклеточная форма жизни.

Вирусы − мельчайшие инфекционные агенты

Способ размножения. Вирусы не размножаются делением, размножение вирусов – репродукция – сборка отдельных вирусных компонент в вирусную частицу.

Вирусы встречаются в природе в двух состояниях: вне клетки вирусная частица находится в форме вириона – структуры вируса, в которой можно обнаружить все основные вирусные компоненты; внутри клетки вирус находится в вегетативной форме – это реплецирующаяся вирусная нуклеиновая кислота.

Вирусы не могут размножаться на обычных питательных средах, а только - в клетках, тканях или организмах.

Химический состав. Вирусная частица имеет белковую оболочку – белок, один тип нуклеиновой кислоты, либо РНК, либо ДНК, а также – зольный компонент. Сложно устроенные вирусы имеют ещё капсиды и углеводы.

Структура нуклеиновой кислоты (НК). НК вирусов (РНК или ДНК) являются хранителями генетической информации. У вирусов встречаются атипичные формы НК – двухцепочечные РНК и одноцепочечные ДНК.

Вирусные частицы не растут.

РАЗМЕРЫ ВИРУСОВ

Вирусы – мельчайшие агенты,нм (0,01-0,35 мкм). Они не видны в обычный световой микроскоп, и для определения размера вирусов используют различные методы:

1. фильтрация через фильтры с известной величиной пор;

2. определение скорости осаждения частиц при центрифугировании;

3. фотографирование в электронном микроскопе.

ХИМИЧЕСКИЙ СОСТАВ ВИРУСОВ

Вирусы имеют три основных компонента: белок, НК, зольный компонент.

Белки построены из аминокислот (а/к) L-ряда. Все а/к тривиальной природы, как правило, в структуре преобладают нейтральные и кислые дикарбоновые кислоты. В составе сложных вирусов имеются основные гистоноподобные белки, связанные с НК, для стабилизации структуры и для увеличения антигенной активности.

Все вирусные белки делятся на: структурные – формируют белковую оболочку – капсид; функциональные – белки ферменты, часть белков ферментов находятся в структуре капсида, этими белками связана ферментативная активность и способность вируса проникать внутрь клетки (например, АТФаза, сиалаза – неиромеидаза, которые встречаются в структуре вируса человека и животных, а также лизоцим).

Капсид состоит из длинных полипептидных цепей, что могут состоять из одного или нескольких белков с маленькой молекулярной массой. В структуре полипептидной цепи различают химическую, структурную и морфологическую единицы.

Химическая единица – это отдельный белок, формирующий полипептидную цепь.

Структурная единица – это повторяющаяся единица в структуре полипептидной цепи.

Морфологическая единица – это капсомер, который наблюдается в структуре вируса, что видна в электронном микроскопе.

Белки вирусного капсида имеют ряд свойств: они устойчивы к протеазам и причина устойчивости в том, что белок организован так, что пептидная связь, на которую действует протеаза, спрятана внутрь. В такой устойчивости большой биологический смысл: так как вирусная частица собирается внутри клетки, где высока концентрация протеолитических ферментов. Такая устойчивость предохраняет вирусную частицу от разрушения внутри клетки. Вместе с тем, эта устойчивость вирусной оболочки к протеолитическим ферментам теряется в момент прохождения вирусной частицы через клеточные покровы, в частности через ЦПМ.

Предполагают, что в процесс транспортировки вирусной частицы через ЦПМ, происходят изменения конформационной структуры и пептидная связь становится доступной для ферментов.

Функции структурных белков:

Защитная (предохраняют НК, которая расположена внутри капсида);

Некоторые белки капсиды несут адресную функцию, что рассматривается как рецепторы вирусов, с помощью которых вирусная частица прикрепляется на поверхности специфических клеток;

В составе вирионов обнаружен внутренний гистоноподобный белок связанный с НК, который обладает антигенной функцией и ещё участвует в стабилизации НК.

Функциональные белки-ферменты связанные с капсодом:

Сиалаза-неиромиедаза. Обнаружен в вирусах животных и человека, облегчает выход вирусной частицы из клетки и делает дырку (плешь) в вирусных структурах;

Лизоцим. Структурно связан с вирусной частицей, разрушает β-1,4-гликозидную часть в муреиновом каркасе и облегчает проникновение НК бактериофага внутрь бактериальной клетки.

АТФаза. Встроен в структуру бактериофага и некоторых вирусов человека и животных клеточного происхождения. Функции изучены на примере бактериофагов, с помощью АТФазы происходит гидролиз АТФ, которые интеркалированы в структуру вируса и имеют клеточное происхождение, выделяющаяся энергия расходуется сокращение хвостового отростка, это облегчает транспортировку НК внутрь бактериальной клетки.

Молекулярная масса вирусной ДНК колеблетсяД, а РНК – меньшеД.

НК вирусов в 10 раз меньше, чем НК самых мелких клеток.

Количество нуклеотидов в ДНК варьирует от нескольких тысяч до 250 тысяч нуклеотидов. 1 ген – 1000 нуклеотидов, это означает, что в структуре вирусов встречается от 10 до 250 генов.

В состав НК наряду с пятью азотистыми основаниями, имеют место и аномальные основания – основания, которые полностью способны замещать стандартные: 5-оксиметилцитозин – полностью замещает цитозин, 5-оксиметилурацил − замещает тимин.

Аномальные основания встречаются только у бактериофагов, у остальных – классические основания.

Функции аномальных оснований: блокируют клеточную ДНК, не дают возможность реализовать информацию заложенную в ДНК, в момент, когда вирусная частица попадает в клетку.

Помимо аномальных, обнаружены и минорные основания: малое количество 5-метилцитозина, 6-метиламино пурин.

У некоторых вирусов могут встречаться метилированые производные цитозина и аденина.

НК вирусов как РНК, так и ДНК, могут встречаться в двух видах:

В виде кольцевых цепей;

В виде линейных молекул.

Ковалентно-замкнутые цепи (не имеют 3’ – 5’ свободных концов, на них не действуют экзонуклеазы);

Релаксированая форма, когда одна цепь ковалентно замкнутая, а вторая имеет один или несколько разрывов в своей структуре.

Линейные молекулы делятся на две группы:

Линейная структура с фиксированной последовательностью нуклеотидов (начинается всегда одним нуклеотидам);

Линейная структура с пермитированной последовательностью (определенный набор нуклеотидов, но последовательность разлмчная).

В структуре РНК встречаются одноцепочечные +РНК и −РНК цепи.

РНК – с одной стороны хранитель генетической информации, а с другой стороны – выполнять функцию иРНК и узнается рибосомами клетки как иРНК.

−РНК − выполняют только функцию хранителя генетической информации, а иРНК синтезируется на её основе.

В вирусных частицах встречаются катионы металлов: калия, натрия, кальция, мангана, магния, железа, меди, и их содержанием может достигать несколько мг на 1 г вирусной массы.

Функции Ме2+: играют важную роль в стабилизации вирусной НК, формируют упорядоченную четвертичную структуру вирусной частицы. Состав металлов непостоянный и определяется составом окружающей среды. У некоторых вирусов имеются поликатионы связанные с полиаминами, которые играют огромную роль в физической стабильности вирусных частиц. Также ионы металлов обеспечивают нейтрализацию отрицательного заряда НК, которые формируют фосфорно-кислые (фосфатные группы) НК.

Вирусология (от лат. vīrus - «яд» и греч. logos — слово, учение) - наука о вирусах , раздел биологии.

Вирусология выделилась в самостоятельную дисциплину в середине XX века. Она возникла как ветвь патологии - патологии человека и животных с одной стороны, и фитопатологии - с другой. Первоначально вирусология человека, животных и бактерий развивалась в рамках микробиологии. Последующие успехи вирусологии в значительной мере основаны на достижениях смежных естественных наук - биохимии и генетики . Объектом исследования вирусологии являются субклеточные структуры - вирусы. По своему строению и организации они относятся к макромолекулам, поэтому с того времени, когда оформилась новая дисциплина, молекулярная биология , объединившая различные подходы к изучению структуры, функций и организации макромолекул, определяющих биологическую специфичность, вирусология стала также составной частью молекулярной биологии. Молекулярная биология широко применяет вирусы как инструмент исследования, а вирусология для решения своих задач используют методы молекулярной биологии.

История вирусологии

Вирусные болезни, такие как оспа, полиомиелит, желтая лихорадка, пестролистность тюльпанов известны с давних времен, однако о причинах, их вызывающих долгое время никто ничего не знал. В конце XIX столетия, когда удалось установить микробную природу ряда инфекционных заболеваний, патологи пришли к заключению, что многие из распространенных болезней человека, животных и растений нельзя объяснить заражением бактериями.

Открытие вирусов связано с именами Д.И.Ивановского и М.Бейеринка . В 1892 г. Д.И.Ивановский показал, что заболевание табака - табачная мозаика - может быть перенесено от больных растений к здоровым, если их заразить соком больных растений, предварительно пропущенным через специальный фильтр, задерживающий бактерии. В 1898 году М.Бейеринк подтвердил данные Д.И.Ивановского и сформулировал мысль о том, что заболевание вызывается не бактерией, а принципиально новым, отличным от бактерий, инфекционным агентом. Он назвал его contagium vivum fluidum - живое жидкое заразное начало. В то время для обозначения инфекционного начала любой болезни употребляли термин «virus» - от латинского слова «яд», «ядовитое начало». Сontagium vivum fluidum стали называть фильтрующимся вирусом, а позже - просто «вирусом». В том же, 1898 году Ф.Лефлер и П.Фрошш показали, что через бактериальные фильтры проходит возбудитель ящура крупного рогатого скота. Вскоре после этого было установлено, что и другие болезни животных, растений, бактерий и грибов вызываются подобными агентами. В 1911 году П.Раус открыл вирус, вызывающий опухоли у кур. В 1915 году Ф.Туорт, а в 1917 году Ф.Д’Эрель независимо друг от друга открыли бактериофаги - вирусы, разрушающие бактерии.

Природа этих возбудителей болезней, оставалась непонятной более 30 лет - до начала 30-х годов. Это объяснялось тем, что к вирусам нельзя было применить традиционные микробиологические методы исследования: вирусы, как правило, не видны в световой микроскоп и не растут на искусственных питательных средах.

Категории:Детализирующие понятия:

Вызывается «бактериями, проходящими через фильтр Шамберлана, которые, однако, не способны расти на искусственных субстратах». На основании этих данных были определены критерии, по которым возбудителей заболеваний относили к этой новой группе: фильтруемость через «бактериальные» фильтры, неспособность расти на искусственных средах, воспроизведения картины заболевания фильтратом, освобождённым от бактерий и грибов . Возбудитель мозаичной болезни называется Д. И. Ивановским по-разному, термин «вирус» ещё не был введён, иносказательно их называли то «фильтрующимися бактериями», то просто «микроорганизмами».

Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно - ящура , был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году , при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком , он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде это название и стало обозначать данную группу микроорганизмов.

Энциклопедичный YouTube

    1 / 5

    Вирусы: виды, устройство и способы заражения клетки

    Все виды компьютерных ВИРУСОВ, САМЫЙ полный СПИСОК!

    Андрей Летаров: "Бактериофаги и концепция вируса. История ключевой идеи"

    Сергей Нетёсов. Основы вирусологии. Ретровирусы. ВИЧ

    Скрытый МАЙНЕР - Вычисляем и УНИЧТОЖАЕМ!

    Субтитры

    Вирус - это неклеточный инфекционный агент. Живой это организм или нет? У нас до сих пор нет однозначного ответа на этот вопрос. Сегодня нам известно 6 000 вирусов, но их существует несколько миллионов. Вирусы не похожи друг на друга и могут иметь как форму сферы или спирали, так и форму сложного асимметричного сплетения. Размер вирусов варьируется от 20 до 300 нанометров в диаметре. Как устроен вирус? В центре агента - генетический материал - РНК или ДНК. Вокруг располагается белковая структура - капсид. Капсид служит для защиты вируса и помогает при захвате клетки. Некоторые вирусы дополнительно покрыты липидной оболочкой - жировой структурой, которая защищает их от изменений окружающей среды. Вирусолог Девид Балтимор объединил все вирусы в 8 групп. Некоторые группы вирусов содержат в себе одну или две цепочки ДНК, другие - одну цепочку РНК, которая может удваиваться или достраивать на своей матрице ДНК. При этом каждая группа вирусов воспроизводит себя в различных органеллах зараженной клетки. Каждый вирус имеет определенный диапазон хозяев, то есть опасен для одних видов и безвреден для других. Например, оспой болеет только человек, а чумкой - некоторые плотоядные. В организм человека вирус обычно попадает через кровь и секрецию. Каждый вирус по-разному заражает клетку. Герпес-вирусы встраиваются в мембрану, после чего генетический материал отбрасывает капсид и проникает в ядро. Вирус гепатита С целиком проникает в клетку, а бактериофаги впрыскивают свой генетический материал внутрь бактерии и оставляют белковую оболочку снаружи. Геном вируса встраивается в одну из органелл или цитоплазму и превращает клетку в настоящий вирусный завод. Естественные процессы в клетке нарушаются, и она начинает заниматься производством и сборкой генома и белка вируса. Этот процесс называется репликацией, и его основная цель - захват территорий. Во время репликации генетический материал вируса смешивается с генами клетки хозяина. Это приводит к активной мутации вируса и повышает его выживаемость. Когда процесс репликации налажен, вирусная частица отпочковывается и заражает новые клетки, а инфицированная клетка продолжает производство. По другому сценарию происходит лизис, то есть клетка разрывается, а зараженный организм наполняется новыми вирусами. Почему с вирусами так тяжело бороться? Эволюция вирусов происходит буквально на наших глазах. Идет постоянная гонка вооружений между вирусами и живыми организмами, и, когда вирус изобретает новое оружие, возникает пандемия. Людям уже удалось победить некоторые вирусы, такие как вирус черной оспы, но другие требуют ежегодной разработки или открытия новых вакцин.

Природа вирусов

  • Общая вирусология

Общая вирусология изучает основные принципы строения, размножения вирусов, их взаимодействие с клеткой-хозяином, происхождение и распространение вирусов в природе. Один из важнейших разделов общей вирусологии - молекулярная вирусология, изучающая структуру и функции вирусных нуклеиновых кислот, механизмы экспрессии вирусных генов, природу устойчивости организмов к вирусным заболеваниям, молекулярную эволюцию вирусов.

  • Частная вирусология

Частная вирусология исследует особенности определённых групп вирусов человека, животных и растений и разрабатывает меры борьбы с вызываемыми этими вирусами болезнями.

  • Молекулярная вирусология

В 1962 г. вирусологи многих стран собрались на симпозиуме в США , чтобы подвести первые итоги развития молекулярной вирусологии. На этом симпозиуме звучали не совсем привычные для вирусологов термины: архитектура вирионов, нуклеокапсиды, капсомеры. Начался новый период в развитии вирусологии - период молекулярной вирусологии.

Молекулярная вирусология, или молекулярная биология вирусов, - составная часть общей молекулярной биологии и в то же время - раздел вирусологии. Это и неудивительно. Вирусы - наиболее простые формы жизни, и поэтому вполне естественно, что они стали и объектами изучения, и орудиями молекулярной биологии. На их примере можно изучать фундаментальные основы жизни и её проявления.

С конца 50-х годов, когда начала формироваться синтетическая область знаний, лежащая на границе неживого и живого и занимающаяся изучением живого, методы молекулярной биологии хлынули обильным потоком в вирусологию. Эти методы, основанные на биофизике и биохимии живого, позволили в короткие сроки изучить строение, химический состав и репродукцию вирусов.

Поскольку вирусы относятся к сверхмалым объектам, для их изучения нужны сверхчувствительные методы. С помощью электронного микроскопа удалось увидеть отдельные вирусные частицы, но определить их химический состав можно, только собрав воедино триллионы таких частиц. Для этого были разработаны методы ультрацентрифугирования .

Если в 60-х годах основное внимание вирусологов было фиксировано на характеристике вирусных нуклеиновых кислот и белков, то к началу 80-х годов была расшифрована полная структура многих вирусных генов и геномов и установлена не только аминокислотная последовательность, но и третичная пространственная структура таких сложных белков, как гликопротеид гемагглютинина вируса гриппа. В настоящее время можно не только связать изменения антигенных детерминант вируса гриппа с заменой в них аминокислот, но и рассчитывать прошедшие, настоящие и будущие изменения этих антигенов.

С 1974 года начала бурно развиваться новая отрасль биотехнологии и новый раздел молекулярной биологии - генная, или генетическая, инженерия . Она немедленно была поставлена на службу вирусологии.

Семейства, включающие вирусы человека и животных

  • Семейство Poxviridae (поксвирусы)
  • Семейство Iridoviridae (иридовирусы)
  • Семейство Herpesviridae (герпесвирусы)
  • Семейство Adenoviridae (аденовирусы)
  • Семейство Papovaviridae (паповавирусы)
  • Семейство Hepadnaviridae (вирусы, подобные вирусу гепатита B)
  • Семейство Parvoviridae (парвовирусы)
  • Семейство Reoviridae (реовирусы)
  • Семейство Birnaviridae (вирусы с двухцепочечной РНК, состоящей из двух сегментов)
  • Семейство Togaviridae (тогавирусы)
  • Семейство