Под последовательным соединением подразумевают случаи, когда два или больше элемента имеют вид цепи, при этом каждый из них соединяется с другим только в одной точке. Зачем конденсаторы так размещаются? Как это правильно сделать? Что необходимо знать? Какие особенности последовательное соединение конденсаторов имеет на практике? Какая формула результата?

Что необходимо знать для правильного соединения?

Увы, но здесь не всё так легко сделать, как может показаться. Многие новички думают, что если на схематическом рисунке написано, что необходим элемент на 49 микрофарад, то достаточно его просто взять и установить (или заменить равнозначным). Но необходимые параметры подобрать сложно даже в профессиональной мастерской. И что делать, если нет нужных элементов? Допустим, есть такая ситуация: необходим конденсатор на 100 микрофарад, а есть несколько штук на 47. Поставить его не всегда можно. Ехать на радиорынок за одним конденсатором? Не обязательно. Достаточно будет соединить пару элементов. Существует два основных способа: последовательное и параллельное соединение конденсаторов. Вот о первом мы и поговорим. Но если говорить про последовательное соединение катушки и конденсатора, то тут особых проблем нет.

Зачем так делают?

Когда с ними проводятся такие манипуляции, то электрические заряды на обкладках отдельных элементов будут равны: КЕ=К 1 =К 2 =К 3 . КЕ - конечная емкость, К - пропускаемое значение конденсатора. Почему так? Когда заряды поступают от источника питания на внешние обкладки, то на внутренних может быть осуществлен перенос величины, которая является значением элемента с наименьшими параметрами. То есть если взять конденсатор на 3 мкФ, а после него подсоединить на 1 мкФ - то конечный результат будет 1 мкФ. Конечно, на первом можно будет наблюдать значение в 3 мкФ. Но второй элемент не сможет столько пропустить, и он будет срезать всё, что больше необходимого значения, оставляя большую емкость на первоначальном конденсаторе. Давайте рассмотрим, что нужно рассчитать, когда делается последовательное соединение конденсаторов. Формула:

  • ОЕ - общая емкость;
  • Н - напряжение;
  • КЕ - конечная емкость.

Что ещё необходимо знать, чтобы правильно соединить конденсаторы?

Для начала не забывайте, что кроме ёмкости они ещё обладают номинальным напряжением. Почему? Когда осуществляется последовательное соединение, то напряжение распределяется обратно пропорционально их ёмкостям между ними самими. Поэтому использовать такой подход имеет смысл только в тех случаях, когда любой конденсатор сможет предоставить минимально необходимые параметры работы. Если используются элементы, у которых одинаковая емкость, то напряжение между ними будет разделяться поровну. Также небольшое предостережение относительно электролитических конденсаторов: при работе с ними всегда внимательно контролируйте их полярность. Ибо при игнорировании этого фактора последовательное соединение конденсаторов может дать ряд нежелательных эффектов. И хорошо, если всё ограничится только пробоем данных элементов. Помните, что конденсаторы копят ток, и если что-то пойдёт не так, в зависимости от схемы может случиться прецедент, в результате которого из строя выйдут другие составляющие схемы.

Ток при последовательном соединении

Из-за того, что у него существует только один возможный путь протекания, он будет иметь одно значение для всех конденсаторов. При этом количество накопленного заряда везде обладает одинаковым значением. От емкости это не зависит. Посмотрите на любую схему последовательного соединения конденсаторов. Правая обкладка первого соединена с левой второго и так далее. Если используется больше 1 элемента, то часть из них будет изолированной от общей цепи. Таким образом, эффективная площадь обкладок становится меньшей и равняется параметрам самого маленького конденсатора. Какое физическое явление лежит в основе этого процесса? Дело в том, что как только конденсатор наполняется электрическим зарядом, то он перестаёт пропускать ток. И он тогда не может протекать по всей цепи. Остальные конденсаторы в таком случае тоже не смогут заряжаться.

Падение напряженности и общая емкость

Каждый элемент понемногу рассеивает напряжение. Учитывая, что емкость ему обратно пропорциональна, то чем она меньше, тем большим будет падение. Как уже упоминалось ранее, последовательно соединённые конденсаторы обладают одинаковым электрическим зарядом. Поэтому при делении всех выражений на общее значение можно получить уравнение, которое покажет всю емкость. В этом последовательное и параллельное соединение конденсаторов сильно разнятся.

Пример № 1

Давайте воспользуемся представленными в статье формулами и рассчитаем несколько практических задач. Итак, у нас есть три конденсатора. Их емкость составляет: С1 = 25 мкФ, С2 = 30 мкФ и С3 = 20 мкФ. Они соединены последовательно. Необходимо найти их общую емкость. Используем соответствующее уравнение 1/С: 1/С1 + 1/С2 + 1/С3 = 1/25 + 1/30 + 1/20 = 37/300. Переводим в микрофарады, и общая емкость конденсатора при последовательном соединении (а группа в данном случае считается как один элемент) составляет примерно 8,11 мкФ.

Пример № 2

Давайте, чтобы закрепить наработки, решим ещё одну задачу. Имеется 100 конденсаторов. Емкость каждого элемента составляет 2 мкФ. Необходимо определить их общую емкость. Нужно их количество умножить на характеристику: 100*2=200 мкФ. Итак, общая емкость конденсатора при последовательном соединении составляет 200 микрофарад. Как видите, ничего сложного.

Заключение

Итак, мы проработали теоретические аспекты, разобрали формулы и особенности правильного соединения конденсаторов (последовательно) и даже решили несколько задачек. Хочется напомнить, чтобы читатели не упускали из внимания влияние номинального напряжения. Также желательно, чтобы подбирались элементы одного типа (слюдяные, керамические, металлобумажные, плёночные). Тогда последовательное соединение конденсаторов сможет дать нам наибольший полезный эффект.

Конденсаторы, как и резисторы, можно соединять последовательно и параллельно. Рассмотрим соединение конденсаторов: для чего применяются каждая из схем, и их итоговые характеристики.

Эта схема – самая распространенная. В ней обкладки конденсаторов соединяются между собой, образуя эквивалентную емкость, равную сумме соединяемых емкостей.

При параллельном соединении электролитических конденсаторов необходимо, чтобы между собой соединялись выводы одной полярности.

Особенность такого соединения – одинаковое напряжение на всех соединяемых конденсаторах . Номинальное напряжение группы параллельно соединенных конденсаторов равно рабочему напряжению конденсатора группы, у которого оно минимально.

Токи через конденсаторы группы протекают разные: через конденсатор с большей емкостью потечет больший ток.

На практике параллельное соединение применяется для получения емкости нужной величины, когда она выходит за границы диапазона, выпускаемого промышленностью, или не укладываются в стандартный ряд емкостей. В системах регулирования коэффициента мощности (cos ϕ) изменение емкости происходит за счет автоматического подключения или отключения конденсаторов в параллель.

При последовательном соединении обкладки конденсатором соединяются друг к другу, образуя цепочку. Крайние обкладки подключаются к источнику, а ток по всем конденсаторам группы потечет одинаковый.

Эквивалентная емкость последовательно соединенных конденсаторов ограничена самой маленькой емкостью в группе. Объясняется это тем, что как только она полностью зарядится, ток прекратится. Подсчитать общую емкость двух последовательно соединенных конденсаторов можно по формуле

Но применение последовательного соединения для получения нестандартных номиналов емкостей не так распространено, как параллельного.

При последовательном соединении напряжение источника питания распределяется между конденсаторами группы. Это позволяет получить батарею конденсаторов, рассчитанную на большее напряжение , чем номинальное напряжение входящих в нее компонентов. Так из дешевых и небольших по размерам конденсаторов изготавливаются блоки, выдерживающие высокие напряжения.

Еще одна область применения последовательного соединения конденсаторов связана с перераспределением напряжений между ними. Если емкости одинаковы, напряжение делится пополам, если нет – на конденсаторе большей емкости напряжение получается большим. Устройство, работающее на этом принципе, называют емкостным делителем напряжения .

Смешанное соединение конденсаторов


Такие схемы существуют, но в устройствах специального назначения, требующие высокой точности получения величины емкости, а также для их точной настройки.

Для получения большего спектра емкостей конденсаторы часто соединяют между собой, получают, так называемые батареи конденсаторов. Соединение при этом может быть параллельным, последовательным или комбинированным (смешанным). Рассмотрим случай с двумя конденсаторами.

Последовательное соединение конденсаторов показано на рис. 1

Здесь (рис.1) обкладка одного конденсатора, имеющая отрицательный заряд соединяется с положительной обкладкой следующего конденсатора. При последовательном соединении средние пластины конденсаторов электризуются через влияние, следовательно, их заряды по величине равны и противоположны по знаку. Заряды на этих конденсаторах одинаковы. При этом соединении разности потенциалов складываются:

При этом имеем:

Получаем, что при последовательном соединении конденсаторов емкость соединения находят как:

Обобщив формулу (3) для N конденсаторов, получаем:

где - электрическая емкость i-го конденсатора.

Последовательное соединение конденсаторов используют тогда, когда для избегания пробоя конденсатора необходимо разность потенциалов распределить между несколькими конденсаторами.

Последовательное соединение конденсаторов показано на рис. 2

При параллельном соединении разности потенциалов между обкладками конденсаторов одинаковы. Суммарный заряд системы равен сумме зарядов на каждом из конденсаторов:

Из сказанного выше получим:

Для батареи из N параллельно соединенных конденсаторов имеем:

Параллельное соединение конденсаторов используют тогда, когда необходимо увеличить емкость конденсатора.

Примеры решения задач

ПРИМЕР 1

Задание Получите формулу для расчета емкости слоистого конденсатора.
Решение Конденсатор, который называют слоистым, состоит из двух параллельных металлических обкладок, разделенных несколькими плоскими слоями разных диэлектриков (рис.3). Обозначим диэлектрические проницаемости слоев диэлектриков как . Будем считать, что соответствующая толщина слоя диэлектрика при этом: .

Допустим, что между слоями диэлектриков вставлены очень тонкие листы из проводника. От такой процедуры заряды на обкладках конденсатора и напряженности полей в солях диэлектриков останутся неизменными. Останутся без изменений разности потенциалов между обкладками, следовательно, не изменится емкость конденсатора. Но, наличие тонких листов проводника превратит слоистый конденсатор в последовательное соединение конденсаторов.

Применим формулы емкости плоского конденсатора:

и расчета емкости батареи последовательно соединенных конденсаторов:

получаем:

Ответ

ПРИМЕР 2

Задание Какой будет емкость соединения конденсаторов (рис.4), если батарея составлена из одинаковых конденсаторов, емкость каждого из них равна Ф.

Решение Емкость параллельного соединения конденсаторов обозначим как Она равна:

Под последовательным соединением подразумевают случаи, когда два или больше элемента имеют вид цепи, при этом каждый из них соединяется с другим только в одной точке. Зачем конденсаторы так размещаются? Как это правильно сделать? Что необходимо знать? Какие особенности последовательное соединение конденсаторов имеет на практике? Какая формула результата?

Что необходимо знать для правильного соединения?

Увы, но здесь не всё так легко сделать, как может показаться. Многие новички думают, что если на схематическом рисунке написано, что необходим элемент на 49 микрофарад, то достаточно его просто взять и установить (или заменить равнозначным). Но необходимые параметры подобрать сложно даже в профессиональной мастерской. И что делать, если нет нужных элементов? Допустим, есть такая ситуация: необходим конденсатор на 100 микрофарад, а есть несколько штук на 47. Поставить его не всегда можно. Ехать на радиорынок за одним конденсатором? Не обязательно. Достаточно будет соединить пару элементов. Существует два основных способа: последовательное и параллельное соединение конденсаторов. Вот о первом мы и поговорим. Но если говорить про последовательное соединение катушки и конденсатора, то тут особых проблем нет.

Зачем так делают?

Когда с ними проводятся такие манипуляции, то электрические заряды на обкладках отдельных элементов будут равны: КЕ=К 1 =К 2 =К 3 . КЕ - конечная емкость, К - пропускаемое значение конденсатора. Почему так? Когда заряды поступают от источника питания на внешние обкладки, то на внутренних может быть осуществлен перенос величины, которая является значением элемента с наименьшими параметрами. То есть если взять конденсатор на 3 мкФ, а после него подсоединить на 1 мкФ - то конечный результат будет 1 мкФ. Конечно, на первом можно будет наблюдать значение в 3 мкФ. Но второй элемент не сможет столько пропустить, и он будет срезать всё, что больше необходимого значения, оставляя большую емкость на первоначальном конденсаторе. Давайте рассмотрим, что нужно рассчитать, когда делается последовательное соединение конденсаторов. Формула:

  • ОЕ - общая емкость;
  • Н - напряжение;
  • КЕ - конечная емкость.

Что ещё необходимо знать, чтобы правильно соединить конденсаторы?

Для начала не забывайте, что кроме ёмкости они ещё обладают номинальным напряжением. Почему? Когда осуществляется последовательное соединение, то напряжение распределяется обратно пропорционально их ёмкостям между ними самими. Поэтому использовать такой подход имеет смысл только в тех случаях, когда любой конденсатор сможет предоставить минимально необходимые параметры работы. Если используются элементы, у которых одинаковая емкость, то напряжение между ними будет разделяться поровну. Также небольшое предостережение относительно электролитических конденсаторов: при работе с ними всегда внимательно контролируйте их полярность. Ибо при игнорировании этого фактора последовательное соединение конденсаторов может дать ряд нежелательных эффектов. И хорошо, если всё ограничится только пробоем данных элементов. Помните, что конденсаторы копят ток, и если что-то пойдёт не так, в зависимости от схемы может случиться прецедент, в результате которого из строя выйдут другие составляющие схемы.

Ток при последовательном соединении

Из-за того, что у него существует только один возможный путь протекания, он будет иметь одно значение для всех конденсаторов. При этом количество накопленного заряда везде обладает одинаковым значением. От емкости это не зависит. Посмотрите на любую схему последовательного соединения конденсаторов. Правая обкладка первого соединена с левой второго и так далее. Если используется больше 1 элемента, то часть из них будет изолированной от общей цепи. Таким образом, эффективная площадь обкладок становится меньшей и равняется параметрам самого маленького конденсатора. Какое физическое явление лежит в основе этого процесса? Дело в том, что как только конденсатор наполняется электрическим зарядом, то он перестаёт пропускать ток. И он тогда не может протекать по всей цепи. Остальные конденсаторы в таком случае тоже не смогут заряжаться.

Падение напряженности и общая емкость

Каждый элемент понемногу рассеивает напряжение. Учитывая, что емкость ему обратно пропорциональна, то чем она меньше, тем большим будет падение. Как уже упоминалось ранее, последовательно соединённые конденсаторы обладают одинаковым электрическим зарядом. Поэтому при делении всех выражений на общее значение можно получить уравнение, которое покажет всю емкость. В этом последовательное и параллельное соединение конденсаторов сильно разнятся.

Пример № 1

Давайте воспользуемся представленными в статье формулами и рассчитаем несколько практических задач. Итак, у нас есть три конденсатора. Их емкость составляет: С1 = 25 мкФ, С2 = 30 мкФ и С3 = 20 мкФ. Они соединены последовательно. Необходимо найти их общую емкость. Используем соответствующее уравнение 1/С: 1/С1 + 1/С2 + 1/С3 = 1/25 + 1/30 + 1/20 = 37/300. Переводим в микрофарады, и общая емкость конденсатора при последовательном соединении (а группа в данном случае считается как один элемент) составляет примерно 8,11 мкФ.

Пример № 2

Давайте, чтобы закрепить наработки, решим ещё одну задачу. Имеется 100 конденсаторов. Емкость каждого элемента составляет 2 мкФ. Необходимо определить их общую емкость. Нужно их количество умножить на характеристику: 100*2=200 мкФ. Итак, общая емкость конденсатора при последовательном соединении составляет 200 микрофарад. Как видите, ничего сложного.

Заключение

Итак, мы проработали теоретические аспекты, разобрали формулы и особенности правильного соединения конденсаторов (последовательно) и даже решили несколько задачек. Хочется напомнить, чтобы читатели не упускали из внимания влияние номинального напряжения. Также желательно, чтобы подбирались элементы одного типа (слюдяные, керамические, металлобумажные, плёночные). Тогда последовательное соединение конденсаторов сможет дать нам наибольший полезный эффект.

Details 03 July 2017

Господа, как-то раз чудесным летним деньком я взял ноутбук и вышел из дома на дачный участок. Там, усевшись в кресле-качалке в тени яблонь, я и решил написать данную статью. Ветерок шумел в ветвях деревьев, раскачивая их из стороны в сторону, и в воздухе была та самая атмосфера, благоприятствующая течению мыслей, которая так порой необходима…

Впрочем, хватит лирики, пора переходить непосредственно к существу обозначенного в заголовке статьи вопроса.

Итак, параллельное соединение конденсаторов… Что вообще такое параллельное соединение? Те, кто читал мои прошлые статьи, безусловно, помнят значение этого определения. Оно нам встречалось, когда мы говорили про параллельное соединение резисторов . В случае конденсаторов определение будет иметь абсолютно такой же вид. Итак, параллельное соединение конденсаторов - это такое соединение, когда одни концы всех конденсаторов соединены в один узел, а другие - в другой.

Конечно, лучше один раз увидеть, чем сто раз услышать, поэтому на рисунке 1 я привел изображение трех конденсаторов, которые соединены параллельно. Пусть емкость первого равна С1, второго - С2, а третьего - С3.

Рисунок 1 - Параллельное соединение конденсаторов

В данной статье мы разберем, по каким законам изменяются токи , напряжения и сопротивления переменному току при параллельном соединении конденсаторов, а также какова будет суммарная емкость такой конструкции. Ну и, само собой, поговорим, зачем вообще такое соединение может быть нужно.

Предлагаю начать с напряжения, ибо с ним здесь все предельно ясно. Господа, должно быть совершенно очевидно, что при параллельном соединении конденсаторов напряжения на них равны между собой. То есть напряжение на первом конденсаторе точно такое же, как на втором и на третьем

Почему, собственно, это так? Да очень просто! Напряжение на конденсаторе считается как разность потенциалов между двумя ножками конденсатора. А при параллельном соединении «левые» ножки всех конденсаторов сходятся в один узел, а «правые» - в другой. Таким образом, «левые» ножки всех конденсаторов имеют один потенциал, а «правые» другой. То есть разность потенциалов между «левой» и «правой» ногами будет одинаковая для любого конденсатора, а это как раз и значит, что на всех конденсаторах одно и то же напряжение. Чуть более строгий вывод этого утверждения вы можете глянуть вот в этой статье . В ней мы приводили его для параллельного соединения резисторов, но и здесь он будет звучать абсолютно так же.

Итак, мы выяснили, что напряжение на всех параллельно соединенных конденсаторах одно и то же. Это, кстати, верно для любого вида напряжения - как для постоянного, так и для переменного. Вы можете присоединить к трем параллельно включенным конденсаторам батарейку на 1,5 В . И на всех них будет постоянные 1,5 В . А можете присоединить к ним генератор синусоидального напряжения с частотой 50 Гц и амплитудой 310 В . И на каждом конденсатор будет синусоидальное напряжение с частотой 50 Гц и амплитудой 310 В . Важно помнить, что у параллельно соединенных конденсаторов одной и той же будет не только амплитуда, но и частота, и фаза напряжения .

И если с напряжением все вот так вот просто, то с током ситуация посложнее. Когда мы говорим про ток через конденсатор, то обычно имеем ввиду переменный ток . Вы ведь помните, что постоянные токи через конденсаторы не текут? Конденсатор для постоянного тока - это все равно, что разрыв цепи (на деле есть некоторое сопротивление утечки конденсатора, но им обычно пренебрегают, потому что оно очень велико). Переменные же токи вполне себе текут через конденсаторы, причем могут иметь при этом весьма и весьма большие амплитуды. Очевидно, что эти переменные токи вызываются некоторым переменными напряжениями, приложенными к конденсаторам. Итак, пусть у нас по-прежнему имеется три параллельно соединенных конденсатора с емкостями С1, С2 и С3. К ним приложено некоторое переменное напряжение с комплексной амплитудой . Из-за этого приложенного напряжения через конденсаторы будут течь некоторые переменные токи с комплексными амплитудами . Для наглядности давайте нарисуем картинку, на которой будут все фигурировать все эти величины. Она представлена на рисунке 2.

Рисунок 2 - Ищем токи через конденсаторы

Прежде всего надо понять, как связаны токи с суммарным током источника. А связаны они, господа, все по тому же самому первому закону Кирхгофа , с которым мы уже знакомились в отдельной статье. Да, тогда мы его рассматривали в контексте постоянного тока. Но, оказывается, первый закон Кирхгофа остается верным и в случае переменного тока! Просто в этом случае надо использовать комплексные амплитуды токов. Итак, суммарный ток трех параллельно соединенных конденсаторов связан с общим током вот так

То есть общий ток фактически просто разделяется между тремя конденсаторами, тогда как суммарная его величина остается той же самой . Важно помнить еще одну важную вещь - частота тока и его фаза будет одна и та же для всех трех конденсаторов. Точно такая же частота и фаза будет и у суммарного тока I . Таким образом, различаться они будут только лишь амплитудой, которая будет у каждого конденсатора своя. Как же найти эти самые амплитуды токов? Очень просто! В статье про сопротивление конденсатора мы связали между собой ток через конденсатор и напряжение на конденсаторе через сопротивление конденсатора. Сопротивление конденсатора мы легко можем посчитать, зная его емкость и частоту протекающего через него тока (помним, что для разной частоты конденсатор имеет разное сопротивление) по общей формуле:

Воспользовавшись этой замечательной формулой, мы можем найти сопротивление каждого конденсаторы:

Воспользовавшись этой формулой, мы легко находим ток через каждый из трех параллельно соединенных конденсаторов:

Общий ток в цепи, который втекает в узел А и вытекает потом из узла В, очевидно, равен

На всякий случай напомню еще раз, что это получилось на основании первого закона Кирхгофа . Заметьте, господа, один важный факт - чем больше емкость конденсатора, тем меньше его сопротивление и тем большая часть тока будет течь через него.

Давайте представим общий ток через три параллельно соединенных конденсатора как отношение приложенного к ним напряжения и некоторого эквивалентного общего сопротивления Z c∑ (которое нам пока неизвестно, но которое мы потом найдем) трех параллельно включенных конденсаторов:

Сокращая левую и правую части на U, получаем

Таким образом, получаем важный вывод: при параллельном соединении конденсаторов обратное эквивалентное сопротивление равно сумме обратных сопротивлений отдельных конденсаторов. Если вы помните, то точно такой же вывод мы получили и при параллельном соединении резисторов .

А что происходит с емкостью? Какая будет общая емкость у системы из трех параллельно соединенных конденсаторов? Можно ли это как-то найти? Безусловно, можно! И, более того, мы почти это сделали. Давайте в нашу последнюю формулу подставим расшифровку сопротивлений конденсаторов. Тогда у нас получится примерна такая запись

После элементарных математических преобразований, доступных даже пятикласснику, получаем, что

Это наш очередной чрезвычайной важный вывод: суммарная емкость системы из нескольких параллельно соединенных конденсаторов равна сумме емкостей отдельных конденсаторов.

Итак, мы рассмотрели основные моменты, касающиеся параллельного соединения конденсаторов. Давайте в сжатой форме резюмируем их все:

  • Напряжение на всех трех параллельно соединенных конденсаторах одно и то же (по амплитуде, фазе и частоте);
  • Амплитуда тока в цепи, содержащей параллельно соединенные конденсаторы, равна сумме амплитуд токов через отдельные конденсаторы. Чем больше емкость конденсатора, тем больше амплитуда тока через него. Фазы и частоты токов на всех конденсаторов одни и те же;
  • При параллельном соединении конденсаторов обратное эквивалентное сопротивление равно сумме обратных сопротивлений отдельных конденсаторов;
  • Суммарная емкость параллельно соединенных конденсаторов равна сумме емкостей всех конденсаторов.

Господа, если вы запомните и поймете эти четыре пункта, то, можно сказать, статью я писал не зря.

А теперь давайте для закрепления материала попробуем решить какую-нибудь задачу на параллельное соединение конденсаторов. Потому что, весьма вероятно, если вы ничего не слышали раньше про параллельное соединение конденсаторов, то все написанное выше может восприниматься просто как набор абстрактных буковок, которые не очень понятно как применять на практике. Поэтому, на мой взгляд, наличие приближенных к практике задач является неотъемлемой частью образовательного процесса. Итак, задача.

Допустим, у нас есть три параллельно соединенных конденсаторов с емкостями С1=1 мкФ , С2=4,7 мкФ и С3=22 мк Ф. К ним приложено переменное синусоидальное напряжение с амплитудой U max =50 В и частотой f=1 кГц . Требуется определить

а) напряжение на каждом из конденсаторов;

б) ток через каждый конденсатор и суммарный ток в цепи;

в) сопротивление каждого конденсатора переменному току и общее сопротивление;

г) общую емкость такой системы.

Начнем с напряжения. Мы помним, что на всех конденсаторах напряжение у нас одно и то же - то есть синусоидальное с частотой f=1 кГц и амплитудой U max =50 В. Предположим, что оно изменяется по синусоидальному закону. Тогда можно записать следующее

Вот мы и ответили на первый вопрос задачи. Осциллограмма напряжения на наших конденсаторах приведена на рисунке 3.



Рисунок 3 - Осциллограмма напряжения на конденсаторах

Да, мы видим, что сопротивления у нас получились не только комплексные, но еще и со знаком минус. Однако вас это не должно смущать, господа. Это значит только то, что ток через конденсатор и напряжение на конденсаторе сдвинуты по фазе друг относительно друга, причем ток опережает напряжение . Да, мнимая единичка показывает тут только фазовый сдвиг и ничего больше. Для расчета амплитуды тока нам потребуется только модуль этого комплексного числа. Про все это говорилось уже в прошлых двух статьях (раз и два ). Возможно, это не совсем очевидно и требуется какая-либо наглядная иллюстрация этого дела. Это можно сделать на тригонометрическом круге и, надеюсь, немного позже, я подготовлю отдельную статью, посвященную этому, либо вы можете сами придумать, как это показать наглядно, пользуясь данными из моей статьи про комплексные числа в электротехнике.
Теперь ничего не мешает найти обратное общее сопротивление:

Находим общее сопротивление трех наших параллельно соединенных конденсаторов

Следует помнить, что это сопротивление верно исключительно для частоты 1 кГц . Для других частот значение сопротивления, очевидно, будет другое.

Следующим шагом рассчитаем амплитуды токов через каждый конденсатор. В расчете будем использовать модули сопротивлений (отбросим мнимую единицу), помня при этом, что сдвиг фаз между током и напряжением будет 90 градусов (то есть, если напряжение у нас меняется по закону синуса, то ток будет меняться по закону косинуса). Можно вести расчет и с комплексными числами, используя комплексные амплитуды тока и напряжения, но, на мой взгляд, в данной задаче проще просто учесть потом фазовые соотношения. Итак, амплитуды токов равны

Суммарная амплитуда тока в цепи, очевидно, равна

Мы можем себе позволить вот так вот складывать амлитуды сигналов, потому что у всех токов через параллельно соединенные конденсаторы у нас одна и та же частота и фаза. В случае невыполнения этого требования вот так вот просто взять и сложить нельзя.

Теперь, помня про фазовые соотношения, нам никто не мешает записать законы изменения тока через каждый конденсатор

И суммарный ток в цепи

Осциллограммы токов через конденсаторы приведены на рисунке 4.

Рисунок 4 - Осциллограммы токов через конденсаторы

Ну и в завершении задачи самое простое - найдем общую емкость системы как сумму емкостей:

Кстати, эту емкость вполне можно использовать для расчета суммарного сопротивления трех параллельно соединенных конденсаторов. В качестве упражнения читателю предлагается самому в этом убедиться .

В заключение хотелось бы выяснить один, возможно, самый важный вопрос: а зачем вообще нужно на практике соединять конденсаторы параллельно ? Что это дает? Какие возможности нам открывает? Ниже по пунктам я обозначил основные моменты:

Ну а мы на этом заканчиваем, господа. Спасибо за внимание и до новых встреч!

Вступайте в нашу