Сегодня мышь - необходимое устройство ввода для всех современных компьютеров. Но совсем недавно все было по-другому. Компьютеры не имели графического команды и данные можно было ввести только с помощью клавиатуры. А когда же появилась самая первая Вы будете удивлены, увидев, какую эволюцию пережил этот привычный для каждого предмет.

Кто изобрел первую компьютерную мышь?

Считается отцом этого прибора. Он был из тех ученых, которые стараются приблизить науку даже к простым людям и сделать прогресс доступным каждому. Он изобрел первые компьютерные мыши в начале 1960 годов в своей лаборатории в Стэнфордском исследовательском институте (ныне SRI International). Первый прототип был создан в 1964 году, в заявке на патент на это изобретение, поданной в 1967 году, он был назван как "Индикатор положения XY для системы с дисплеем". Но официальный документ под номером 3541541 был получен только в 1970 году.

Но все ли так просто?

Казалось бы, всем известно, кто создал первую компьютерную мышь. Но технология трекбола (шарового привода) впервые была использована гораздо раньше Военно-морским флотом Канады. Тогда, в 1952 г., мышь представляла собой обычный шар для боулинга, прикрепленный к сложной аппаратной системе, которая могла бы ощущать смещение шара и имитировать его движения на экране. Но мир узнал об этом только годы спустя - ведь это было секретное военное изобретение, которое никогда не патентовали и не пытались производить массово. Спустя 11 лет оно уже было известным, но Д. Энгельбарт признал его неэффективным. В тот момент он еще не знал, как соединить его видение мыши и это устройство.

Как появилась идея?

Основные идеи по поводу изобретения впервые пришли в голову Д. Энгельбарту в 1961 году, когда он был на конференции по компьютерной графике и обдумывал проблему повышения эффективности интерактивных вычислений. Ему пришло в голову, что, используя два маленьких колесика, которые движутся по столешнице (одно колесо поворачивается по горизонтали, а другое - по вертикали) компьютер может отслеживать сочетания их вращения и, соответственно, перемещать курсор на дисплее. В какой-то степени принцип действия похож на планиметр — инструмент, используемый инженерами и географами, чтобы измерять расстояния на карте или чертеже и т. д. Тогда ученый записал эту идею в свой блокнот для дальнейшего использования.

Шаг в будущее

Чуть более года спустя, Д. Энгельбарт получил грант от института на запуск своей исследовательской инициативы под названием "Улучшение Человеческого Разума". Под ней он представлял систему, где люди умственного труда, работая на высокопроизводительных компьютерных станциях с интерактивными дисплеями, имеют доступ к обширному информационному онлайн-пространству. С его помощью они могут сотрудничать, решая особо важные проблемы. Но этой системе остро не хватало современного устройства ввода. Ведь чтобы комфортно взаимодействовать с объектами на экране, нужно иметь возможность быстро их выбирать. НАСА заинтересовалась проектом и выделила грант на то, чтобы была сконструирована компьютерная мышь. Первая версия этого прибора похожа на современную разве что размером. Параллельно командой исследователей были придуманы и другие устройства, которые позволяли управлять курсором при помощи нажатия ступней на педаль или передвижения коленом специального зажима под столом. Эти изобретения так и не прижились, а вот джойстик, придуманный тогда же, позже был усовершенствован и применяется до сих пор.

В 1965 году команда Д. Энгельбарта опубликовала окончательный доклад о своем исследовании и различных методов выбора объектов на экране. Были даже волонтеры, которые участвовали в тестировании. Это происходило примерно так: программа показывала объекты в разных частях экрана и волонтеры пытались как можно быстрее кликнуть по ним разными устройствами. По результатам тестов первые компьютерные мыши однозначно превосходили все остальные приборы и были включены в качестве стандартного оборудования для дальнейших исследований.

Как выглядела первая компьютерная мышь?

Она была изготовлена из дерева и была первым устройством ввода, которое помещалось в руку пользователя. Зная принцип ее действия, вас уже не должно удивлять то, как выглядела первая компьютерная мышь. Под корпусом были два металлических диска-колесика, схема. Кнопка была только одна, и провод уходил под запястье человека, держащего прибор. Прототип собрал один из членов команды Д. Энгельбарта, его ассистент Уильям (Билл) Инглиш. Изначально он работал в другой лаборатории, но вскоре присоединился к проекту по созданию устройств ввода, разработал и воплотил в жизнь дизайн нового прибора.

Наклоняя и раскачивая мышь, можно быль нарисовать идеально ровные вертикальные и горизонтальные линии.

В 1967 году корпус стал пластиковым.

Откуда взялось название?

Достоверно никто не помнит, кто первый назвал этот прибор мышью. Ее тестировали 5-6 человек, возможно, что кто-то из них и озвучил сходство. Тем более что первая в мире компьютерная мышь была с проводом-хвостиком сзади.

Дальнейшие улучшения

Конечно, прототипы были далеки от идеала.

В 1968 в Сан-Франциско на компьютерной конференции Д. Энгельбарт представил усовершенствованные первые компьютерные мыши. Они имели три кнопки, помимо них клавиатура доукомплектовывалась приспособлением для левой руки.

Задумка была такова: правая рука работает с мышью, выделяя и активируя объекты. А левая с удобством вызывает нужные команды при помощи маленькой клавиатуры с пятью длинными клавишами, как у пианино. Тогда же стало ясно, что провод под рукой у оператора путается при использовании прибора, и что его нужно вывести на противоположную сторону. Конечно, приставка под левую руку не прижилась, но Дуглас Энгельбарт использовал ее на своих компьютерах до последних дней.

Продолжение работы над усовершенствованием

На дальнейших этапах развития мыши на сцену вышли другие ученые. Самое интересное, что Д. Энгельбарт никогда не получал отчислений со своего изобретения. Так как он запатентовал его как специалист Стэндфордского института, то правами на прибор распоряжался именно институт.

Итак, в 1972 году Билл Инглиш заменил колесики на трекбол, что позволило распознавать движение мыши в любом направлении. Поскольку он тогда работал в компании Xerox PARC, то эта новинка стала частью передовой по тем меркам системы Xerox Alto. Это был миникомпьютер с графическим интерфейсом. Поэтому многие ошибочно считают, что первые в компании Xerox.

Следующий виток развития произошел с мышью в 1983 году, когда в игру вступила компания Apple. Предприимчивый подсчитал стоимость массового производства прибора, которая составила примерно 300 долларов. Это было слишком дорого для обычного потребителя, поэтому было принято решение упростить конструкцию мыши и заменить три кнопки одной. Цена упала до 15 долларов. И хоть это решение до сих пор считают спорным, Apple не торопится менять свой культовый дизайн.

Первые компьютерные мыши были прямоугольной или квадратной формы, анатомический округлый дизайн появился лишь в 1991 г. Его представила компания Logitech. Помимо интересной формы новинка была беспроводной: связь с компьютером обеспечивалась при помощи радиоволн.

Первая оптическая мышь появилась в 1982. Ей для работы был необходим специальный коврик с напечатанной сеткой. И хоть шарик в трекболе быстро загрязнялся и доставлял неудобства тем, что его нужно было регулярно чистить, оптическая мышь до 1998 года была коммерчески невыгодной.

Что дальше?

Как вы уже знаете, «хвостатые» с трекболом уже практически не используются. Технологии, и эргономичность компьютерных мышек постоянно усовершенствуются. И даже сегодня, когда все более популярными становятся устройствам с тачскринами, их продажи не падают.

Виды компьютерных мышей. Каких только компьютерных мышек нет. От такого разнообразия даже голова кружиться. А ведь еще совсем недавно выбора практически никакого не было. Казалось бы, что ещё можно придумать? Но оказывается можно. Каждая компания, выпускающая этих маленьких и таких необходимых «зверьков», находит всё новые и новые дизайны и функции и для них.

Какие виды компьютерных мышей существуют ?

Видов как раз не так уж много. Вот они:

  • Механические или шариковые (уже практически не используются);
  • Оптические;
  • Лазерные;
  • Трекбол-мыши.
  • Индукционные;
  • Гироскопические.

Механические или шариковые мышки

Механические или шариковые мышки можно встретить разве что у коллекционеров. Хотя еще каких-нибудь семь лет назад она была единственным видом. Работать с ней было не очень комфортно, но не имея других видов мы считали что это супер-мышь.

На вес она была тяжеловата и без коврика никак не хотела работать. И позиционирование у неё желало лучшего. Особенно это было заметно в графических программах и играх. И чистить её приходилось очень часто. Что только не наворачивалось под этот шарик? А уж если дома ещё живут животные, то этот процесс повторялся как минимум раз в неделю.

У меня постоянно лежал пинцет возле компьютера, т.к. мои мохнатые друзья всё время норовили спать возле компьютера, и пух их цеплялся за коврик, делая его мохнатым. Теперь у меня уже нет такой проблемы. На смену шариковому «грызуну» пришла более современная мышь – оптическая.

Оптическая светодиодная мышь

Оптическая светодиодная мышь – работает уже по-другому принципу. В ней используется светодиод и сенсор. Она работает уже как маленькая фотокамера, которая сканирует поверхность стола своим светодиодом и фотографирует её. Таких фотографий оптическая мышка успевает сделать около тысячи за секунду, а некоторые виды и больше.

Данные этих снимков обрабатывает специальный микропроцессор и отправляет сигнал на компьютер. Преимущества такой мыши налицо. Ей не нужен коврик, она очень легкая по весу и может легко сканировать почти любую поверхность.

Оптическая лазерная мышь

Оптическая лазерная мышь – очень похожа на оптическую, но принцип работы у неё отличается тем, что вместо фотокамеры со светодиодом уже используется лазер. Потому и называется она – лазерной.

Это более усовершенствованная модель оптической мыши. Ей требуется гораздо меньше энергии. Точность считывания данных с рабочей поверхности у неё гораздо выше, чем у оптической мыши. Она может работать даже на стеклянной и зеркальной поверхности.

Трекбол-мышь

Трекбол-мышь – устройство, в котором используется выпуклый шарик (трекбол). Трекбол представляет собой перевернутую шариковую мышь. Шар находится сверху или сбоку. Его можно вращать ладонью или пальцами, а само устройство стоит на месте. Шар приводит во вращение пару валиков. В новых трекболах используются оптические датчики перемещения.

Индукционные мыши

Индукционные мыши – используют специальный коврик, работающий по принципу графического планшета.

Гироскопические мыши

Гироскопические мыши – при помощи гироскопа, распознаёт движение не только на поверхности, но и в пространстве. Её можно взять со стола и управлять движением кисти в воздухе.

Вот такие виды компьютерных мышей пока существуют на наших рынках.

Сейчас очень большое разнообразие таких устройств. Некоторые дизайны заслуживают особого внимания. И я буду описывать их. Следите за обновлениями сайта.

Современный компьютер вообще невозможно себе представить без этого гаджета, который существенно упрощает процесс управления ПК. Но лишь немногие пользователи знают, в каком году изобрели компьютерную мышь, и кто является ее создателем. Давайте вспомним, как появился этот гаджет, и каким он был с самого начала.

В каком году изобрели компьютерную мышь?

9 декабря 1968 год - именно в этот день мир увидел прообраз всех современных компьютерных мышей. Конечно, это был всего лишь прототип. Однако до этого времени существовали специальные компьютеризированные радары и манипуляторы, которые стали базой для созданий современной мышки.

Самый первый прообраз появился в начале 50-х годов. Тогда по казаку ВМФ Канады были созданы компьютеризированные радары с первым графическим интерфейсом. Для них требовалась специальная система позиционирования курсора, в качестве которой применялось простое устройство на основе гладкого шара. Его назвали трекбол, и это был первый шаг на пути создания современной компьютерной мыши.

Немного позже, в 1951 году Дуглас Энгельбарт (создатель) уже раздумывал на счет разработки манипулятора, и в 1955 году он принимал участие в изготовлении радарных систем. В частности он разрабатывал системы отображения информации в рамках компьютерной программы NASA. По словам самого Дугласа, он вместе со своей командой создал таблицу с параметрами и возможностями всех современных на то время манипуляторов, определили их функции и требуемые параметры, которых тогда еще не было. В ходе исследования в 1963 году была сформирована идея о создании дисплейного указателя, который бы перемещался в системе координат X-Y.

Первый прототип

В 1964 году по разработке Дугласа Энгельбарта аспирант Стэнфордского исследовательского института Билли Инглиш собрал первый прототип компьютерной мыши. Тогда же была написана и программа для демонстрации ее возможностей.

Это была большая квадратная деревянная коробка коричневого цвета с большой красной кнопкой на самом верху. Шнур располагался спереди, однако со временем его переместили назад. Так он практически не мешал. Внутри находился датчик плоскостного перемещения, который представлял собой два металлических диска. Они были расположены перпендикулярно друг другу: один вращался при движении устройства в сторону, а другой отвечал за движение вперед или назад. Учитывая эту конструкции, мышь нельзя было двигать по диагонали, она могла перемещаться вперед или назад.

Говоря о том, в каком году изобрели компьютерную мышь, стоит уточнить, что некоторые люди справедливо считают, что "родилось" это изобретение именно в 1946 году. Ведь именно в этот год появилось устройство-прообраз всех современных компьютерных гаджетов.

Первое представление мышки

Немного позже, 9 декабря 1968 года Дуглас Энгельбарт представил группе инженеров более совершенную модификацию этого устройства. Оно работало как манипулятор ОС oN-Line System. Мышь имела три кнопки, хотя сам Дуглас Энгельбарт утверждал, что хотел сделать 5 кнопок (на каждый палец). И хотя сначала планировали назвать устройство "жуком", позже прижилось название "мышь" - из-за толстого соединительного кабеля, напоминающего хвосты грызуна.

Итак, если логично посчитать, в каком году изобрели компьютерную мышь, то можно говорить о двух датах: 1964 и 1968 год. В 1970 году изобретатель получил патент, который фиксировал авторство манипулятора, основанного на использовании двух перпендикулярно расположенных колес. При этом сам принцип манипулятора не был запатентован.

В 1972 году данным исследованием активно занялись в компании Xerox PARC, которая существенно улучшила подобный гаджет. В частности, тогда диски заменили небольшим шаром или роликами. Так появились новые виды компьютерных мышей.

В 1979 году фирма Xerox создала компьютер Xerox Alto, который был исследовательским прототипом и не вошел в серию. Зато он комплектовался компьютерной мышью и имел графический интерфейс в виде рабочего стола. Было создано несколько тысяч таких компьютеров.

Появление резинового шара внутри корпуса

В 1979 году Стэнфордский исследовательский институт (именно там работала команда Энгельбарта) продал проект мышки Apple за 40 тыс. долларов. Получив лицензию на такое изобретение, компания Apple поручила студии Hovey-Kelley Design улучшить мышку. В результате вместо стального подшипника она получила удобный резиновый шар, который свободно катался в корпусе. Внедрение этой инновации позволило избавиться от сложной системы кодирующих колес и электрических контактов. Вместо нее были реализованы простые оптоэлектронные преобразователи и колесика со щелевыми прорезями.

Дальнейшее развитие

В 1983 году уже десяток компаний производили и продавали разные виды компьютерных мышей. В этот же год Apple выпустила однокнопочную мышку Lisa. Она была разработана по заказу Apple в центре Пало Альто. Инженеры смогли создать дешевую модификацию этого устройства, сделать его компактным и разборным. Можно было вынуть шарик изнутри, очистить его от пыли. Эту мышку включали в комплект домашнего компьютера Apple-Macintosh.

В 1987 году истек срок патента Дугласа Энгельбарта и лишь в 1998 году заслуги этого изобретателя были признаны официально. Сам Энгельбарт получил премию Lemelson-MIT Prize в размере $500 000.

С 1999 года начинают появляться оптические мыши, которые работают на любой поверхности. Многие модели, вышедшие после 2000 года, дожили и до наших дней. Более того, некоторые из них успешно используются.

В заключение

История создания компьютерной мыши короткая. Приблизительно за 30 лет удалось из примитивного и очень дорого устройства создать высокотехнологичный гаджет, который сегодня дешево стоит. Что касается современных моделей, то они кардинально отличаются от первой компьютерной мыши. От нее осталась лишь идея позиционирования курсора на графическом интерфейсе.

Теперь вы знаете, кто изобрел компьютерную мышь. В этом плане сомнений нет ни у кого. А вот что касается даты создания, то здесь есть 2 мнения:

  1. В 1964 году аспирантом Стэнфордского исследовательского института был создан прототип этого гаджета (по проекту Энгельбарта).
  2. В 1968 году сам Энгельбарт представил рабочую усовершенствованную версию мышки.

Здесь уже каждый для себя решает, когда появилась первая компьютерная мышь. Однако принято считать, что впервые она увидела мир 9 декабря 1968 год.

В этой статье мы рассмотрим принципы работы сенсоров оптических мышей, прольем свет на историю их технологического развития, а также развенчаем некоторые мифы, связанные с оптическими «грызунами».

Кто тебя выдумал…

Привычные для нас сегодня оптические мыши ведут свою родословную с 1999 года, когда в массовой продаже появились первые экземпляры таких манипуляторов от Microsoft, а через некоторое время и от других производителей. До появления этих мышей, да и еще долго после этого, большинство массовых компьютерных «грызунов» были оптомеханическими (перемещения манипулятора отслеживались оптической системой, связанной с механической частью - двумя роликами, отвечавшими за отслеживание перемещения мыши вдоль осей × и Y; эти ролики, в свою очередь, вращались от шарика, перекатывающегося при перемещении мыши пользователем). Хотя встречались и чисто оптические модели мышей, требовавшие для своей работы специального коврика. Впрочем, такие устройства встречались не часто, да и сама идея развития подобных манипуляторов постепенно сошла на нет.

«Вид» знакомых нам нынче массовых оптических мышек, базирующихся на общих принципах работы, был «выведен» в исследовательских лабораториях всемирно известной корпорации Hewlett-Packard. Точнее, в ее подразделении Agilent Technologies, которое только сравнительно недавно полностью выделилось в структуре корпорации НР в отдельную компанию. На сегодняшний день Agilent Technologies, Inc. - монополист на рынке оптических сенсоров для мышей, никакие другие компании такие сенсоры не разрабатывают, кто бы и что не говорил вам об эксклюзивных технологиях IntelliEye или MX Optical Engine . Впрочем, предприимчивые китайцы уже научились «клонировать» сенсоры Agilent Technologies, поэтому, покупая недорогую оптическую мышь, вы вполне можете стать владельцем «левого» сенсора.

Откуда берутся видимые отличия в работе манипуляторов, мы выясним чуть позднее, а пока позвольте приступить к рассмотрению базовых принципов работы оптических мышей, точнее их систем слежения за перемещением.

Как «видят» компьютерные мыши

В этом разделе мы изучим базовые принципы работы оптических систем слежения за перемещением, которые используются в современных манипуляторах типа мышь.

Итак, «зрение» оптическая компьютерная мышь получает благодаря следующему процессу. С помощью светодиода, и системы фокусирующих его свет линз, под мышью подсвечивается участок поверхности. Отраженный от этой поверхности свет, в свою очередь, собирается другой линзой и попадает на приемный сенсор микросхемы - процессора обработки изображений. Этот чип, в свою очередь, делает снимки поверхности под мышью с высокой частотой (кГц). Причем микросхема (назовем ее оптический сенсор) не только делает снимки, но сама же их и обрабатывает, так как содержит две ключевых части: систему получения изображения Image Acquisition System (IAS) и интегрированный DSP процессор обработки снимков.

На основании анализа череды последовательных снимков (представляющих собой квадратную матрицу из пикселей разной яркости), интегрированный DSP процессор высчитывает результирующие показатели, свидетельствующие о направлении перемещения мыши вдоль осей × и Y, и передает результаты своей работы вовне по последовательному порту.

Если мы посмотрим на блок-схему одного из оптических сенсоров, то увидим, что микросхема состоит из нескольких блоков, а именно:

  • основной блок, это, конечно же, Image Processor - процессор обработки изображений (DSP) со встроенным приемником светового сигнала (IAS);
  • Voltage Regulator And Power Control - блок регулировки вольтажа и контроля энергопотребления (в этот блок подается питание и к нему же подсоединен дополнительный внешний фильтр напряжения);
  • Oscillator - на этот блок чипа подается внешний сигнал с задающего кварцевого генератора, частота входящего сигнала порядка пары десятков МГц;
  • Led Cоntrоl - это блок управления светодиодом, с помощью которого подсвечивается поверхность под мышью;
  • Serial Port - блок передающий данные о направлении перемещения мыши вовне микросхемы.

Некоторые детали работы микросхемы оптического сенсора мы рассмотрим чуть далее, когда доберемся к самому совершенному из современных сенсоров, а пока вернемся к базовым принципам работы оптических систем слежения за перемещением манипуляторов.

Нужно уточнить, что информацию о перемещении мыши микросхема оптического сенсора передает через Serial Port не напрямую в компьютер. Данные поступают к еще одной микросхеме-контроллеру, установленной в мыши. Эта вторая «главная» микросхема в устройстве отвечает за реакцию на нажатие кнопок мыши, вращение колеса прокрутки и т.д. Данный чип, в том числе, уже непосредственно передает в ПК информацию о направлении перемещения мыши, конвертируя данные, поступающие с оптического сенсора, в передаваемые по интерфейсам PS/2 или USB сигналы. А уже компьютер, используя драйвер мыши, на основании поступившей по этим интерфейсам информации, перемещает курсор-указатель по экрану монитора.

Именно по причине наличия этой «второй» микросхемы-контроллера, точнее благодаря разным типам таких микросхем, довольно заметно отличались между собой уже первые модели оптических мышей. Если о дорогих устройствах от Microsoft и Logitech слишком плохо отозваться я не могу (хотя и они не были вовсе «безгрешны»), то масса появившихся вслед за ними недорогих манипуляторов вела себя не вполне адекватно. При движении этих мышей по обычным коврикам курсоры на экране совершали странные кульбиты, скакали чуть ли не на пол Рабочего стола, а иногда… иногда они даже отправлялись в самостоятельное путешествие по экрану, когда пользователь совершенно не трогал мышь. Доходило и до того, что мышь могла запросто выводить компьютер из режима ожидания, ошибочно регистрируя перемещение, когда манипулятор на самом деле никто не трогал.

Кстати, если вы до сих пор боретесь с подобной проблемой, то она решается одним махом вот так: выбираем Мой Компьютер > Свойства > Оборудование > Диспетчер устройств > выбираем установленную мышь > заходим в ее «Свойства» > в появившемся окне переходим на закладку «Управление электропитанием» и снимаем галочку с пункта «Разрешить устройству вывод компьютера из ждущего режима» (рис. 4). После этого мышь уже не сможет вывести компьютер из режима ожидания ни под каким предлогом, даже если вы будете пинать ее ногами:)

Итак, причина столь разительного отличия в поведении оптических мышей была вовсе не в «плохих» или «хороших» установленных сенсорах, как до сих пор думают многие. Не верьте, это не более чем бытующий миф. Или фантастика, если вам так больше нравится:) В ведущие себя совершенно по-разному мыши часто устанавливались совершенно одинаковые микросхемы оптических сенсоров (благо, моделей этих чипов было не так уж много, как мы увидим далее). Однако вот, благодаря несовершенным чипам контроллеров, устанавливаемых в оптические мыши, мы имели возможность сильно поругать первые поколения оптических грызунов.

Однако, мы несколько отвлеклись от темы. Возвращаемся. В целом система оптического слежения мышей, помимо микросхемы-сенсора, включает еще несколько базовых элементов. Конструкция включает держатель (Clip) в который устанавливаются светодиод (LED) и непосредственно сама микросхема сенсора (Sensor). Эта система элементов крепится на печатную плату (PCB), между которой и нижней поверхностью мыши (Base Plate) закрепляется пластиковый элемент (Lens), содержащий две линзы (о назначении которых было написано выше).

В собранном виде оптический элемент слежения выглядит как показано выше. Схема работы оптики этой системы представлена ниже.

Оптимальное расстояние от элемента Lens до отражающей поверхности под мышью должно попадать в диапазон от 2.3 до 2.5 мм. Это рекомендации производителя сенсоров. Вот вам и первая причина, почему оптические мыши плохо себя чувствуют «ползая» по оргстеклу на столе, всевозможным «полупрозрачным» коврикам и т. п. И не стоит клеить на оптические мыши «толстые» ножки, когда отваливаются или стираются старые. Мышь из-за чрезмерного «возвышения» над поверхностью может впадать в состояние ступора, когда «расшевелить» курсор после пребывания мыши в состоянии покоя становится довольно проблематично. Это не теоретические измышления, это личный опыт:)

Кстати, о проблеме долговечности оптических мышей. Помниться, некоторые их производители утверждали что, дескать «они будут служить вечно». Да надежность оптической системы слежения высока, она не идет ни в какое сравнение с оптомеханической. В то же время в оптических мышах остается много чисто механических элементов, подверженных износу точно так же, как и при господстве старой доброй «оптомеханики». Например, у моей старой оптической мыши стерлись и поотваливались ножки, сломалось колесо прокрутки (дважды, в последний раз безвозвратно:(), перетерся провод в соединительном кабеле, с манипулятора слезло покрытие корпуса… зато вот оптический сенсор нормально работает, как ни в чем не бывало. Исходя из этого, мы смело можем констатировать, что слухи о якобы впечатляющей долговечности оптических мышей не нашли своего подтверждения на практике. Да и зачем, скажите на милость, оптическим мышам «жить» слишком долго? Ведь на рынке постоянно появляются новые, более совершенные модели, созданные на новой элементной базе. Они заведомо совершеннее и удобнее в использовании. Прогресс, знаете ли, штука непрерывная. Каким он был в области эволюции интересующих нас оптических сенсоров, давайте сейчас и посмотрим.

Из истории мышиного зрения

Инженеры-разработчики компании Agilent Technologies, Inc. не зря едят свой хлеб. За пять лет оптические сенсоры этой компании претерпели существенные технологические усовершенствования и последние их модели обладают весьма впечатляющими характеристиками.

Но давайте обо всем по порядку. Первыми массово выпускаемыми оптическими сенсорами стали микросхемы HDNS-2000 (рис. 8). Эти сенсоры имели разрешение 400 cpi (counts per inch), то бишь точек (пикселей) на дюйм, и были рассчитаны на максимальную скорость перемещения мыши в 12 дюймов/с (около 30 см/с) при частоте осуществления снимков оптическим сенсором в 1500 кадров за секунду. Допустимое (с сохранением стабильной работы сенсора) ускорение при перемещении мыши «в рывке» для чипа HDNS-2000 - не более 0.15 g (примерно 1.5 м/с 2).

Затем на рынке появились микросхемы оптических сенсоров ADNS-2610 и ADNS-2620 . Оптический сенсор ADNS-2620 уже поддерживал программируемую частоту «съемки» поверхности под мышью, с частотой в 1500 либо 2300 снимков/с. Каждый снимок делался с разрешением 18х18 пикселей. Для сенсора максимальная рабочая скорость перемещения по прежнему была ограничена 12 дюймами в секунду, зато ограничение по допустимому ускорению возросло до 0.25 g, при частоте «фотографирования» поверхности в 1500 кадров/с. Данный чип (ADNS-2620) также имел всего 8 ножек, что позволило существенно сократить его размеры по сравнению с микросхемой ADNS-2610 (16 контактов), внешне похожей на HDNS-2000. В Agilent Technologies, Inc. задались целью «минимизировать» свои микросхемы, желая сделать последние компактнее, экономнее в энергопотреблении, а потому и удобнее для установки в «мобильные» и беспроводные манипуляторы.

Микросхема ADNS-2610 хотя и являлась «большим» аналогом 2620-й, но была лишена поддержки «продвинутого» режима 2300 снимков/с. Кроме того, этот вариант требовал 5В питания, тогда как чип ADNS-2620 обходился всего 3.3 В.

Вышедший вскоре чип ADNS-2051 представлял собой гораздо более мощное решение, чем микросхемы HDNS-2000 или ADNS-2610, хотя внешне (упаковкой) был также на них похож. Этот сенсор уже позволял программируемо управлять «разрешением» оптического датчика, изменяя таковое с 400 до 800 сpi. Вариант микросхемы также допускал регулировку частоты снимков поверхности, причем позволял менять ее в очень широком диапазоне: 500, 1000,1500, 2000 или 2300 снимков/с. А вот величина этих самых снимков составляла всего 16х16 пикселей. При 1500 снимках/с предельно допустимое ускорение мыши при «рывке» составляло по прежнему 0.15 g, максимально возможная скорость перемещения - 14 дюймов/с (т. е. 35.5 см/с). Данный чип был рассчитан на напряжение питания 5 В.

Сенсор ADNS-2030 разрабатывался для беспроводных устройств, а потому имел малое энергопотребление, требуя всего 3.3 В питания. Чип также поддерживал энергосберегающие функции, например функцию снижения потребления энергии при нахождении мыши в состоянии покоя (power conservation mode during times of no movement), переход в режим «сна», в том числе при подключении мыши по USB интерфейсу, и т.д.. Мышь, впрочем, могла работать и не в энергосберегающем режиме: значение «1» в бите Sleep одного из регистров чипа заставляло сенсор «всегда бодрствовать», а значение по умолчанию «0» соответствовало режиму работы микросхемы, когда по прошествии одной секунды, если мышь не перемещалась (точнее после получения 1500 совершенно одинаковых снимков поверхности) сенсор, напару с мышью, переходил в режим энергосбережения. Что касается остальных ключевых характеристик сенсора, то они не отличались от таковых у ADNS-2051: тот же 16-и контактный корпус, скорость перемещения до 14 дюймов/с при максимальном ускорении 0.15 g, программируемое разрешение 400 и 800 cpi соответственно, частоты осуществления снимков могли быть точно такими же, как и у вышерассмотренного варианта микросхемы.

Такими были первые оптические сенсоры. К сожалению, им были свойственны недостатки. Большой проблемой, возникающей при передвижением оптической мыши по поверхностям, особенно с повторяющимся мелким рисунком, являлось то, что процессор обработки изображений порой путал отдельные похожие участки монохромного изображения, получаемые сенсором и неверно определял направление перемещения мыши.

В итоге и курсор на экране перемещался не так, как требовалось. Указатель на экране даже становился способен на экспромт:) - на непредсказуемые перемещения в произвольном направлении. Кроме того, легко догадаться, что при слишком быстром перемещении мыши сенсор мог вообще утратить всякую «связь» между несколькими последующими снимками поверхности. Что порождало еще одну проблему: курсор при слишком резком перемещении мыши либо дергался на одном месте, либо происходили вообще «сверхъестественные»:) явления, например, с быстрым вращением окружающего мира в игрушках. Было совершенно ясно, что для человеческой руки ограничений в 12-14 дюймов/с по предельной скорости перемещения мыши явно мало. Также не вызывало сомнений, что 0.24 с (почти четверть секунды), отведенные для разгона мыши от 0 до 35.5 см/с (14 дюймов/с - предельная скорость) это очень большой промежуток времени, человек способен двигать кистью значительно быстрее. И потому при резких движениях мыши в динамичных игровых приложениях с оптическим манипулятором может придтись несладко…

Понимали это и в Agilent Technologies. Разработчики осознавали, что характеристики сенсоров надо кардинально улучшать. В своих изысканиях они придерживались простой, но правильной аксиомы: чем больше снимков в секунду сделает сенсор, тем меньше вероятность того, что он потеряет «след» перемещения мыши во время совершения пользователем компьютера резких телодвижений:)

Хотя, как мы видим из вышеизложенного, оптические сенсоры и развивались, постоянно выпускались новые решения, однако развитие в этой области можно смело назвать «очень постепенным». По большому счету, кардинальных изменений в свойствах сенсоров так и не происходило. Но техническому прогрессу в любой области порой свойственны резкие скачки. Случился такой «прорыв» и в области создания оптических сенсоров для мышей. Появление оптического сенсора ADNS-3060 можно считать действительно революционным!

Лучший из

Оптический сенсор ADNS-3060 , по сравнению со своими «предками», обладает поистине впечатляющим набором характеристик. Использование этой микросхемы, упакованной в корпус с 20-ю контактами, обеспечивает оптическим мышам невиданные ранее возможности. Допустимая максимальная скорость перемещения манипулятора выросла до 40 дюймов/с (то есть почти в 3 раза!), т.е. достигла «знаковой» скорости в 1 м/с. Это уже очень хорошо - вряд ли хоть один пользователь двигает мышь с превышающей данное ограничение скоростью столь часто, чтобы постоянно чувствовать дискомфорт от использования оптического манипулятора, в том числе это касается и игровых приложений. Допустимое же ускорение выросло, страшно сказать, во сто раз (!), и достигло величины 15 g (почти 150 м/с 2). Теперь на разгон мыши с 0 до предельных 1 м/с пользователю отводится 7 сотых секунды - думаю, теперь очень немногие сумеют превзойти это ограничение, да и то, вероятно, в мечтах:) Программируемая скорость осуществления снимков поверхности оптическим сенсором у новой модели чипа превышает 6400 кадров/с, т.е. «бьет» предыдущий «рекорд» почти в три раза. Причем чип ADNS-3060 может сам осуществлять подстройку частоты следования снимков для достижения наиболее оптимальных параметров работы, в зависимости от поверхности, над которой перемещается мышь. «Разрешение» оптического сенсора по прежнему может составлять 400 или 800 cpi. Давайте на примере микросхемы ADNS-3060 рассмотрим общие принципы работы именно чипов оптических сенсоров.

Общая схема анализа перемещений мыши не изменилась по сравнению с более ранними моделями - полученные блоком IAS сенсора микроснимки поверхности под мышью обрабатываются затем интегрированным в этой же микросхеме DSP (процессором), который определяет направление и дистанцию перемещения манипулятора. DSP вычисляет относительные величины смещения по координатам × и Y, относительно исходной позиции мыши. Затем внешняя микросхема контролера мыши (для чего он нужен, мы говорили ранее) считывает информацию о перемещении манипулятора с последовательного порта микросхемы оптического сенсора. Затем уже этот внешний контроллер транслирует полученные данные о направлении и скорости перемещения мыши в передаваемые по стандартным интерфейсам PS/2 или USB сигналы, которые уже от него поступают к компьютеру.

Но вникнем чуть глубже в особенности работы сенсора. Блок-схема чипа ADNS-3060 представлена выше. Как видим, принципиально его структура не изменилась, по сравнению с далекими «предками». 3.3 В питание к сенсору поступает через блок Voltage Regulator And Power Control, на этот же блок возложена функции фильтрации напряжения, для чего используется подключение к внешнему конденсатору. Поступающий с внешнего кварцевого резонатора в блок Oscillator сигнал(номинальная частота которого 24 МГц, для предыдущих моделей микросхем использовались более низкочастотные задающие генераторы) служит для синхронизации всех вычислительных процессов, протекающих внутри микросхемы оптического сенсора. Например, частота снимков оптического сенсора привязана к частоте этого внешнего генератора (кстати, на последний наложены не весьма жесткие ограничения по допустимым отклонениям от номинальной частоты - до +/- 1 МГц). В зависимости от значения, занесенного по определенному адресу (регистру) памяти чипа, возможны следующие рабочие частоты осуществления снимков сенсором ADNS-3060.

Значение регистра, шестнадцатеричное Десятичное значение Частота снимков сенсора, кадров/с
OE7E 3710 6469
12C0 4800 5000
1F40 8000 3000
2EE0 12000 2000
3E80 16000 1500
BB80 48000 500

Как нетрудно догадаться, исходя из данных в таблице, определение частоты снимков сенсора осуществляется по простой формуле: Частота кадров = (Задающая частота генератора (24 МГц)/Значение регистра отвечающего за частоту кадров).

Осуществляемые сенсором ADNS-3060 снимки поверхности (кадры) имеют разрешение 30х30 и представляют собой все ту же матрицу пикселей, цвет каждого из которых закодирован 8-ю битами, т.е. одним байтом (соответствует 256 градациям серого для каждого пикселя). Таким образом, каждый поступающий в DSP процессор кадр (фрейм) представляет собой последовательность из 900 байт данных. Но «хитрый» процессор не обрабатывает эти 900 байт кадра сразу по поступлении, он ждет, пока в соответствующем буфере (памяти) накопится 1536 байт сведений о пикселях (то есть добавится информация еще о 2/3 последующего кадра). И только после этого чип приступает к анализу информации о перемещении манипулятора, путем сравнения изменений в последовательных снимках поверхности.

С разрешением 400 или 800 пикселей на дюйм их осуществлять, указывается в бите RES регистров памяти микроконтроллера. Нулевое значение этого бита соответствует 400 cpi, а логическая единица в RES переводит сенсор в режим 800 cpi.

После того как интегрированный DSP процессор обработает данные снимков, он вычисляет относительные значения смещения манипулятора вдоль осей × и Y, занося конкретные данные об этом в память микросхемы ADNS-3060. В свою очередь микросхема внешнего контроллера (мыши) через Serial Port может «черпать» эти сведения из памяти оптического сенсора с частой примерно раз в миллисекунду. Заметьте, только внешний микроконтроллер может инициализировать передачу таких данных, сам оптический сенсор никогда не инициирует такую передачу. Поэтому вопрос оперативности (частоты) слежения за перемещением мыши во многом лежит на «плечах» микросхемы внешнего контроллера. Данные от оптического сенсора передаются пакетами по 56 бит.

Ну а блок Led Cотtrоl, которым оборудован сенсор, ответственен за управление диодом подсветки - путем изменения значения бита 6 (LED_MODE) по адресу 0x0a микропроцессор оптосенсора может переводить светодиод в два режима работы: логический «0» соответствует состоянию «диод всегда включен», логическая «1» переводит диод в режим «включен только при необходимости». Это важно, скажем, при работе беспроводных мышей, так как позволяет экономить заряд их автономных источников питания. Кроме того, сам диод может иметь несколько режимов яркости свечения.

На этом, собственно, все с базовыми принципами работы оптического сенсора. Что еще можно добавить? Рекомендуемая рабочая температура микросхемы ADNS-3060, впрочем как и всех остальных чипов этого рода, - от 0 0С до +40 0С. Хотя сохранение рабочих свойств своих чипов Agilent Technologies гарантирует в диапазоне температур от -40 до +85 °С.

Лазерное будущее?

Недавно сеть наполнили хвалебные статьи о мыши Logitech MX1000 Laser Cordless Mouse, в которой для подсветки поверхности под мышью использовался инфракрасный лазер. Обещалась чуть ли не революция в сфере оптических мышей. Увы, лично попользовавшись этой мышью, я убедился, что революции не произошло. Но речь не об этом.

Я не разбирал мышь Logitech MX1000 (не имел возможности), но уверен, что за «новой революционной лазерной технологией» стоит наш старый знакомый - сенсор ADNS-3060. Ибо, по имеющимся у меня сведениям, характеристики сенсора этой мыши ничем не отличаются от таковых у, скажем, модели Logitech МХ510 . Вся «шумиха» возникла вокруг утверждения на сайте компании Logitech о том, что с помощью лазерной системы оптического слежения выявляется в двадцать раз (!) больше деталей, чем с помощью светодиодной технологии. На этой почве даже некоторые уважаемые сайты опубликовали фотографии неких поверхностей, дескать, как видят их обычные светодиодные и лазерные мыши:)

Конечно, эти фото (и на том спасибо) были не теми разноцветными яркими цветочками, с помощью которых нас пыталась убедить на сайте Logitech в превосходстве лазерной подсветки системы оптического слежения. Нет, конечно же, оптические мыши не стали «видеть» ничего подобного на приведенные цветные фотографии с разной степенью детализации - сенсоры по-прежнему «фотографируют» не более чем квадратную матрицу серых пикселей, отличающихся между собой лишь разной яркостью (обработка информации о расширенной цветовой палитре пикселей непомерным грузом легла бы на DSP).

Давайте прикинем, для получения в 20 раз более детализированной картинки, нужно, извините за тавтологию, в двадцать раз больше деталей, передать которые могут только дополнительные пиксели изображения, и ни что иное. Известно, что Logitech MX 1000 Laser Cordless Mouse делает снимки 30х30 пикселей и имеет предельное разрешение 800 cpi. Следовательно, ни о каком двадцатикратном росте детализации снимков речи быть не может. Где же собака порылась:), и не являются ли подобные утверждения вообще голословными? Давайте попробуем разобраться, что послужило причиной появления подобного рода информации.

Как известно, лазер излучает узконаправленный (с малым расхождением) пучок света. Следовательно, освещенность поверхности под мышью при применении лазера гораздо лучше, чем при использовании светодиода. Лазер, работающий в инфракрасном диапазоне, был выбран, вероятно, чтобы не слепить глаза возможным все-таки отражением света из-под мыши в видимом спектре. То, что оптический сенсор нормально работает в инфракрасном диапазоне не должно удивлять - от красного диапазона спектра, в котором работает большинство светодиодных оптических мышей, до инфракрасного -«рукой подать», и вряд ли для сенсора переход на новый оптический диапазон был труден. Например, в манипуляторе Logitech MediaPlay используется светодиод, однако также дающий инфракрасную подсветку. Нынешние сенсоры без проблем работают даже с голубым светом (существуют манипуляторы и с такой подсветкой), так что спектр области освещения - для сенсоров не проблема. Так вот, благодаря более сильной освещенности поверхности под мышью, мы вправе предположить, что разница между местами, поглощающими излучение (темными) и отражающими лучи (светлыми) будет более значительной, чем при использовании обычного светодиода - т.е. изображение будет более контрастными.

И действительно, если мы посмотрим на реальные снимки поверхности, сделанные обычной светодиодной оптической системой, и системой с использованием лазера, то увидим, что «лазерный» вариант куда более контрастен - отличия между темными и яркими участками снимка более значительны. Безусловно, это может существенно облегчить работу оптическому сенсору и, возможно, будущее именно за мышами с лазерной системой подсветки. Но назвать подобные «лазерные» снимки в двадцать раз более детализированными вряд ли можно. Так что это еще один «новорожденный» миф.

Какими будут оптические сенсоры ближайшего будущего? Сказать трудно. Вероятно, они перейдут таки на лазерную подсветку, а в Сети уже ходят слухи о разрабатываемом сенсоре с «разрешением» 1600 cpi. Нам остается только ждать.

Очень необходимый и удобный атрибут, компьютерного пользователя, любого уровня. Огромное неудобство доставляло, пионером компьютерной техники, отсутствие мышки, есть у них и плюсы, они отлично владеют клавиатурой.

Назначение и работа компьютерной мыши.

Для начала, нам необходимо точно определиться, основное назначение компьютерной мыши, её функциональность и способы управления.

Компьютерная мышка, это специальное механическое устройство, для ввода информации в компьютер. Да же не большие навыки владения ею, существенно облегчают жизнь и работу пользователя, которые работают в операционных системах с графической оболочкой.

Работать и владеть ей, очень просто. Сводится оно к вождению мышки по гладкой поверхности, как провело, коврику. Синхронно с ней, по дисплею, перемещается курсор, направляем его на иконки и выполняем необходимые действия.

Плюс к этому, на компьютерной мышке, есть пара функциональных кнопок и скроллер с функцией нажатия. Основное управление, сводится к нажатию левой кнопки мыши, двойным щелчком.

Скроллером, осуществляется прокрутку текстового документа, нажатие на него, упрощает перемотку.

Нажатие на правую кнопку, вызывает скрытое контекстное меню, в нём отражаются всевозможные, доступные действия.

Принцип работы оптической компьютерной мыши.

Откидывая лишни слова и формулировки, компьютерную мышь, можно сравнить с видео камерой. Она делает колоссальное количество кадров в одну минуту, около девяносто тысяч.

Важно отметить, что компьютерная оптическая мышь, не нуждается в специальном коврике, она отлично работает, на любой поверхности. Свой неприхотливостью и надёжностью, заслужила авторитет и симпатии пользователей.

В её устройство, входит обычный светодиод, как правила красного цвета, но встречаются и другие цвета. Это излучение, отражается от поверхности, это отражение, сфокусируется на специальный датчик.

Сигнал с датчика, все кадры по очереди, поступает на процессор компьютера. Поступающий сигнал, обрабатывается и анализируется, он анализирует каждый снимок, и сравнивает, на сколько, он переместился.

Исходя из полученных данных, он понимает, куда отправить курсор мыши, по полученным координатам. Эти манипуляции, происходят на больших скоростях съёмки и обработки, поэтому нам всё кажется плавным.

Чем отличается, лазерная компьютерная мышь от оптической?

Начнём с принципа работы, лазерной компьютерной мыши, он практически идентичен оптической, за исключением некоторых моментов.

Основное отличие, что вместо светодиода, используется лазер, это значительно увеличило её ресурс, она абсолютно не прихотлива, в выборе рабочей поверхности.

Продолжим перечисление ё достоинств и плюсов. Очень низкое потребление электричества, экономить необходимо всегда. В довесок к этому, она работает намного точнее своих собратьев.

Свечение лазера мыши, практически не заметно для человеческого глаза, поэтому не будет мешать и портить вам зрения.

Все сводится к выбору лазерной компьютерной мыши, превосходство налицо.

Про шариковую (механическую) мышь, рассказывать не буду, она не надёжна, её необходимо постоянно чистить, морально себя изжила.