Введение

Задача защиты информации от несанкционированного доступа решалась во все времена на протяжении истории человечества. Уже в древнем мире выделилось два основных направления решения этой задачи, существующие и по сегодняшний день: криптография и стеганография. Целью криптографии является скрытие содержимого сообщений за счет их шифрования. В отличие от этого, при стеганографии скрывается сам факт существования тайного сообщения.

Слово «стеганография» имеет греческие корни и буквально означает «тайнопись». Исторически это направление появилось первым, но затем было вытеснено криптографией. Тайнопись осуществляется самыми различными способами. Общей чертой этих способов является то, что скрываемое сообщение или секретная информация (дополнительная информация ) встраивается в некоторый безобидный, не привлекающий внимание объект, называемый далее контейнером или основным сообщением . Результат такого встраивания будем называть стеганосообщением , а сам процесс встраивания – стеганопреобразованием контейнера. Затем стеганосообщение открыто транспортируется адресату.

При криптографии наличие шифрованного сообщения само по себе привлекает внимание противников, при стеганографии же наличие скрытой связи остается незаметным.

Для защиты своих секретов люди использовали самые различные стеганографические методы. Известные примеры включают в себя использование покрытых воском дощечек, вареных яиц, спичечных коробков и даже головы раба (сообщение читалось после сбривания волос гонца). В прошлом веке широко использовались так называемые симпатические чернила, невидимые при обычных условиях. Скрытое сообщение размещали в определенные буквы невинных словосочетаний, передавали при помощи внесения в текст незначительных стилистических, орфографических или пунктуационных погрешностей. С изобретением фотографии появилась технология микрофотоснимков, успешно применяемая Германией во время мировых войн. Крапление карт шулерами – это тоже пример стеганографии.

Во время Второй мировой войны правительством США придавалось большое значение борьбе против тайных методов передачи информации. Были введены определенные ограничения на почтовые отправления. Так, не принимались письма и телеграммы, содержащие кроссворды, ходы шахматных партий, поручения о вручении цветов с указанием времени и их вида; у пересылаемых часов переводились стрелки. Был привлечен многочисленный отряд цензоров, которые занимались даже перефразированием телеграмм без изменения их смысла.

Скрытие информации перечисленными методами возможно лишь благодаря тому, что противнику неизвестен метод скрытия. Между тем, еще в 1883 году Кергофф писал о том, что система защиты информации должна обеспечивать свои функции даже при полной информированности противника о ее структуре и алгоритмах функционирования . Вся секретность системы защиты передаваемых сведений должна заключаться в ключе, то есть в предварительно (как правило) разделенном между адресатами фрагменте информации. Несмотря на то, что этот принцип известен уже более 100 лет, и сейчас встречаются разработки, пренебрегающие им. Конечно, они не могут применяться в серьезных целях.

Стеганография – это наука, которая изучает способы и методы скрытия конфиденциальной информации, основной задачей которой является скрытие самого факта существования секретных данных при их передаче, хранении или обработке. Под скрытием существования информации подразумевается не только невозможность обнаружения в перехваченном сообщении наличия иного (скрытого) сообщения, но и вообще сделать невозможным возникновение любых подозрений на этот счет.

Развитие средств вычислительной техники в последнее десятилетие дало новый толчок для развития компьютерной стеганографии . Появилось много новых областей применения. Сообщения встраивают теперь в цифровые данные, как правило, имеющие аналоговую природу. Это – речь, аудиозаписи, изображения, видео. Известны также предложения по встраиванию информации в текстовые файлы и в исполняемые файлы программ.

Существуют два основных направления в компьютерной стеганографии: связанный с цифровой обработкой сигналов и не связанный. В последнем случае сообщения могут быть встроены в заголовки файлов, заголовки пакетов данных. Это направление имеет ограниченное применение в связи с относительной легкостью вскрытия и/или уничтожения скрытой информации. Большинство текущих исследований в области стеганографии так или иначе связаны с цифровой обработкой сигналов. Это позволяет говорить о цифровой стеганографии , которая и рассматривается далее.

Можно выделить две причины популярности исследований в области стеганографии в настоящее время: ограничение на использование криптосредств в ряде стран мира и появление проблемы защиты прав собственности на информацию, представленную в цифровом виде. Первая причина повлекла за собой большое количество исследований в духе классической стеганографии (то есть скрытия факта передачи информации), вторая – еще более многочисленные работы в области так называемых водяных знаков. Цифровой водяной знак (ЦВЗ) – специальная метка, незаметно внедряемая в изображение или другой сигнал с целью тем или иным образом контролировать его использование.

Цифровая стеганография. Предмет, терминология, области применения

Цифровая стеганография как наука родилась буквально в последние годы. Как относительно молодая наука она еще не имеет общепризнанной классификации и даже терминологии. Однако можно предложить следующую классификацию направлений, которые включает в себя стеганография:

1) встраивание информации с целью ее скрытой передачи;

2) встраивание цифровых водяных знаков (ЦВЗ) (watermarking);

3) встраивание идентификационных номеров (fingerprinting) – отпечатки пальцев;

4) встраивание заголовков (captioning).

ЦВЗ могут применяться, в основном, для защиты от копирования и несанкционированного использования.В связи с бурным развитием технологий мультимедиа остро встал вопрос защиты авторских прав и интеллектуальной собственности, представленной в цифровом виде. Примерами могут являться фотографии, аудио и видеозаписи и т.д. Преимущества, которые дают представление и передача сообщений в цифровом виде, могут оказаться перечеркнутыми легкостью, с которой возможно их воровство или модификация. Поэтому разрабатываются различные меры защиты информации, организационного и технического характера. Один из наиболее эффективных технических средств защиты мультимедийной информации и заключается во встраивании в защищаемый объект невидимых меток - ЦВЗ. Разработки в этой области ведут крупнейшие фирмы во всем мире. Так как методы ЦВЗ начали разрабатываться совершенно недавно (первой статьей на эту тему была, видимо, работа 1989 г.), то здесь имеется много неясных проблем, требующих своего разрешения. Название эти методы получили от всем известного способа защиты ценных бумаг, в том числе и денег, от подделки. В отличие от обычных водяных знаков, ЦВЗ могут быть не только видимыми, но и (как правило) невидимыми. Невидимые ЦВЗ анализируются специальным декодером, который выносит решение об их корректности. ЦВЗ могут содержать некоторый аутентичный код, информацию о собственнике, либо какую-нибудь управляющую информацию. Наиболее подходящими объектами защиты при помощи ЦВЗ являются неподвижные изображения, файлы аудио и видеоданных.

Технология встраивания идентификационных номеров производителей имеет много общего с технологией ЦВЗ. Отличие заключается в том, что в первом случае каждая защищенная копия имеет свой уникальный встраиваемый номер (отсюда и название – дословно «отпечатки пальцев»). Этот идентификационный номер позволяет производителю отслеживать дальнейшую судьбу своего детища: не занялся ли кто-нибудь из покупателей незаконным тиражированием. Если да, то «отпечатки пальцев» быстро укажут на виновного.

Встраивание заголовков (невидимое) может применяться, например, для подписи медицинских снимков, нанесения легенды на карту и т.д. Целью является хранение разнородно представленной информации в едином целом. Это, пожалуй, единственное приложение стеганографии, где в явном виде отсутствует потенциальный нарушитель.

Два главных требования к стеганографическому преобразованию:

1) незаметность – надежность восприятия

2) устойчивость к различного рода искажениям.

Лекция

доцента кафедры ИВТ Гродненского госуниверситета

канд. техн. наук Ливак Елены Николаевны

Стеганографическая защита информации

В лекции
  • Назначение стеганографической защиты
    • метод внедрения скрытой информации в младшие биты данных, представленных в цифровом виде
    • широкополосные сигналы и элементы теории шума
    • методы, применяемые для тайнописи в текстовых файлах
    • методы внедрения скрытой информации и для файлов в формате HTML методы, применяемые для внедрения скрытой информации в исполняемые файлы
  • Технологии защиты авторских прав на мультимедийную продукцию

Назначение стеганографической защиты

В отличие от криптографической защиты информации, предназначенной для сокрытия содержания информации, стеганографическая защита предназначена для сокрытия факта наличия (передачи) информации.

Методы и средства, с помощью которых можно скрыть факт наличия информации, изучает стеганография (от греч. – тайнопись).

Методы и способы внедрения скрытой информации в электронные объекты относятся к компьютерной стеганографии .

Основные стеганографические понятия

Основными стеганографическими понятиями являются сообщение иконтейнер .

Сообщением m ∈ M , называют секретную информацию, наличие которой необходимо скрыть, где M - множество всех сообщений, обычно M = Z 2 n для n ∈ Z.

Контейнером b ∈ B называют несекретную информацию, которую используют для сокрытия сообщений, где B - множество всех контейнеров, обычно B=Z 2 q , при этом q>>n .

Пустой контейнер (контейнер-оригинал ) - это контейнер b , не содержащий сообщения, заполненный контейнер (контейнер-результат ) b m - это контейнер b , содержащий сообщение m .

Стеганографическим преобразованием принято называть зависимости

F: M×B×K → B,   F -1: B×K → M,

которые сопоставляют тройке (сообщение, пустой контейнер, ключ) контейнер-результат, и паре (заполненный контейнер, ключ) исходное сообщение, т.е.

F(m,b,k) = b m,k , F -1 (b m,k) = m, где m ∈ M, b, b m ∈ B, k∈K

Стеганографической системой называют (F, F -1 , M, B, K ) совокупность сообщений, контейнеров и связывающих их преобразований [Мотуз].

Методы компьютерной стеганографии

Отметим, что, несмотря на то, что методы тайнописи известны с древних времен, компьютерная стеганография является относительно новой областью науки. В настоящее время компьютерная стеганография находится на стадии развития.

Теоретическая база и методы стеганографии только формируются, нет общепризнанной классификации методов, не существуют критерии оценки надежности методов и механизмов стеганографических систем, производятся первые попытки проводить сравнительные характеристики методов, например, в [Барсуков, 54].

Но уже сегодня специалисты признают, что «... на базе компьютерной стеганографии, являющейся одной из технологий информационной безопасности XXI века, возможна разработка новых, более эффективных нетрадиционных методов обеспечения информационной безопасности» [Барсуков, 54, с. 71].

Анализ применяемых на практике методов компьютерной стеганографии позволяет выделить следующие основные классы .

1. Методы, основанные на наличии свободных участков в представлении/хранении данных.

2. Методы, основанные на избыточности представления/хранения данных.

3.Методы, основанные на применении специально разработанных форматов представления/хранения данных.

Подчеркнем, что методы внедрения скрытой информации в объекты зависят, прежде всего, от назначения и типа объекта, а также от формата, в котором представлены данные. То есть, для любого формата представления компьютерных данных могут быть предложены собственные стеганографические методы.

Остановимся на стеганографических методах, которые часто применяются на практике.

Широко известен метод внедрения скрытой информации в младшие биты данных, представленных в цифровом виде . Метод основывается на том факте, что модификация младших, наименее значимых битов данных, представленных в цифровом виде, с точки зрения органов чувств человека не приводит к изменению функциональности и даже качества изображения или звука. Отметим, что информация, скрытая в последних битах цифрового контента не является помехоустойчивой, то есть при искажениях или сжатии с потерей данных она теряется.

На практике используются также широкополосные сигналы и элементы теории шума . Информация скрывается путем фазовой модуляции информационного сигнала (несущей) с псевдослучайной последовательностью чисел. Используется и другой алгоритм: имеющийся диапазон частот делится на несколько каналов, и передача производится между этими каналами.

Достаточно развиты методы, применяемые для тайнописи в текстовых файлах.

· Скрытые гарнитуры шрифтов. Данный метод основан на внесении малозаметных искажений, несущих смысловую нагрузку, в очертания букв.

· Цветовые эффекты. Например, для символов скрываемого сообщения применяют белый цвет на белом фоне.

· «Нулевой шифр». Этот метод основан на выборе определенных позиций символов (иногда используются известные смещения слов\предложений\ абзацев).

· Обобщение акростиха. Метод заключается в том, что по определенному закону генерируется осмысленный текст, скрывающий некоторое сообщение.

· Невидимые коды. Символы скрываемого сообщения кодируются определенным количеством дополнительных пробелов между словами или числом пустых строк.

Разработаны методы внедрения скрытой информации и для файлов в формате HTML :

· в конец каждой строки добавляют определенное число пробелов, кодирующее скрываемую информацию;

· скрываемое сообщение размещают в специальном файле, у которого удаляют заголовок, причем такой заголовок хранится у получателя (скрываемое сообщение обычно дополнительно шифруется);

· присоединяют дополнительные страницы, на которых и размещают скрываемую информацию;

· записывают скрываемую информацию в мета-тэги (эти команды предназначены для сообщения информации о html -документе поисковым серверам и не видны при отображении страницы на экране);

· записывают скрываемую информацию в тэги с неизвестными программам-браузерам идентификаторами;

· применяют цветовые эффекты.

Особое внимание обратим на методы, применяемые для внедрения скрытой информации в исполняемые файлы .

Большинство из применяемых методов основано на наличии свободных участков в исполняемых файлах: полностью или частично свободные секторы (блоки) файла; структуры заголовков файлов в форматах EXE , NE - executable и PE - executable содержат зарезервированные поля; существуют пустоты между сегментами исполняемого кода и другие. Заметим, что именно такие методы компьютерной стеганографии традиционно используют авторы компьютерных вирусов для внедрения тел вирусов в исполняемые файлы. Обратим внимание, что для удаления скрытой таким образом информации нарушителю достаточно просто «обнулить» все имеющиеся свободные участки.

Среди методов и технологий, использующих стеганографическую защиту информации, наиболее развитыми представляются технологии защиты авторских прав на мультимедийную продукцию.

Предлагаемые на рынке программного обеспечения технологии и системы защиты авторских прав используют методы цифровой стеганографии. Системы защиты авторских прав сопровождают идентифицирующей информацией объекты, представляющие собой цифровое содержание: графические файлы, аудио- и видео файлы.

Самой известной технологией в области защиты прав автора на графическую информацию является технология Digital Water Marc (цифровой водяной знак) компании Digimarc Corporation (www . digimarc . com ). Специальный программный продукт PictureMarc (ключевая часть технологии) позволяет внедрять в изображение цифровой идентификатор (метку) создателя. Для получения собственного идентификатора пользователь обязан зарегистрироваться в сервисном центре компании Digimarc (MarcCentre ). Цифровая метка при внедрении в изображение кодируется величиной яркости пикселей, что определяет стойкость метки при различных трансформациях графического файла (редактирование, уменьшение/увеличение изображения, преобразование в другой формат, сжатие). Более того, цифровая метка, внедренная таким способом, не теряется даже после печати и последующего сканирования. Однако, цифровая метка не может быть ни изменена, ни удалена из маркированного изображения. Считывается цифровая метка с помощью программы ReadMarc . Специальный программный продукт MarcSpider просматривает изображения, доступные через Internet , и сообщает о незаконном использовании.

На рынке программного обеспечения в настоящее время предлагается множество систем и технологий, работающих по принципу, аналогичному цифровому водяному знаку. Все они преобразовывают идентификационный код производителя мультимедиа в невидимую цифровую метку и встраивают ее в объект защиты. Обычно такие системы называют системами цифровых водяных знаков. На рынке представлены технологии PixelTag (производства MIT Media Lab ); EIKONAMARK (производства Alpha Tec Ltd .); TigerMark (компании NEC ) и многие другие.

Некоторые технологии вместо термина «водяной знак» используют термин «отпечаток пальца». На рынке представлена технология FBI (Fingerprinting Binary Images ) производства Signum Technologies (www . generation . net /~ pitas / sign . html ). Сервисные программы, использующие данную технологию, также позволяют встраивать, определять и читать «отпечаток пальца» из цифровых данных.

Внимания также заслуживают возможности комплексной системы управления электронным копирайтом Cryptolope (компании IBM ), основанные на технологии Java .

Применяется на практике и специальный протокол защиты мультимедиа MMP (Multimedia Protection Protocol ), разработанный для защиты от пиратства при продаже оцифрованных данных через Internet или другие каналы.

Однако необходимо заметить, что существуют и программы, удаляющие цифровые метки из файлов, содержащих изображения. Наиболее известны две из них: UnZign и StirMark , которые анонсированы в качестве средств тестирования стойкости меток, встраиваемых системами цифровых водяных знаков. Использование этих программ показывает, что на сегодняшний день «водяные знаки всех производителей уничтожаются без заметного ухудшения качества изображения» [Николенко, 56].

В настоящее время приобретают широкое распространение стеганографические продукты, позволяющие маскировать целые файлы в других файлах - файлах-контейнерах. Файлами-контейнерами обычно служат графические или звуковые файлы, иногда используются и текстовые файлы (в формате TXT и HTML ). К такому классу программ относятся широко известные программы S - Tools , Steganos , Contraband , Hide 4 PGP и другие.

Широко известны стеганографические (недокументированные) вставки Easter Eggs (www . eeggs . com ) в компьютерных программах. Разработчики программного обеспечения внедряют в свои программы самостоятельные модули, вызываемые определенной (часто довольно сложной) комбинацией клавиш или последовательностью действий. Такие программы, называемые секретами, после активизации демонстрируют различного рода шутки, развлекательную анимацию. Часто программа–секрет демонстрирует список разработчиков программного продукта, а иногда даже их фотографии. Поэтому в некоторых публикациях технологию Easter Eggs относят к технологиям за щ иты авторских прав на компьютерные программы.

[ Steganography and Digital Watermarking Tool Table // www . jjtc . com / Steganography / toolmatrix . htm ] средств, основанных на стеганографических методах и технологиях цифровых водяных знаков, анонсировано только одно средство – S – Mail производства Security Software Development (SSD ) Ltd ., которое встраивает скрытую информацию в EXE - и DLL -файлы.

Резюме

Анализ тенденций развития технологий, использующихся для обеспечения безопасности информации вообще и, в частности, для защиты авторских прав в области программного обеспечения, показывает, что применение компьютерной стеганографии наряду с методами, традиционно применяемыми для защиты программных продуктов, увеличивает мощность механизмов защиты .

Анализ стеганографических методов защиты информации, технологий и стеганографических средств защиты интеллектуальной собственности, представленных на рынке программного обеспечения, а также проблем, связанных с применением данных методов, позволяет сделать следующие выводы.

  1. В настоящее время рынок программных средств защиты интеллектуальной собственности только складывается.
  2. Несмотря на низкую стойкость цифровых меток, цифровые стеганографические технологии и системы успешно применяются на практике для защиты авторских прав создателей мультимедийной продукции при распространении их продуктов в компьютерных сетях и на цифровых носителях: компакт-дисках, цифровых музыкальных дорожках и видео.
  3. В настоящее время среди производителей программного обеспечения только разработчики и издатели мультимедиа обладают средствами, обеспечивающими на том или ином уровне защиту прав авторов.
  4. Не все существующие методы компьютерной стеганографии могут быть использованы для защиты авторских прав на компьютерные программы.
  5. Наиболее развитые методы и алгоритмы компьютерной стеганографии, относящиеся к цифровой стеганографии, не могут применяться для внедрения скрытой информации, идентифицирующей автора, в исполняемые файлы программ.
  6. Стеганографические методы защиты авторских прав на компьютерные программы сегодня недостаточно развиты.

Введение

1. Стеганография

1.1 Методы классической стеганографии

1.2 Методы цифровой стеганографии

1.3 Стегосистемы

2. Компьютерная стеганография

2.1 Классификация методов компьютерной стеганографии

2.2 Метод замены наименее значащего бита

2.3 Метод псевдослучайного интервала

2.4 Методы сокрытия данных в пространственной области

Заключение

Введение

Проблема защиты информации от несанкционированного доступа возникла еще в древние времена, и с тех пор выделилось два основных направления решения этой проблемы, которые существуют и сегодня: криптография и стеганография.

Задачей криптографии является скрытие информации, содержащейся в сообщении, за счет его шифрования, а стеганография (пер. с греч, "тайнопись") - это наука о скрытой передаче информации путём сохранения в тайне самого факта передачи. Главная задача сделать так, чтобы человек не подозревал, что внутри передаваемой информации, внешне не представляющей абсолютно никакой ценности, содержится секретная информация. Тем самым стеганография позволяет передавать важную информацию через открытые каналы, скрывая сам факт её передачи. В отличие от криптографии, которая скрывает содержимое секретного сообщения, стеганография скрывает само его существование. Стеганографию обычно используют совместно с методами криптографии, таким образом, дополняя её.

Целью данной курсовой работы является исследование основных способов сокрытия информации, и в частности методов компьютерной стеганографии.

Задачи работы:

). Описать основные методы стеганографии

). Описать модель и принцип работы стеганосистем

). Произвести обзор некоторых методов компьютерной стеганографии

1. Стеганография

Как уже было сказано выше, Стеганография - это наука о скрытой передаче информации путём сохранения в тайне самого факта передачи. Главная задача сделать так, чтобы человек не подозревал, что внутри передаваемой информации, не представляющей внешне абсолютно никакой ценности, содержится скрытая ценная информация. Тем самым стеганография позволяет передавать секретную информацию через открытые каналы, скрывая сам факт её передачи.

В конце 90-х годов выделилось несколько направлений стеганографии:

· Классическая стеганография

· Цифровая стеганография

· Компьютерная стеганография

1.1 Методы классической стеганографии

Методы стеганографии которые позволяют только скрыто передавать данные называются методами классической стеганографии.

Среди классических методов можно выделить следующие:

· манипуляции с носителем информации (контейнером);

· симпатические чернила;

· литературные приемы;

· семаграммы.

Манипуляция с носителем информации

Первые следы применения стеганографических методов теряются в глубокой древности. Существует версия, что древние шумеры одними из первых использовали стеганографию, так как было найдено множество глиняных клинописных табличек, в которых одна запись покрывалась слоем глины, а на втором слое писалась другая. Однако противники этой версии считают, что это было вовсе не попыткой скрытия информации, а всего лишь практической потребностью.

В трудах древнегреческого историка Геродота встречается описание еще двух методов сокрытия информации:

· В V веке до н.э. тиран Гистий, находясь под надзором царя Дария в Сузах, должен был послать секретное сообщение своему родственнику в анатолийский город Милет. Он побрил наголо своего раба и вытатуировал послание на его голове. Когда волосы снова отросли, раба отправили в путь;

· В Древней Греции тексты писались на дощечках, покрытых воском. Во избежание попадания сообщения к противнику, соскабливали воск с дощечек, писали сообщение прямо на поверхности дерева и снова покрывали дощечку воском. После этого на воске писали отвлеченные послания и отсылали их с помощью курьеров.

В Древнем Китае письма писали на полосках щелка. Поэтому для сокрытия сообщений, полоски с текстом письма сворачивались в шарики, покрывались воском и затем глотались посыльными.

Симпатические чернила

Симпатические (невидимые) чернила - это специальные жидкости или химические препараты, используемые для сокрытия существования записей. О подобной жидкости, изготовленной из молочая писал ещё Плиний Старший в "Естественной истории" в I веке нашей эры, в дальнейшем они применялись вплоть до конца Второй мировой войны, после чего от них почти полностью отказались, сменив их на микроточки, хотя и сейчас они иногда используются. Известная легенда про то, как Ленин, сидя в тюрьме, писал сообщения молоком из чернильницы, сделанной из хлебного мякиша тоже из этой области (чтобы прочесть такое сообщение, бумагу надо нагреть).

Такие чернила бывают двух видов: симпатические и органические. Первые представляют собой химические растворы, которые становятся невидимыми при высыхании и проявляются при добавлении к ним некоторых реагентов. Органическая же группа представлена легкодоступными веществами, такими как уксус, лимон, молоко. Они становятся видимыми, если их осторожно нагреть, ими обычно пишут между строк или на чистом листе бумаги. Во время Первой мировой войны шпионы рисовали символ, обозначавший, к примеру, тип вооружения, невидимыми чернилами, давали им высохнуть, а затем наклеивали поверх него смоченную только по краям марку, что является хорошим примером технической и физической стеганографии.

В целях обнаружения тайных сообщений, написанных с помощью симпатических чернил, американские цензоры во время Второй мировой войны "полосовали" письма, чтобы выявить наличие в них невидимых чернил.

Литературные приемы

Хорошо известны различного рода литературные приемы, предназначенные для сокрытия тайной информации во внешне безобидных посланиях. Существует несколько таких приемов.

Пустышечный шифр, во внешне обычном сообщении, читаются только слова или буквы записанные в определенных позициях. Например, читаются каждое пятое слово или первая буква каждого слова, в то время как все остальные буквы или слова служат в качестве "пустышек" для сокрытия значимого текста.

Акростих - сообщение состоящее из первых букв строк стихотворений. Также возможно, что текст читается не по первым, а по последним или средним буквам стихотворной строки.

Другой литературный прием аллюзия. Знаменитая фраза, которую передали по радио - "В Сантьяго идет дождь", означала сигнал к началу военного переворота в Чили.

Семаграммы

Семаграмма - тайное сообщение, в котором шифробозначениями являются любые символы, кроме букв и цифр. Например, эти сообщения могут быть переданы для чтения по азбуке Морзе в виде рисунка, содержащего точки и тире, кардиограммы или графика технологического процесса, в которых пики вверх означают - точки, пики вниз - тире и т.п.

1.2 Методы цифровой стеганографии

Цифровая стеганография - направление классической стеганографии, основанное на сокрытии или внедрении дополнительной информации в цифровые объекты, вызывая при этом некоторые искажения этих объектов. Но, как правило, данные объекты являются мультимедиа-объектами (изображения, видео, аудио, текстуры 3D-объектов) и внесение искажений, которые находятся ниже порога чувствительности среднестатистического человека, не приводит к заметным изменениям этих объектов. Кроме того, в оцифрованных объектах, изначально имеющих аналоговую природу, всегда присутствует шум квантования; далее, при воспроизведении этих объектов появляется дополнительный аналоговый шум и нелинейные искажения аппаратуры, все это способствует большей незаметности сокрытой информации.

Цифровая стеганография как наука родилась буквально в последние годы. Она включает в себя следующие направления:

) встраивание информации с целью ее скрытой передачи;

2) встраивание цифровых водяных знаков (ЦВЗ);

) встраивание идентификационных номеров;

) встраивание заголовков.

Встраивание водяных знаков

ЦВЗ (цифровые водяные знаки) могут применяться, в основном, для защиты от копирования и несанкционированного использования. В связи с бурным развитием технологий мультимедиа остро встал вопрос защиты авторских прав и интеллектуальной собственности, представленной в цифровом виде. Примерами могут являться фотографии, аудио и видеозаписи и т.д. Преимущества, которые дают представление и передача сообщений в цифровом виде, могут оказаться перечеркнутыми легкостью, с которой возможно их воровство или модификация. Поэтому разрабатываются различные меры защиты информации, организационного и технического характера. Один из наиболее эффективных технических средств защиты мультимедийной информации и заключается во встраивании в защищаемый объект невидимых меток - ЦВЗ. Разработки в этой области ведут крупнейшие фирмы во всем мире. Так как методы ЦВЗ начали разрабатываться совершенно недавно, то здесь имеется много неясных проблем, требующих своего разрешения.

Название этот метод получил от всем известного способа защиты ценных бумаг, в том числе и денег, от подделки. В отличие от обычных водяных знаков ЦВЗ могут быть не только видимыми, но и (как правило) невидимыми. Невидимые ЦВЗ анализируются специальным декодером, который выносит решение об их корректности. ЦВЗ могут содержать некоторый аутентичный код, информацию о собственнике, либо какую-нибудь управляющую информацию. Наиболее подходящими объектами защиты при помощи ЦВЗ являются неподвижные изображения, файлы аудио и видеоданных.

Встраивание идентификационных номеров

Технология встраивания идентификационных номеров производителей имеет много общего с технологией ЦВЗ. Отличие заключается в том, что в первом случае каждая защищенная копия имеет свой уникальный встраиваемый номер (отсюда и название - дословно "отпечатки пальцев"). Этот идентификационный номер позволяет производителю отслеживать дальнейшую судьбу своего детища: не занялся ли кто-нибудь из покупателей незаконным тиражированием. Если да, то "отпечатки пальцев" быстро укажут на виновного.

Встраивание заголовков

Встраивание заголовков (невидимое) может применяться, например, для подписи медицинских снимков, нанесения легенды на карту и т.д. Целью является хранение разнородно представленной информации в едином целом. Это, пожалуй, единственное приложение стеганографии, где в явном виде отсутствует потенциальный нарушитель.

1.3 Стегосистемы

До недавнего времени для описания модели стеганографической системы использовалась предложенная 1983 году Симмонсом так называемая "проблема заключенных". Она состоит в том, что два индивидуума (Алиса и Боб) хотят обмениваться секретными сообщениями без вмешательства охранника (Вилли), контролирующего коммуникационный канал. При этом имеется ряд допущений, которые делают эту проблему более или менее решаемой. Первое допущение облегчает решение проблемы и состоит в том, что участники информационного обмена могут разделять секретное сообщение (например, используя кодовую клавишу) перед заключением. Другое допущение, наоборот, затрудняет решение проблемы, так как охранник имеет право не только читать сообщения, но и модифицировать (изменять) их.

Позднее, на конференции Information Hiding: First Information Workshop в 1996 году было предложено использовать единую терминологию и обговорены основные термины.

Термины и определения

Стеганографическая система или стегосистема - совокупность средств и методов, которые используются для формирования скрытого канала передачи информации.

При построении стегосистемы должны учитываться следующие положения:

компьютерная цифровая стеганография информация

· противник имеет полное представление о стеганографической системе и деталях ее реализации. Единственной информацией, которая остается неизвестной потенциальному противнику, является ключ, с помощью которого только его держатель может установить факт присутствия и содержание скрытого сообщения;

· если противник каким-то образом узнает о факте существования скрытого сообщения, это не должно позволить ему извлечь подобные сообщения в других данных до тех пор, пока ключ хранится в тайне;

· потенциальный противник должен быть лишен каких-либо технических и иных преимуществ в распознавании или раскрытии содержания тайных сообщений.

Обобщенная модель стегосистемы представлена на рис.1.

Рисунок 1 - Обобщенная модель стегосистемы

В качестве данных может использоваться любая информация: текст, сообщение, изображение и т.п.

В общем же случае целесообразно использовать слово "сообщение", так как сообщением может быть как текст или изображение, так и, например, аудиоданные. Далее для обозначения скрываемой информации, будем использовать именно термин сообщение.

Контейнер - любая информация, предназначенная для сокрытия тайных сообщений.

Пустой контейнер - контейнер без встроенного сообщения; заполненный контейнер или стего-контейнер, содержащий встроенную информацию.

Стеганографический канал или просто стегоканал - канал передачи стего.

Стегоключ или просто ключ - секретный ключ, необходимый для сокрытия информации. В зависимости от количества уровней защиты (например, встраивание предварительно зашифрованного сообщения) в стегосистеме может быть один или несколько стегоключей.

По аналогии с криптографией, по типу стегоключа стегосистемы можно подразделить на два типа:

· с секретным ключом;

· с открытым ключом.

В стегосистеме с секретным ключом используется один ключ, который должен быть определен либо до начала обмена секретными сообщениями, либо передан по защищенному каналу.

В стегосистеме с открытым ключом для встраивания и извлечения сообщения используются разные ключи, которые различаются таким образом, что с помощью вычислений невозможно вывести один ключ из другого. Поэтому один ключ (открытый) может передаваться свободно по незащищенному каналу связи. Кроме того, данная схема хорошо работает и при взаимном недоверии отправителя и получателя.

Требования

Любая стегосистема должна отвечать следующим требованиям:

· Свойства контейнера должны быть модифицированы, чтобы изменение невозможно было выявить при визуальном контроле. Это требование определяет качество сокрытия внедряемого сообщения: для обеспечения беспрепятственного прохождения стегосообщения по каналу связи, оно никоим образом не должно привлечь внимание атакующего.

· Стегосообщение должно быть устойчиво к искажениям, в том числе и злонамеренным. В процессе передачи изображение (звук или другой контейнер) может претерпевать различные трансформации: уменьшаться или увеличиваться, преобразовываться в другой формат и т.д. Кроме того, оно может быть сжато, в том числе и с использованием алгоритмов сжатия с потерей данных.

· Для сохранения целостности встраиваемого сообщения необходимо использование кода с исправлением ошибки.

· Для повышения надежности встраиваемое сообщение должно быть продублировано.

Ограничения

Каждое из перечисленных выше приложений требует определенного соотношения между устойчивостью встроенного сообщения к внешним воздействиям (в том числе и стегоанализу) и размером самого встраиваемого сообщения.

Для большинства современных методов, используемых для сокрытия сообщения в цифровых контейнерах, имеет место следующая зависимость надежности системы от объема встраиваемых данных (рис.2).

Рисунок 2 - зависимость надежности системы от объема встраиваемых данных

Данная зависимость показывает, что при увеличении объема встраиваемых данных снижается надежность системы (при неизменности размера контейнера). Таким образом, используемый в стегосистеме контейнер накладывает ограничения на размер встраиваемых данных.

Контейнеры

Существенное влияние на надежность стегосистемы и возможность обнаружения факта передачи скрытого сообщения оказывает выбор контейнера.

Например, опытный глаз цензора с художественным образованием легко обнаружит изменение цветовой гаммы при внедрении сообщения в репродукцию "Мадонны" Рафаэля или "Черного квадрата" Малевича.

По протяженности контейнеры можно подразделить на два типа: непрерывные (потоковые) и ограниченной (фиксированной) длины. Особенностью потокового контейнера является то, что невозможно определить его начало или конец. Более того, нет возможности узнать заранее, какими будут последующие шумовые биты, что приводит к необходимости включать скрывающие сообщение биты в поток в реальном масштабе времени, а сами скрывающие биты выбираются с помощью специального генератора, задающего расстояние между последовательными битами в потоке.

В непрерывном потоке данных самая большая трудность для получателя - определить, когда начинается скрытое сообщение. При наличии в потоковом контейнере сигналов синхронизации или границ пакета, скрытое сообщение начинается сразу после одного из них. В свою очередь, для отправителя возможны проблемы, если он не уверен в том, что поток контейнера будет достаточно долгим для размещения целого тайного сообщения.

При использовании контейнеров фиксированной длины отправитель заранее знает размер файла и может выбрать скрывающие биты в подходящей псевдослучайной последовательности. С другой стороны, контейнеры фиксированной длины, как это уже отмечалось выше, имеют ограниченный объем и иногда встраиваемое сообщение может не поместиться в файл-контейнер.

Другой недостаток заключается в том, что расстояния между скрывающими битами равномерно распределены между наиболее коротким и наиболее длинным заданными расстояниями, в то время как истинный случайный шум будет иметь экспоненциальное распределение длин интервала. Конечно, можно породить псевдослучайные экспоненциально распределенные числа, но этот путь обычно слишком трудоемок. Однако на практике чаще всего используются именно контейнеры фиксированной длины, как наиболее распространенные и доступные.

Возможны следующие варианты контейнеров:

· Контейнер генерируется самой стегосистемой. Примером может служить программа MandelSteg, в которой в качестве контейнера для встраивания сообщения генерируется фрактал Мандельброта. Такой подход можно назвать конструирующей стеганографией.

· Контейнер выбирается из некоторого множества контейнеров. В этом случае генерируется большое число альтернативных контейнеров, чтобы затем выбрать наиболее подходящий для сокрытия сообщения. Такой подход можно назвать селектирующей стеганографией. В данном случае при выборе оптимального контейнера из множества сгенерированных важнейшим требованием является естественность контейнера. Единственной же проблемой остается то, что даже оптимально организованный контейнер позволяет спрятать незначительное количество данных при очень большом объеме самого контейнера.

· Контейнер поступает извне. В данном случае отсутствует возможность выбора контейнера и для сокрытия сообщения берется первый попавшийся контейнер, не всегда подходящий к встраиваемому сообщению. Назовем это безальтернативной стеганографией.

2. Компьютерная стеганография

Компьютерные технологии придали новый импульс развитию и совершенствованию стеганографии, появилось новое направление в области защиты информации - компьютерная стеганография (КС).

Современный прогресс в области глобальных компьютерных сетей и средств мультимедиа привел к разработке новых методов, предназначенных для обеспечения безопасности передачи данных по каналам телекоммуникаций и использования их в необъявленных целях. Эти методы, учитывая естественные неточности устройств оцифровки и избыточность аналогового видео или аудио сигнала, позволяют скрывать сообщения в компьютерных файлах (контейнерах).

2.1 Классификация методов компьютерной стеганографии

Подавляющее большинство методов компьютерной стеганографии (КС) базируется на двух ключевых принципах:

· файлы, которые не требуют абсолютной точности (например, файлы с изображением, звуковой информацией и т.д.), могут быть видоизменены (конечно, до определенной степени) без потери своей функциональности.

· органы чувств человека неспособны надежно различать незначительные изменения в модифицированных таким образом файлах и/или отсутствует специальный инструментарий, который был бы способен выполнять данную задачу.

В основе базовых подходов к реализации методов КС в рамках той или иной информационной среды лежит выделение малозначительных фрагментов этой среды и замена существующей в них информации информацией, которую необходимо скрыть. Поскольку в КС рассматриваются среды, поддерживаемые средствами вычислительной техники и компьютерных сетей, то вся информационная среда в результате может быть представлена в цифровом виде.

Таким образом, незначительные для кадра информационной среды фрагменты относительно того или иного алгоритма или методики заменяются фрагментами скрываемой информации. Под кадром информационной среды в данном случае подразумевается определенная его часть, выделенная по характерным признакам. Такими признаками зачастую являются семантические характеристики выделяемой части информационной среды. Например, кадром может быть избрано какое-нибудь отдельное изображение, звуковой файл, Web-страница и т.д.

Для существующих методов компьютерной стеганографии вводят следующую классификацию (см. рисунок 1).

Рисунок 3 - Классификация методов компьютерной стеганографии

По способу выбора контейнера различают суррогатные (или так называемые эрзац-методы), селективные и конструирующие методы стеганографии.

В суррогатных (безальтернативных) методах стеганографии полностью отсутствует возможность выбора контейнера, и для скрытия сообщения избирается первый попавшийся контейнер - эрзац-контейнер, который в большинстве случаев не оптимален для скрытия сообщения заданного формата.

В селективных методах КС предусматривается, что скрытое сообщение должно воспроизводить специальные статистические характеристики шума контейнера. Для этого генерируют большое количество альтернативных контейнеров с последующим выбором наиболее оптимального из них для конкретного сообщения. Особым случаем такого подхода является вычисление некоторой хэш-функции для каждого контейнера. При этом для скрытия сообщения выбирается тот контейнер, хэш-функция которого совпадает со значением кэш-функции сообщения (то есть стеганограммой является избранный контейнер).

В конструирующих методах стеганографии контейнер генерируется самой стегосистемой. При этом существует несколько вариантов реализации. Так, например, шум контейнера может имитироваться скрытым сообщением. Это реализуется с помощью процедур, которые не только кодируют скрываемое сообщение под шум, но и сохраняют модель изначального шума. В предельном случае по модели шума может строиться целое сообщение.

По способу доступа к скрываемой информации различают методы для потоковых (беспрерывных) контейнеров и методы для фиксированных (ограниченной длины) контейнеров.

По способу организации контейнеры, подобно помехоустойчивым кодам, могут быть систематическими и несистематическими.

В первых можно указать конкретные места стеганограммы, где находятся информационные биты собственно контейнера, а где - шумовые биты, предназначенные для скрытия информации (как, например, в широко распространенном методе наименее значащего бита).

В случае несистематической организации контейнера такое разделение невозможно. В этом случае для выделения скрытой информации необходимо обрабатывать содержимое всей стеганограммы.

По используемому принципу скрытия методы компьютерной стеганографии делятся на два основных класса: методы непосредственной замены и спектральные методы. Если первые, используя избыток информационной среды в пространственной (для изображения) или временной (для звука) области, заключаются в замене малозначительной части контейнера битами секретного сообщения, то другие для скрытия данных используют спектральные представления элементов среды, в которую встраиваются скрываемые данные (например, в разные коэффициенты массивов дискретно-косинусных преобразований, преобразований Фурье, Карунена-Лоева, Адамара, Хаара и т.д.).

Основным направлением компьютерной стеганографии является использование свойств именно избыточности контейнера-оригинала, но при этом следует принимать во внимание то, что в результате скрытия информации происходит искажение некоторых статистических свойств контейнера или, же нарушение его структуры. Это необходимо учитывать для уменьшения демаскирующих признаков.

В особую группу можно выделить методы, которые используют специальные свойства форматов представления файлов:

· зарезервированные для расширения поля файлов, которые зачастую заполняются нулями и не учитываются программой;

· специальное форматирование данных (сдвиг слов, предложений, абзацев или выбор определенных позиций символов);

· использование незадействованных участков на магнитных и оптических носителях;

· удаление файловых заголовков-идентификаторов и т.д.

В основном для таких методов характерны низкая степень скрытности, низкая пропускная способность и слабая производительность.

По назначению различают стеганометоды собственно для скрытой передачи (или скрытого хранения) данных и методы для скрытия данных в цифровых объектах с целью защиты авторских прав на них.

По типам контейнера выделяют стеганографические методы с контейнерами в виде текста, аудиофайла, изображения и видео.

2.2 Метод замены наименее значащего бита

Метод замены наименее значащего бита (НЗБ, LSB - Least Significant Bit) наиболее распространен среди методов замены в пространственной области.

Младший значащий бит изображения несет в себе меньше всего информации. Известно, что человек в большинстве случаев не способен заметить изменений в этом бите. Фактически, НЗБ - это шум, поэтому его можно использовать для встраивания информации путем замены менее значащих битов пикселей изображения битами секретного сообщения. При этом для изображения в градациях серого (каждый пиксель изображения кодируется одним байтом) объем встроенных данных может составлять 1/8 от общего объема контейнера. Если же модифицировать два младших бита (что также практически незаметно), то данную пропускную способность можно увеличить еще вдвое.

Популярность данного метода обусловлена его простотой и тем, что он позволяет скрывать в относительно небольших файлах большие объемы информации (пропускная способность создаваемого скрытого канала связи составляет при этом от 12,5 до 30%). Метод зачастую работает с растровыми изображениями, представленными в формате без компрессии (например, BMP и GIF).

Метод НЗБ имеет низкую стеганографическую стойкость к атакам пассивного и активного нарушителей. Основной его недостаток - высокая чувствительность к малейшим искажениям контейнера. Для ослабления этой чувствительности часто дополнительно применяют помехоустойчивое кодирование.

2.3 Метод псевдослучайного интервала

В рассмотренном выше простейшем случае выполняется замена НЗБ всех последовательно размещенных пикселей изображения. Другой подход - метод случайного интервала, заключается в случайном распределении битов секретного сообщения по контейнеру, в результате чего расстояние между двумя встроенными битами определяется псевдослучайно. Эта методика особенно эффективна в случае, когда битовая длина секретного сообщения существенно меньше количества пикселей изображения.

Интервал между двумя последовательными встраиваниями битов сообщения может являться, например, функцией координат предыдущего модифицированного пикселя.

2.4 Методы сокрытия данных в пространственной области

Алгоритмы, описанные в данном в данном разделе, встраивают скрываемые данные в области первичного изображения. Их преимущество заключается в том, что для встраивания ненужно выполнять вычислительно сложные и длительные преобразования изображений.

Цветное изображение C будем представлять через дискретную функцию, которая определяет вектор цвета c (x,y) для каждого пикселя изображения (x,y), где значение цвета задает трехкомпонентный вектор в цветовом пространстве. Наиболее распространенный способ передачи цвета - это модель RGB, в которой основные цвета - красный, зеленый и синий, а любой другой цвет может быть представлен в виде взвешенной суммы основных цветов.

Вектор цвета c (x,y) в RGB-пространстве представляет интенсивность основных цветов. Сообщения встраиваются за счет манипуляций цветовыми составляющими {R (x,y), G (x,y), B (x,y) } или непосредственно яркостью λ (x,y) Î {0, 1, 2,…, LC}.

Общий принцип этих методов заключается в замене избыточной, малозначимой части изображения битами секретного сообщения. Для извлечения сообщения необходимо знать алгоритм, по которому размещалась в контейнере скрытая информация.

Заключение

Стеганография, как метод защиты информации, появилась очень давно. Тем не менее данная наука не теряет совей актуальности и сейчас. В развивающемся мире высоких технологий задача сохранения информации обладателя в секрете остается первостепенной, поэтому стеганография тоже не стоит на месте. К сожалению объем курсовой работы не позволяет полностью раскрыть такую обширную тему, но опираясь на поставленные задачи нам удалось раскрыть основные методы и направления классической и современной стеганографии.

Изначально были описаны методы классической стеганографии и вероятные истории возникновения данной науки. После были раскрыты основные аспекты цифровой стеганографии, а также описаны принципы работы стегосистем и их модель. В основной части работы провели исследование методов компьютерной стеганографии и на основе полученных знаний провели их классификацию. Для завершения полной картины рассмотрели некоторые метода компьютерной стеганографии более подробно, изучили их достоинства и недостатки.

Хотелось бы отметить, что в настоящее время информационная безопасность является мировой проблемой, и ежедневно на предприятиях происходят утечки информации, однако такие методы скрытия информации, как стеганография дают возможность защитить вашу информацию даже в таких непредвиденных случаях, поэтому нельзя недооценивать данный метод, как средство защиты важных сведений.


Возможность скрывать одни данные внутри других может позволить злоумышленнику скрытно украсть массу конфиденциальной информации.

  • Стеганография: Немного теории
  • Стеганография на практике
  • Программы для стеганографии
    • ImageSpyer G2
    • StegoTC G2 TC
    • RedJPEG
    • DarkCryptTC и Проект «Заря»
  • Стеганография своими руками

Проблема сокрытия данных волнует человечество с древних времен. Для защиты информации обычно используют шифры. Надежность их может быть разной, но к тому моменту, когда врагу все же удастся его взломать, информация будет уже старой.

В эпоху цифровых технологий положение несколько изменилось: вычислительные возможности компьютеров непрерывно увеличиваются, а, кроме того, появилось огромное количество каналов связи, по которым можно передавать информацию. При этом красть данные стало значительно легче.

Если раньше не совсем честному работнику, чтобы вынести какой-нибудь секретный чертеж или документ, нужно было скрывать бумажную копию, то в эпоху цифровых технологий выносить секреты стало намного легче. Зашифрованный файл можно отослать по сети, а можно скинуть на съемный носитель, флешку и скрытно вынести в кармашке.

В первом случае все относительно просто, есть очень много решений по контролю трафика. Для борьбы с копированием на флешки тоже существуют средства предотвращения вторжений DLP (Data Leak Prevention). Вообще большая часть DLP-решений контролирует все каналы утечки данных на компьютере, как сетевые, так и периферию. Так что правильно настроенная система предотвращения утечек данных может не только создать злоумышленнику проблемы при хищении информации, но и даст возможность администраторам контролировать все его действия, тем самым выявляя, какими секретами он интересуется и какие средства и способы применяет для кражи информации.

Следующим очевидным шагом в этом «соревновании брони и снаряда» должно было бы стать выносимой информации с дальнейшей передачей по каналам, описанным выше. Но сама попытка передать наружу файл, который невозможно прочитать, должна вызывать у безопасников серьезные подозрения и блокироваться соответствующим программным обеспечением. Но можно попробовать скрыть зашифрованные данные внутри другого контента. Вот мы и плавно подошли к главной теме данной статьи — стеганографии.

Стеганография, а не стенография

Статья в Википедии говорит нам, что стеганография (буквально переводится с греческого как «тайнопись») -это наука о скрытой передаче информации путем сохранения в тайне самого факта передачи. В отличие от криптографии, которая скрывает содержимое секретного сообщения, скрывает сам факт его существования. Хотя обычно эти две технологии используют совместно.

Стеганографию используют для всевозможных целей. Нередко ее используют не для воровства, а для борьбы с похитителями. Например, при защите авторского права, когда в документе прячут некую скрытую закладку, позволяющую определять того, кому принадлежит данная копия файла. В случае если такая метка будет затем обнаружена где-либо на торрентах, правообладатели смогут найти, кто именно его выложил, и предъявить ему соответствующие претензии.

Но в статье я буду описывать использование стеганографии именно как средства хищения данных. Начнем с рассмотрения некоторых теоретических вопросов. Сразу оговорюсь, что, рассказывая о технических способах реализации стеганографии, буду затрагивать только цифровой стеганографии, то есть сокрытия информации внутри других цифровых данных. При этом не стану касаться способов, основанных на использовании различными файловыми системами зарезервированных разделов жесткого или гибкого диска, или методик, связанных с особенностями функционирования всевозможных аппаратных платформ и операционных систем. В данной статье нас будут интересовать только файлы различных форматов и возможности в них.

Стеганография: Немного теории

Прежде всего предлагаю рассмотреть основные алгоритмы, которые используются для стеганографии.

Методы типа LSB (Least Significiant Bit, наименьший значащий бит) и аналогичные. Их суть заключается в замене последних значащих битов в контейнере (изображения, аудио или видеозаписи) на биты скрываемого сообщения. Возьмем в качестве примера графический файл. Наглядно это выглядит следующим образом: мы меняем младшие биты в коде цвета пикселя на картинке. Если считать, что код цвета имеет 32-битное значение, то замена 0 на 1 или наоборот не приведет к сколько-нибудь существенному искажению картинки, ощутимому для органов восприятия человека. А между тем в этих битах для большой картинки можно что-то спрятать.

Рассмотрим небольшой пример. Допустим, имеется 8-битное изображение в градациях серого. 00h (00000000Ь) обозначает черный цвет, FFh (11111111Ь) — белый. Всего имеется 256 градаций (). Также предположим, что сообщение состоит из 1 байта — например, 01101011Ь. При использовании двух младших бит в описаниях пикселей нам потребуется 4 пикселя. Допустим, они черного цвета. Тогда пиксели, содержащие скрытое сообщение, будут выглядеть следующим образом: 00000001 00000010 00000010 00000011. Тогда цвет пикселей изменится: первого — на 1/255, второго и третьего — на 2/255 и четвертого — на 3/255. Такие градации, мало того, что незаметны для человека, могут вообще не отобразиться при использовании низкокачественных устройств вывода.

Стоит отметить, что методы LSB являются неустойчивыми к разного рода «шуму». Например, в случае если на передаваемый контент накладываются какие-либо «мусорные» биты, это искажает как исходный контент, так и (что для нас особенно важно) скрытое сообщение. Иногда оно даже становится нечитаемым. Аналогичная методика используется и для других форматов.

Еще один метод заключается в так называемом впаивании скрытой информации. В данном случае происходит наложение скрываемого изображения (звука, иногда текста) поверх оригинала. Простейший пример — надпись белым цветом на белом же фоне в PDF-документе. Злоумышленники обычно не используют данный метод по причине относительной простоты обнаружения автоматическими методами. Однако данный метод зачастую применяется при создании «водяных знаков» для защиты авторства контента. В этом случае данные знаки, как правило, не скрываются.

И третий метод — использование особенностей форматов файлов. К примеру, это может быть запись информации в метаданные, используемые данным форматом файла, или в различные другие, не используемые зарезервированные поля. Например, это может быть документ Microsoft Word, внутри которого будет спрятана информация, никак не отображаемая при открытии данного документа.

Аудио стеганография

Еще один способ сокрытия информации применим только к аудиофайлам — это эхо-метод. Он использует неравномерные промежутки между эхо-сигналами для кодирования последовательности значений. В общем случае возможно создание условий, при которых данные сигналы будут незаметны для человеческого восприятия. Эхо-сигнал характеризуется тремя параметрами: начальной амплитудой, степенью затухания и задержкой. При достижении некоего порога между сигналом и эхом они смешиваются. В этой точке человеческое ухо не может уже отличить эти два сигнала. Для обозначения логического нуля и единицы используется две различных задержки. Они обе должны быть меньше, чем порог чувствительности уха слушателя к получаемому эху.

Однако на практике этот метод тоже не слишком надежен, так как не всегда можно точно определить, когда был передан ноль, а когда единица, и в результате велика вероятность искажения скрытых данных.

Другой вариант использования стеганографии в аудиофайлах — фазовое кодирование (phase coding). Происходит замена исходного звукового элемента на относительную фазу, которая и является секретным сообщением. Фаза подряд идущих элементов должна быть добавлена таким образом, чтобы сохранить относительную фазу между исходными элементами, в противном случае возникнет искажение, заметное для человеческого уха.

На сегодняшний день фазовое кодирование является одним из самых эффективных методов скрытия информации.

Стеганография на практике

На этом, я думаю, с теорией можно закончить и надо перейти к практическим аспектам реализации стеганографии. Я не буду описывать коммерческие решения, а ограничусь рассказом о небольших бесплатных утилитах, которые злоумышленник может легко использовать, даже не имея административных прав в системе.

Программы для стеганографии

В качестве файла для хранения данных я использовал изображение 1680х1050, сохраненное в различных форматах: ВМР, PNG, JPEG. Скрываемым документом выступал текстовый файл размером порядка 40 Кб. Все описанные программы справились с поставленной задачей: текстовый файл был успешно сохранен и затем извлечен из исходного файла. При этом сколько-нибудь заметных искажений картинки обнаружено не было. Представленные далее утилиты можно скачать с сайта.

ImageSpyer G2

Утилита для сокрытия информации в графических файлах с использованием криптографии. При этом поддерживается около 30 алгоритмов шифрования и 25 хеш-функций для шифрования контейнера. Скрывает объем, равный числу пикселей изображения. Опционально доступна компрессия скрываемых данных.


ImageSpyer G2

Утилита совместима с Windows 8. В качестве исходных графических файлов могут использоваться форматы ВМР, JPEG, WMF, EMF, TIFF.

Скачать бесплатно ImageSpyer G2, вы можете по .

StegoTC G2 TC

Стеганографический архиваторный плагин (wcx) для Total Comander позволяет скрывать данные в любом изображении, при этом поддерживаются форматы ВМР, TIFF и PNG.

Скачать бесплатно StegoTC G2, вы можете по .

RedJPEG

Интерфейс этой программы, как и следует из названия, выполнен в красном стиле. Эта простая в использовании утилита предназначена для сокрытия любых данных в JPEG в изображении (фото, картинка) с помощью авторского стеганографического метода. Использует открытые алгоритмы шифрования, поточный шифр AMPRNG и Cartman II DDP4 в режиме хеш-функции, LZMA-компрессию.


RedJPEG

Профессиональная расширенная версия RedJPEG ХТ дополнена маскировкой факта внедрения и усиленной процедурой инициализации поточного шифра на основе характеристик изображения. Включены х86 и х86-64 сборки.

Также имеется RedJPEG ХТ for ТС WCX плагин Total Comanderг, обладающий аналогичным функционалом.

Скачать бесплатно RedJPEG, вы можете по .

DarkCryptTC и Проект «Заря»

Эту программу, можно назвать наиболее мощным стеганографическим решением. Она поддерживает более сотни различных симметричных и асимметричных криптоалгоритмов. Включает в себя поддержку собственной системы плагинов, предназначенной для блочных шифров (BlockAPI), текстовую, аудио и графическую стеганографию (включая реальную стеганографию JPEG), мощный генератор паролей и систему уничтожения информации и ключей.


DarkCryptTC и Проект «Заря»

Список поддерживаемых форматов действительно впечатляет: *.txt, *.html, *.xml, *.docx, *. odt, *.bmp, *jpg, *.tiff, *.png, *.jp2, *.psd, tga, *.mng, *.wav, *.ехе, *.dll.

Набор программ для стеганографии не слишком большой, но он вполне достаточен для того, чтобы эффективно скрывать информацию в файлах различных форматов.

Скачать бесплатно DarkCryptTC, вы можете по .

Также, на нашем сайте представлены и другие материалы касающиеся Стеганографии. Для поиска всех программ и книг, сделайте поиск по слову «Стеганография»

Стеганография своими руками

Для тех, кто хорошо знаком с программированием, в частности, с Visual Studio и С#, могу порекомендовать также довольно интересный , в котором можно найти исходные тексты стеганографических утилит для различных форматов данных: для работы с графическими форматами и для сокрытия информации, например, в ZIP-архивах. Общий принцип такого преобразования заключается в использовании заголовков архивируемых файлов. Фрагмент исходного кода для работы с ZIP-архивами выглядит следующим образом:

private void ZipFiles(string destinationFileName, ↵
string password)
{
FileStream outputFileStream = ↵
new FileStream(destinationFileName, ↵
FileMode.Create);
ZipOutputStream zipStream = ↵
new ZipOutputStream(outputFileStream);
bool isCrypted = false;
if (password != null && password.Length > 0)
{ //encrypt the zip file, if password is given
zipStream.Password = password;
isCrypted = true;
}
foreach(ListViewItem viewItem in lvAll.Items)
{
inputStream = new FileStream(viewItem.Text, ↵ FileMode.Open);
zipEntry = new ICSharpCode.SharpZipLib.Zip.ZipEntry(↵ Path.GetFileName(viewItem.Text));
zipEntry.IsVisible = viewItem.Checked;
zipEntry.IsCrypted = isCrypted;
zipEntry.CompressionMethod = ↵ CompressionMethod.Deflated;
zipStream.PutNextEntry(zipEntry);
CopyStream(inputStream, zipStream);
inputStream.Close();
zipStream.CloseEntry();
}
zipStream.Finish();
zipStream.Close();
}

На указанном сайте можно найти множество примеров исходных кодов любой сложности, так что изучение практических реализаций для желающих не составит большого труда.

Стеганография

Классификация стеганографии

В конце 90-х годов выделилось несколько направлений стеганографии:

  • Классическая стеганография
  • Компьютерная стеганография
  • Цифровая стеганография

Классическая стеганография

Симпатические чернила

Одним из наиболее распространенных методов классической стеганографии является использование симпатических (невидимых) чернил . Текст, записанный такими чернилами , проявляется только при определенных условиях (нагрев, освещение, химический проявитель и т. д.) Изобретенные ещё в I веке н. э. Филоном Александрийским , они продолжали использоваться как в средневековье , так и в новейшее время , например, в письмах русских революционеров из тюрем. В советской школьной программе в курсе литературы изучался рассказ о том, как Владимир Ленин писал молоком на бумаге между строк, см. Рассказы о Ленине . Молоко проявлялось при нагреве над пламенем.

Существуют также чернила с химически нестабильным пигментом . Написанное этими чернилами выглядит как написанное обычной ручкой, но через определенное время нестабильный пигмент разлагается, и от текста не остается и следа. Хотя при использовании обычной шариковой ручки текст можно восстановить по деформации бумаги , этот недостаток можно устранить с помощью мягкого пишущего узла, наподобие фломастера .

Другие стеганографические методы

  • запись на боковой стороне колоды карт, расположенных в условленном порядке;
  • запись внутри варёного яйца;
  • «жаргонные шифры», где слова имеют другое обусловленное значение;
  • трафареты , которые, будучи положенными на текст, оставляют видимыми только значащие буквы;
  • узелки на нитках и т. д.

В настоящее время под стеганографией чаще всего понимают скрытие информации в текстовых, графических либо аудиофайлах путём использования специального программного обеспечения .

Стеганографические модели

Стеганографические модели - используются для общего описания стеганографических систем.

Основные понятия

В 1983 году Симмонс предложил т. н. «проблему заключенных». Её суть состоит в том, что есть человек на свободе (Алиса), в заключении (Боб) и охранник Вилли. Алиса хочет передавать сообщения Бобу без вмешательства охранника. В этой модели сделаны некоторые допущения: предполагается, что перед заключением Алиса и Боб договариваются о кодовом символе, который отделит одну часть текста письма от другой, в которой скрыто сообщение. Вилли же имеет право читать и изменять сообщения. В 1996 году на конференции Information Hiding: First Information Workshop была принята единая терминология:

  • Стеганографическая система (стегосистема) - объединение методов и средств используемых для создания скрытого канала для передачи информации . При построении такой системы условились о том, что: 1) враг представляет работу стеганографической системы. Неизвестным для противника является ключ с помощью которого можно узнать о факте существования и содержания тайного сообщения. 2) При обнаружении противником наличия скрытого сообщения он не должен смочь извлечь сообщение до тех пор пока он не будет владеть ключом . 3) Противник не имеет технических и прочих преимуществ.
  • Сообщение - это термин , используемый для общего названия передаваемой скрытой информации, будь то лист с надписями молоком, голова раба или цифровой файл.
  • Контейнер - так называется любая информация , используемая для сокрытия тайного сообщения. Пустой контейнер - контейнер, не содержащий секретного послания. Заполненный контейнер (стегоконтейнер) - контейнер, содержащий секретное послание.
  • Стеганографический канал (стегоканал) - канал передачи стегоконтейнера.
  • Ключ (стегоключ) - секретный ключ , нужный для сокрытия стегоконтейнера. Ключи в стегосистемах бывают двух типов: секретные и открытые. Если стегосистема использует секретный ключ, то он должен быть создан или до начала обмена сообщениями, или передан по защищённому каналу. Стегосистема, использующая открытый ключ , должна быть устроена таким образом, чтобы было невозможно получить из него закрытый ключ . В этом случае открытый ключ мы можем передавать по незащищённому каналу.

Компьютерная стеганография

Компьютерная стеганография - направление классической стеганографии, основанное на особенностях компьютерной платформы. Примеры - стеганографическая файловая система StegFS для Linux , скрытие данных в неиспользуемых областях форматов файлов , подмена символов в названиях файлов , текстовая стеганография и т. д. Приведём некоторые примеры:

  • Использование зарезервированных полей компьютерных форматов файлов - суть метода состоит в том, что часть поля расширений , не заполненная информацией о расширении, по умолчанию заполняется нулями. Соответственно мы можем использовать эту «нулевую» часть для записи своих данных. Недостатком этого метода является низкая степень скрытности и малый объём передаваемой информации.
  • Метод скрытия информации в неиспользуемых местах гибких дисков - при использовании этого метода информация записывается в неиспользуемые части диска , к примеру, на нулевую дорожку. Недостатки: маленькая производительность, передача небольших по объёму сообщений.
  • Метод использования особых свойств полей форматов, которые не отображаются на экране - этот метод основан на специальных «невидимых» полях для получения сносок, указателей. К примеру, написание чёрным шрифтом на чёрном фоне. Недостатки: маленькая производительность, небольшой объём передаваемой информации.
  • Использование особенностей файловых систем - при хранении на жестком диске файл всегда (не считая некоторых ФС, например, ReiserFS) занимает целое число кластеров (минимальных адресуемых объёмов информации). К примеру, в ранее широко используемой файловой системе FAT32 (использовалась в Windows98 / /) стандартный размер кластера - 4 Кб . Соответственно для хранения 1 Кб информации на диске выделяется 4 Кб информации, из которых 1Кб нужен для хранения сохраняемого файла, а остальные 3 ни на что не используются - соответственно их можно использовать для хранения информации. Недостаток данного метода: лёгкость обнаружения.

Цифровая стеганография

Изображение дерева со скрытым с помощью цифровой стеганографии в нём другим изображением. Изображение спрятано с помощью удаления всех, кроме двух младших битов с каждого цветового компонента и последующей нормализации.

Изображение кота, извлеченное из изображения дерева, расположенного выше

Цифровая стеганография - направление классической стеганографии, основанное на сокрытии или внедрении дополнительной информации в цифровые объекты, вызывая при этом некоторые искажения этих объектов. Но, как правило, данные объекты являются мультимедиа-объектами (изображения, видео, аудио, текстуры 3D-объектов) и внесение искажений, которые находятся ниже порога чувствительности среднестатистического человека, не приводит к заметным изменениям этих объектов. Кроме того, в оцифрованных объектах, изначально имеющих аналоговую природу, всегда присутствует шум квантования; далее, при воспроизведении этих объектов появляется дополнительный аналоговый шум и нелинейные искажения аппаратуры, все это способствует большей незаметности сокрытой информации.

Алгоритмы

Все алгоритмы встраивания скрытой информации можно разделить на несколько подгрупп:

  • Работающие с самим цифровым сигналом. Например, метод LSB.
  • «Впаивание» скрытой информации. В данном случае происходит наложение скрываемого изображения (звука, иногда текста) поверх оригинала. Часто используется для встраивания ЦВЗ.
  • Использование особенностей форматов файлов . Сюда можно отнести запись информации в метаданные или в различные другие не используемые зарезервированные поля файла.

По способу встраивания информации стегоалгоритмы можно разделить на линейные (аддитивные), нелинейные и другие. Алгоритмы аддитивного внедрения информации заключаются в линейной модификации исходного изображения, а её извлечение в декодере производится корелляционными методами. При этом ЦВЗ обычно складывается с изображением-контейнером, либо «вплавляется» (fusion) в него. В нелинейных методах встраивания информации используется скалярное либо векторное квантование. Среди других методов определенный интерес представляют методы, использующие идеи фрактального кодирования изображений. К аддитивным алгоритмам можно отнести:

  • А17 (Cox)
  • А18 (Barni)
  • L18D (Lange)
  • А21 (J. Kim).
  • А25 (С. Podilchuk).

Метод LSB

LSB (Least Significant Bit, наименьший значащий бит) - суть этого метода заключается в замене последних значащих битов в контейнере (изображения, аудио или видеозаписи) на биты скрываемого сообщения. Разница между пустым и заполненным контейнерами должна быть не ощутима для органов восприятия человека.

Суть метода заключается в следующем: Допустим, имеется 8-битное изображение в градациях серого. 00h (00000000b) обозначает чёрный цвет, FFh (11111111b) - белый. Всего имеется 256 градаций (). Также предположим, что сообщение состоит из 1 байта - например, 01101011b. При использовании 2 младших бит в описаниях пикселей, нам потребуется 4 пикселя. Допустим, они чёрного цвета. Тогда пиксели, содержащие скрытое сообщение, будут выглядеть следующим образом: 00000001 00000010 00000010 00000011 . Тогда цвет пикселей изменится: первого - на 1/255, второго и третьего - на 2/255 и четвёртого - на 3/255. Такие градации, мало того что незаметны для человека, могут вообще не отобразиться при использовании низкокачественных устройств вывода.

Методы LSB являются неустойчивыми ко всем видам атак и могут быть использованы только при отсутствии шума в канале передачи данных.

Обнаружение LSB-кодированного стего осуществляется по аномальным характеристикам распределения значений диапазона младших битов отсчётов цифрового сигнала.

Все методы LSB являются, как правило, аддитивными (A17, L18D).

Другие методы скрытия информации в графических файлах ориентированы на форматы файлов с потерей, к примеру, JPEG. В отличие от LSB они более устойчивы к геометрическим преобразованиям. Это получается за счёт варьирования в широком диапазоне качества изображения, что приводит к невозможности определения источника изображения.

Эхо-методы

Эхо-методы применяются в цифровой аудиостеганографии и используют неравномерные промежутки между эхо-сигналами для кодирования последовательности значений. При наложении ряда ограничений соблюдается условие незаметности для человеческого восприятия. Эхо характеризуется тремя параметрами: начальной амплитудой, степенью затухания, задержкой. При достижении некоего порога между сигналом и эхом они смешиваются. В этой точке человеческое ухо не может уже отличить эти два сигнала. Наличие этой точки сложно определить, и она зависит от качества исходной записи, слушателя. Чаще всего используется задержка около 1/1000, что вполне приемлемо для большинства записей и слушателей. Для обозначения логического нуля и единицы используется две различных задержки. Они обе должны быть меньше, чем порог чувствительности уха слушателя к получаемому эху.

Эхо-методы устойчивы к амплитудным и частотным атакам, но неустойчивы к атакам по времени.

Фазовое кодирование

Фазовое кодирование (phase coding, фазовое кодирование) - так же применяется в цифровой аудиостеганографии. Происходит замена исходного звукового элемента на относительную фазу , которая и является секретным сообщением. Фаза подряд идущих элементов должна быть добавлена таким образом, чтобы сохранить относительную фазу между исходными элементами. Фазовое кодирование является одним из самых эффективных методов скрытия информации.

Метод расширенного спектра

Метод встраивания сообщения заключается в том, что специальная случайная последовательность встраивается в контейнер, затем, используя согласованный фильтр, данная последовательность детектируется. Данный метод позволяет встраивать большое количество сообщений в контейнер, и они не будут создавать помехи друг другу. Метод заимствован из широкополосной связи.

Атаки на стегосистемы

Под атакой на стегосистему понимается попытка обнаружить, извлечь, изменить скрытое стеганографическое сообщение. Такие атаки называются стегоанализом по аналогии с криптоанализом для криптографии. Способность стеганографической системы противостоять атакам называется стеганографической стойкостью . Наиболее простая атака - субъективная. Внимательно рассматривается изображение, прослушивается звукозапись в попытках найти признаки существования в нём скрытого сообщения. Такая атака имеет успех лишь для совсем незащищенных стегосистем. Обычно это первый этап при вскрытии стегосистемы. Выделяются следующие типы атак.

  • Атака по известному заполненному контейнеру;
  • Атака по известному встроенному сообщению;
  • Атака на основе выбранного скрытого сообщения;
  • Адаптивная атака на основе выбранного скрытого сообщения;
  • Атака на основе выбранного заполненного контейнера;
  • Атака на основе известного пустого контейнера;
  • Атака на основе выбранного пустого контейнера;
  • Атака по известной математической модели контейнера.

Рассмотрим некоторые из них:

Атака по известному заполненному контейнеру - у взломщика имеется одно или несколько стего. В случае нескольких стего считается, что запись скрытой информации проводилось отправителем одинаковым способом. Задача взломщика заключается в обнаружении факта наличия стегоканала, а также доступа к нему или определения ключа. Имея ключ, можно раскрыть другие стегосообщения.

Атака по известной математической модели контейнера - взломщик определяет отличие подозрительного послания от известной ему модели. К примеру, пусть биты внутри отсчета изображения коррелированны . Тогда отсутствие корреляции может служить сигналом о наличии скрытого сообщения. При этом задача внедряющего сообщение состоит в том, чтобы не нарушить статистических закономерностей в контейнере.

Атака на основе известного пустого контейнера - если злоумышленнику известен пустой контейнер, то сравнивая его с предполагаемым стего можно установить наличие стегоканала . Несмотря на кажущуюся простоту метода, существует теоретическое обоснование эффективности этого метода. Особый интерес представляет случай, когда контейнер нам известен с некоторой погрешностью (такое возможно при добавлении к нему шума).

Стеганография и цифровые водяные знаки

Для повышения устойчивости к искажениям часто применяют помехоустойчивое кодирование или используют широкополосные сигналы. Начальную обработку скрытого сообщения делает прекодер . Важная предварительная обработка ЦВЗ - вычисление его обобщенного Фурье-преобразования . Это повышает помехоустойчивость. Первичную обработку часто производят с использованием ключа - для повышения секретности. Потом водяной знак «укладывается» в контейнер (например, путем изменения младших значащих бит). Здесь используются особенности восприятия изображений человеком. Широко известно, что изображения имеют огромную психовизуальную избыточность. Глаза человека подобны низкочастотному фильтру, который пропускает мелкие элементы изображения. Наименее заметны искажения в высокочастотной области изображений. Внедрение ЦВЗ также должно учитывать свойства восприятия человека.

Во многих стегосистемах для записи и считывания ЦВЗ используется ключ. Он может предназначаться для ограниченного круга пользователей или же быть секретным. Например, ключ нужен в DVD -плейерах для возможности прочтения ими содержащихся на дисках ЦВЗ. Как известно, не существует таких стегосистем, в которых бы при считывании водяного знака требовалась другая информация, нежели при его записи. В стегодетекторе происходит обнаружение ЦВЗ в защищённом им файле, который, возможно, мог быть изменён. Эти изменения могут быть связаны с воздействиями ошибок в канале связи, либо преднамеренными помехами. В большинстве моделей стегосистем сигнал-контейнер можно рассмотреть как аддитивный шум. При этом задача обнаружения и считывания стегосообщения уже не представляет сложности, но не учитывает двух факторов: неслучайности сигнала контейнера и запросов по сохранению его качества. Учет этих параметров позволит строить более качественные стегосистемы. Для обнаружения факта существования водяного знака и его считывания используются специальные устройства - стегодетекторы. Для вынесения решения о наличии или отсутствии водяного знака используют, к примеру, расстояние по Хэммингу , взаимокорреляцию между полученным сигналом и его оригиналом. В случае отсутствия исходного сигнала в дело вступают более изощренные статистические методы, которые основаны на построении моделей исследуемого класса сигналов.

Применение стеганографии

В современных принтерах

Стеганография используется в некоторых современных принтерах. При печати на каждую страницу добавляются маленькие точки, содержащие информацию о времени и дате печати, а также серийный номер принтера.

Применение цифровой стеганографии

Из рамок цифровой стеганографии вышло наиболее востребованное легальное направление - встраивание цифровых водяных знаков (ЦВЗ) (watermarking), являющееся основой для систем защиты авторских прав и DRM (Digital rights management) систем. Методы этого направления настроены на встраивание скрытых маркеров, устойчивых к различным преобразованиям контейнера (атакам).

Полухрупкие и хрупкие ЦВЗ используются в качестве аналоговой ЭЦП , обеспечивая хранение информации о передаваемой подписи и попытках нарушения целостности контейнера (канала передачи данных).

Например, разработки Digimarc в виде плагинов к редактору Adobe Photoshop позволяют встроить в само изображение информацию об авторе. Однако такая метка неустойчива, впрочем как и абсолютное их большинство. Программа Stirmark, разработчиком которой является ученый Fabien Petitcolas, с успехом атакует подобные системы, разрушая стеговложения.

Предполагаемое использование террористами

Пример, показывающий то, как террористы могут использовать аватары для передачи скрытых сообщений. Эта картинка содержит в себе сообщение «Босс сказал, что мы должны взорвать мост в полночь.», зашифрованное с помощью http://mozaiq.org/encrypt с использованием сочетания символов «växjö» в качестве пароля.

Слухи о использовании стеганографии террористами появились с момента публикации в газете USA Today 5 февраля 2001 года двух статей - «Террористы прячут инструкции онлайн» и «Террористические группы прячутся за веб-шифрованием». 10 июля 2002 года в той же газете появилась статья «Боевики окутывают веб с помощью ссылок на джихад». В этой статье была опубликована информация о том, что террористы использовали фотографии на сайте eBay для передачи скрытых сообщений. Многие средства массовой информации перепечатывали данные сообщения, особенно после терактов 11 сентября , хотя подтверждения данной информации получено не было. Статьи в USA Today написал иностранный корреспондент Джек Келли, который был уволен в 2004 году после того, как выяснилось, что данная информация была сфабрикована. 30 октября 2001 года газета The New York Times опубликовала статью «Замаскированные сообщения террористов могут скрываться в киберпространстве». В статье было высказано предположение о том, что Аль-Каида использовала стеганографию для скрытия сообщений в изображениях, а затем передавала их по электронной почте и Usenet в целях подготовки терактов 11 сентября . В пособии по обучению террориста «Технологичный муджахид, учебное пособие для джихада » присутствует глава, посвященная использованию стеганографии.

Предполагаемое использование спецслужбами

  • Скандально известный греческий миллионер Аристотель Онассис несколько раз использовал при подписании контрактов ручку с симпатическими чернилами.
  • В фильме «Гений » главный герой - персонаж Александра Абдулова - обманывает милицию , написав признание симпатическими чернилами.

Ссылки

Программные реализации

  • OpenPuff: Двойная стеганография, Bmp , Jpeg , Png , Tga , Pcx , Aiff , Mp3 , Next, Wav , 3gp , Mp4 , Mpeg I , MPEG II , Vob , Flv , Pdf , Swf

Статьи

  • Обзор программ для поиска скрытых стеганографией материалов

Прочее

  • Стеганография (рус.) Иоганна Тритемия