Как я полагаю, многим известно о том, что с 2007 года Национальный институт стандартов и технологий США (NIST) проводит конкурс на разработку хэш-алгоритма для замены SHA-1, и семейства алгоритмов SHA-2. Однако данная тема, почему-то обделена вниманием на сайте. Собственно это и привело меня к вам. Предлагаю вашему вниманию цикл статей, посвященных хэш-алгоритмам. В этом цикле мы вместе изучим основы хэш-функций, рассмотрим самые именитые хэш-алгоритмы, окунемся в атмосферу конкурса SHA-3 и рассмотрим алгоритмы, претендующие на победу в нем, обязательно их потестируем. Так же по возможности будут рассмотрены российские стандарты хеширования.

О себе

Студент кафедры информационной безопасности.

О хэшировании

В настоящее время практически ни одно приложение криптографии не обходится без использования хэширования.
Хэш-функции – это функции, предназначенные для «сжатия» произвольного сообщения или набора данных, записанных, как правило, в двоичном алфавите, в некоторую битовую комбинацию фиксированной длины, называемую сверткой. Хэш-функции имеют разнообразные применения при проведении статистических экспериментов, при тестировании логических устройств, при построении алгоритмов быстрого поиска и проверки целостности записей в базах данных. Основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента.
Криптографической хеш-функцией называется всякая хеш-функция, являющаяся криптостойкой, то есть удовлетворяющая ряду требований специфичных для криптографических приложений. В криптографии хэш-функции применяются для решения следующих задач:
- построения систем контроля целостности данных при их передаче или хранении,
- аутентификация источника данных.

Хэш-функцией называется всякая функция h:X -> Y , легко вычислимая и такая, что для любого сообщения M значение h(M) = H (свертка) имеет фиксированную битовую длину. X - множество всех сообщений, Y - множество двоичных векторов фиксированной длины.

Как правило хэш-функции строят на основе так называемых одношаговых сжимающих функций y = f(x 1 , x 2) двух переменных, где x 1 , x 2 и y - двоичные векторы длины m , n и n соответственно, причем n - длина свертки, а m - длина блока сообщения.
Для получения значения h(M) сообщение сначала разбивается на блоки длины m (при этом, если длина сообщения не кратна m то последний блок неким специальным образом дополняется до полного), а затем к полученным блокам M 1 , M 2 ,.., M N применяют следующую последовательную процедуру вычисления свертки:

H o = v,
H i = f(M i ,H i-1), i = 1,.., N,
h(M) = H N

Здесь v - некоторая константа, часто ее называют инициализирующим вектором. Она выбирается
из различных соображений и может представлять собой секретную константу или набор случайных данных (выборку даты и времени, например).
При таком подходе свойства хэш-функции полностью определяются свойствами одношаговой сжимающей функции.

Выделяют два важных вида криптографических хэш-функций - ключевые и бесключевые. Ключевые хэш-функции называют кодами аутентификации сообщений. Они дают возможность без дополнительных средств гарантировать как правильность источника данных, так и целостность данных в системах с доверяющими друг другу пользователями.
Бесключевые хэш-функции называются кодами обнаружения ошибок. Они дают возможность с помощью дополнительных средств (шифрования, например) гарантировать целостность данных. Эти хэш-функции могут применяться в системах как с доверяющими, так и не доверяющими друг другу пользователями.

О статистических свойствах и требованиях

Как я уже говорил основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента. Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось. Это называется лавинным эффектом.

К ключевым функциям хэширования предъявляются следующие требования:
- невозможность фабрикации,
- невозможность модификации.

Первое требование означает высокую сложность подбора сообщения с правильным значением свертки. Второе - высокую сложность подбора для заданного сообщения с известным значением свертки другого сообщения с правильным значением свертки.

К бесключевым функциям предъявляют требования:
- однонаправленность,
- устойчивость к коллизиям,
- устойчивость к нахождению второго прообраза.

Под однонаправленностью понимают высокую сложность нахождения сообщения по заданному значению свертки. Следует заметить что на данный момент нет используемых хэш-функций с доказанной однонаправленностью.
Под устойчивостью к коллизиям понимают сложность нахождения пары сообщений с одинаковыми значениями свертки. Обычно именно нахождение способа построения коллизий криптоаналитиками служит первым сигналом устаревания алгоритма и необходимости его скорой замены.
Под устойчивостью к нахождению второго прообраза понимают сложность нахождения второго сообщения с тем же значением свертки для заданного сообщения с известным значением свертки.

Это была теоретическая часть, которая пригодится нам в дальнейшем…

О популярных хэш-алгоритмах

Алгоритмы CRC16/32 - контрольная сумма (не криптографическое преобразование).

Алгоритмы MD2/4/5/6 . Являются творением Рона Райвеста, одного из авторов алгоритма RSA.
Алгоритм MD5 имел некогда большую популярность, но первые предпосылки взлома появились еще в конце девяностых, и сейчас его популярность стремительно падает.
Алгоритм MD6 - очень интересный с конструктивной точки зрения алгоритм. Он выдвигался на конкурс SHA-3, но, к сожалению, авторы не успели довести его до кондиции, и в списке кандидатов, прошедших во второй раунд этот алгоритм отсутствует.

Алгоритмы линейки SHA Широко распространенные сейчас алгоритмы. Идет активный переход от SHA-1 к стандартам версии SHA-2. SHA-2 - собирательное название алгоритмов SHA224, SHA256, SHA384 и SHA512. SHA224 и SHA384 являются по сути аналогами SHA256 и SHA512 соответственно, только после расчета свертки часть информации в ней отбрасывается. Использовать их стоит лишь для обеспечения совместимости с оборудованием старых моделей.

Российский стандарт - ГОСТ 34.11-94 .

В следующей статье

Обзор алгоритмов MD (MD4, MD5, MD6).

Литература

А. П. Алферов, Основы криптографии.

Брюс Шнайер, Прикладная криптография.

хеширования при решении задач на языке C++.

Процесс поиска данных в больших объемах информации сопряжен с временными затратами, которые обусловлены необходимостью просмотра и сравнения с ключом поиска значительного числа элементов. Сокращение поиска возможно осуществить путем локализации области просмотра. Например, отсортировать данные по ключу поиска, разбить на непересекающиеся блоки по некоторому групповому признаку или поставить в соответствие реальным данным некий код, который упростит процедуру поиска.

В настоящее время используется широко распространенный метод обеспечения быстрого доступа к информации, хранящейся во внешней памяти – хеширование .

Хеширование (или хэширование , англ. hashing ) – это преобразование входного массива данных определенного типа и произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш-функциями или функциями свертки , а их результаты называют хешем, хеш-кодом, хеш-таблицей или дайджестом сообщения (англ. message digest ).

Хеш-таблица – это структура данных , реализующая интерфейс ассоциативного массива, то есть она позволяет хранить пары вида " ключ - значение " и выполнять три операции : операцию добавления новой пары, операцию поиска и операцию удаления пары по ключу. Хеш-таблица является массивом, формируемым в определенном порядке хеш-функцией .

  • функция должна быть простой с вычислительной точки зрения;
  • функция должна распределять ключи в хеш-таблице наиболее равномерно;
  • функция не должна отображать какую-либо связь между значениями ключей в связь между значениями адресов;
  • функция должна минимизировать число коллизий – то есть ситуаций, когда разным ключам соответствует одно значение хеш-функции (ключи в этом случае называются синонимами ).

При этом первое свойство хорошей хеш-функции зависит от характеристик компьютера, а второе – от значений данных.

Если бы все данные были случайными, то хеш-функции были бы очень простые (например, несколько битов ключа). Однако на практике случайные данные встречаются достаточно редко, и приходится создавать функцию, которая зависела бы от всего ключа. Если хеш-функция распределяет совокупность возможных ключей равномерно по множеству индексов, то хеширование эффективно разбивает множество ключей. Наихудший случай – когда все ключи хешируются в один индекс .

При возникновении коллизий необходимо найти новое место для хранения ключей, претендующих на одну и ту же ячейку хеш-таблицы. Причем, если коллизии допускаются, то их количество необходимо минимизировать. В некоторых специальных случаях удается избежать коллизий вообще. Например, если все ключи элементов известны заранее (или очень редко меняются), то для них можно найти некоторую инъективную хеш-функцию, которая распределит их по ячейкам хеш-таблицы без коллизий . Хеш-таблицы, использующие подобные хеш-функции , не нуждаются в механизме разрешения коллизий , и называются хеш-таблицами с прямой адресацией .

Хеш-таблицы должны соответствовать следующим свойствам .

  • Выполнение операции в хеш-таблице начинается с вычисления хеш-функции от ключа. Получающееся хеш-значение является индексом в исходном массиве.
  • Количество хранимых элементов массива, деленное на число возможных значений хеш-функции , называется коэффициентом заполнения хеш-таблицы (load factor ) и является важным параметром, от которого зависит среднее время выполнения операций.
  • Операции поиска, вставки и удаления должны выполняться в среднем за время O(1) . Однако при такой оценке не учитываются возможные аппаратные затраты на перестройку индекса хеш-таблицы, связанную с увеличением значения размера массива и добавлением в хеш-таблицу новой пары.
  • Механизм разрешения коллизий является важной составляющей любой хеш-таблицы.

Хеширование полезно, когда широкий диапазон возможных значений должен быть сохранен в малом объеме памяти, и нужен способ быстрого, практически произвольного доступа. Хэш-таблицы часто применяются в базах данных, и, особенно, в языковых процессорах типа компиляторов и ассемблеров , где они повышают скорость обработки таблицы идентификаторов. В качестве использования хеширования в повседневной жизни можно привести примеры распределение книг в библиотеке по тематическим каталогам, упорядочивание в словарях по первым буквам слов, шифрование специальностей в вузах и т.д.

Методы разрешения коллизий

Коллизии осложняют использование хеш-таблиц, так как нарушают однозначность соответствия между хеш-кодами и данными. Тем не менее, существуют способы преодоления возникающих сложностей:

  • метод цепочек (внешнее или открытое хеширование );
  • метод открытой адресации (закрытое хеширование ).

Метод цепочек . Технология сцепления элементов состоит в том, что элементы множества , которым соответствует одно и то же хеш- значение , связываются в цепочку- список . В позиции номер i хранится указатель на голову списка тех элементов, у которых хеш- значение ключа равно i ; если таких элементов в множестве нет, в позиции i записан NULL . На рис. 38.1 демонстрируется реализация метода цепочек при разрешении коллизий . На ключ 002 претендуют два значения, которые организуются в линейный список .


Рис. 38.1.

Каждая ячейка массива является указателем на связный список (цепочку) пар ключ - значение , соответствующих одному и тому же хеш-значению ключа. Коллизии просто приводят к тому, что появляются цепочки длиной более одного элемента.

Операции поиска или удаления данных требуют просмотра всех элементов соответствующей ему цепочки, чтобы найти в ней элемент с заданным ключом. Для добавления данных нужно добавить элемент в конец или начало соответствующего списка, и, в случае если коэффициент заполнения станет слишком велик, увеличить размер массива и перестроить таблицу.

При предположении, что каждый элемент может попасть в любую позицию таблицы с равной вероятностью и независимо от того, куда попал любой другой элемент,

Или Хеш-функция — это функция, превращает входные данные любого (как правило большого) размера в данные фиксированного размера. Хеширование (иногда г ешування, англ. Hashing) — преобразование входного массива данных произвольной длины в выходной битовый строку фиксированной длины. Такие преобразования также называются хеш-функциями или функциями свёртки, а их результаты называют хэшем, хэш-кодом, хеш-суммой, или дайджестом сообщения (англ. Message digest).

Хэш-функция используется в частности в структурах данных — хеш-таблицах, широко используется в программном обеспечении для быстрого поиска данных. Хэш-функции используются для оптимизации таблиц и баз данных за счет того, что в одинаковых записей одинаковые значения хэш-функции. Такой подход поиска дубликатов эффективен в файлах большого размера. Примером этого нахождения подобных участков в последовательностях ДНК. Криптографическая хеш-функция позволяет легко проверить, что некоторые входные данные сопоставляются с заданным значением хеш, но, если входные данные неизвестны, намеренно трудно восстановить входное значение (или эквивалентную альтернативу), зная сохранено значение хеш-функции. Это используется для обеспечения целостности передаваемых данных и является строительным блоком для HMACs, которые обеспечивают аутентификацию сообщений.

Хэш-функции связаны (и их часто путают) с суммой, контрольными цифрами, отпечатками пальцев, рандомизации функций, кодами, исправляют ошибки, и с шифрами. Хотя эти понятия в определенной степени совпадают, каждый из них имеет свою собственную область применения и требования и является разработанным и оптимизированным по-разному.

История

Дональд Кнут приписывает первую систематическую идею хеширования сотруднику IBM Ханса Петера Луна, предложил хеш в январе 1953 года.

В 1956 году Арнольд Думы в своей работе «Computers and automation» первым представил концепцию хеширования такой, какой ее знает большинство программистов в наше время. Думы рассматривал хеширования, как решение «Проблемы словаря», а также предложил использовать в качестве хеш-адреса остаток от деления на простое число.

Первой значительной работой, которая была связана с поиском в больших файлах, была статья Уэсли Питерсона в IBM Journal of Research and Development 1957 года в которой он определил открытую адресацию, а также указал на ухудшение производительности при удалении. Через шесть лет была опубликована работа Вернера Бухгольца, в которой в значительной степени исследовались хэш-функции. В течение нескольких следующих лет хеширования широко использовалось, однако не было опубликовано ни одной значительной работы.

В 1967 году хеширования в современном смысле упомянуто в книге Херберта Хеллерман «Принципы цифровых вычислительных систем». В 1968 году Роберт Моррис опубликовал в Communications of the ACM большой обзор о хеширования. Эта работа считается публикацией, вводящий понятие о хешировании в научный оборот и окончательно закрепляет среди специалистов термин «хэш».

К началу 1990-х годов эквивалентом термина «хеширования», благодаря работам Андрея Ершова, использовалось слово «расстановка» (рус.), А для коллизий использовался термин «конфликт» (рус.) (Ершов использовал «расстановки» с 1956, а также в русскоязычном издании книги Никлауса Вирта "Алгоритмы и структуры данных» (1989) используется этот термин). Однако ни один из этих вариантов не прижился, и в литературе используется преимущественно термин «хеширования».

Описание

Хеширования применяется для построения ассоциативных массивов, поиска дубликатов в сериях наборов данных, построения уникальных идентификаторов для наборов данных, контрольного суммирования с целью выявления случайных или преднамеренных ошибок при хранении или передачи, для хранения паролей в системах защиты (в этом случае доступ к области памяти " памяти, где находятся пароли, не позволяет восстановить сам пароль), при выработке электронной подписи (на практике часто подписывается не самое сообщение, а его хеш-образ).

В общем случае однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хэш-функций меньше, чем число вариантов значений входного массива. Существует множество массивов с разным содержанием, но дают одинаковые хеш-коды — так называемые коллизии. Вероятность возникновения коллизий играет важную роль в оценке качества хеш-функций.

Существует множество алгоритмов хеширования с различными свойствами (разрядность, вычислительная сложность, криптостойкость и т.д.). Выбор той или иной хэш-функции определяется спецификой решаемой задачи. Простейшими примерами хеш-функций могут служить контрольная сумма или CRC.

Виды хеш-функций

Хорошая хеш-функция должна удовлетворять двум свойствам:

  • Быстро исчисляться;
  • Минимизировать количество коллизий

Допустим, для определенности, — количество ключей, а хэш-функция имеет не больше различных значений:

Как пример «плохой» хеш-функции можно привести функцию с, которая десятизначный натуральному числу сопоставляет три цифры, выбранные с середины двадцатизначные квадрата числа. Казалось бы, значение хеш-кодов должны равномерно распределиться между «000» и «999», но для реальных данных такой метод подходит только в том случае, если ключи не имеют большого количества нулей слева или справа.

Однако, существует несколько других простых и надежных методов, на которых базируется много хэш-функций.

Хэш-функции на основе деления

Первый метод заключается в том, что мы используем в качестве хэша — остаток от деления на, где — это количество всех возможных хэшей:

При этом очевидно, что при парном режим экономии парным, при парном. А нечетным — при нечетном, что может привести к значительному смещению данных в файлах. Также не следует использовать в качестве базу системы счисления компьютера, поскольку хэш будет зависеть только от нескольких цифр числа, расположенных справа, что приведет к большому количеству коллизий. На практике обычно выбирают простое — в большинстве случаев этот выбор вполне удовлетворительное.

Еще следует сказать о методе хэширования, в основе которого заключается деления на поленом по модулю два. В данном методе также должна быть степенью двойки, а бинарные ключи () имеют вид полиномов. В этом случае в качестве хеш-кода берутся значения коэффициентов полинома, полученного как остаток от деления на заранее выбранный полином степени:

При правильном выборе такой способ гарантирует отсутствие коллизий между почти одинаковыми ключами.

Мультипликативная схема хеширования

Второй метод заключается в выборе некоторой целой константы, взаимно простой с, где — количество возможных вариантов значений в виде машинного слова (в компьютерах IBM PC). Тогда можем взять хеш-функцию вида:

В этом случае, на компьютере с двоичной системой счисления, представляет собой степень двойки, а состоять из старших битов правой половины произведения.

Среди преимуществ этих двух методов стоит отметить, что они выгодно используют то, что реальные ключи неслучайны. Например, в том случае, если ключи представляют собой арифметическую прогрессию (допустим последовательность названий «имья1», «имя2», «имья3»). Мультипликативный метод отобразит арифметическую прогрессию в приближенную арифметическую прогрессию различных хеш-значений, уменьшает количество коллизий по сравнению со случайной ситуацией.

Одной из вариаций данного метода является хеширования Фибоначчи, основанное на свойствах золотого сечения. В качестве здесь избирается ближайшее к целое число, взаимно простое с

Хеширования строк переменной длины

Вышеизложенные методы применяются и в том случае, когда нам необходимо рассматривать ключи, состоящие из нескольких слов или ключи с переменной длиной. Например, можно скомбинировать слова в одно с помощью сложения по модулю или операции «сложение по модулю 2». Одним из алгоритмов, работающих по такому принципу, является хэш-функция Пирсона.

Хеширования Пирсона (англ. Pearson hashing) — алгоритм, предложенный Питером Пирсоном (англ. Peter Pearson) для процессоров с 8-битными регистрами, задачей которого является быстрое вычисление хэш-кода для строки произвольной длины. На вход функция получает слово, состоящее из символов, каждый размером 1 байт, и возвращает значение в диапазоне от 0 до 255. При этом значение хеш-кода зависит от каждого символа входного слова.

Алгоритм можно описать следующим псевдокодом, который получает на вход строку и использует таблицу перестановок

h: = 0 For each c in W loop index:= h xor ch:= T End loop Return h

Среди преимуществ алгоритма следует отметить:

  • простоту вычисления;
  • не существует таких входных данных, для которых вероятность коллизии самая;
  • возможность модификации в идеальную хеш-функцию.

В качестве альтернативного способа хеширования ключей, состоящие из символов (), можно предложить вычисления

Применение хэш-функций

Хэш-функции широко используются в криптографии, а также во многих структурах данных — хеш-таблицах, фильтрах Блума и декартовых деревьях.

Криптографические хеш-функции

Среди множества существующих хеш-функций принято выделять криптографически стойкие, применяемые в криптографии, так как на них накладываются дополнительные требования. Для того, чтобы хеш-функция считалась криптографически стойкой, она должна удовлетворять трем основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

  • Необратимость: для заданного значения хэш-функции m должно быть вычислительно невозможно найти блок данных, для которого.
  • Устойчивость коллизиям первого рода: для заданного сообщения M должно быть вычислительно невозможно подобрать другое сообщение N, для которого.
  • Устойчивость к коллизиям второго рода: должно быть вычислительно невозможно подобрать пару сообщений, имеющих одинаковый хеш.

Данные требования зависят друг от друга:

  • Оборотная функция неустойчива к коллизиям первого и второго рода.
  • Функция, неустойчивая к коллизиям первого рода, неустойчивая к коллизиям второго рода; обратное неверно.

Следует отметить, что не доказано существование необратимых хеш-функций, для которых вычисления любого прообраза заданного значения хэш-функции теоретически невозможно. Обычно нахождения обратного значения являются только вычислительно сложной задачей.

Атака «дней рождения» позволяет находить коллизии для хэш-функции с длиной значений n бит в среднем за примерно вычислений хэш-функции. Поэтому n — битная хэш-функция считается крипостийкою, если вычислительная сложность нахождения коллизий для нее близка к.

Для криптографических хэш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось (лавинный эффект). В частности, значение хеша не должно давать утечки информации, даже об отдельных биты аргумента. Это требование является залогом криптостойкости алгоритмов хеширования, хешуючих пароль пользователя для получения ключа.

Хеширования часто используется в алгоритмах электронно-цифровой подписи, где шифруется не самое сообщение, а его хэш, что уменьшает время вычисления, а также повышает криптостойкость. Также в большинстве случаев, вместо паролей хранятся значения их хеш-кодов.

Геометрическое хеширования

Геометрическое хеширования (англ. Geometric hashing) — широко применяемый в компьютерной графике и вычислительной геометрии метод для решения задач на плоскости или в трехмерном пространстве, например, для нахождения ближайших пар в множестве точек или для поиска одинаковых изображений. Хэш-функция в данном методе обычно получает на вход какой метрический пространство и разделяет его, создавая сетку из клеток. Таблица в данном случае является массивом с двумя или более индексами и называется файл сетки (англ. Grid file). Геометрическое хеширования также применяется в телекоммуникациях при работе с многомерными сигналами.

Ускорение поиска данных

Хеш-таблица — это структура данных, позволяет хранить пары вида (ключ, хеш-код) и поддерживает операции поиска, вставки и удаления элементов. Задачей хеш-таблиц является ускорение поиска, например, в случае записей в текстовых полей в базе данных может рассчитываться их хэш код и данные могут помещаться в раздел, соответствующий этому хэш-кода. Тогда при поиске данных надо будет сначала вычислить хэш текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному ее раздела (это сильно ускоряет поиск).

Бытовым аналогом хеширования в данном случае может служить размещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.

Хеширование

Хеширование (иногда «хэширование» , англ. hashing ) - преобразование по детерменированному алгоритму входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш-функциями или функциями свёртки , а их результаты называют хешем , хеш-кодом или сводкой сообщения (англ. message digest ). Если у двух строк хеш-коды разные, строки гарантированно различаются, если одинаковые - строки, вероятно, совпадают.

Хеширование применяется для построения ассоциативных массивов , поиска дубликатов в сериях наборов данных, построения достаточно уникальных идентификаторов для наборов данных, контрольное суммирование с целью обнаружения случайных или намеренных ошибок при хранении или передаче, для хранения паролей в системах защиты (в этом случае доступ к области памяти, где находятся пароли, не позволяет восстановить сам пароль), при выработке электронной подписи (на практике часто подписывается не само сообщение, а его хеш-образ).

В общем случае однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше , чем вариантов входного массива; существует множество массивов с разным содержимым, но дающих одинаковые хеш-коды - так называемые коллизии . Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций.

Существует множество алгоритмов хеширования с различными свойствами (разрядность , вычислительная сложность , криптостойкость и т. п.). Выбор той или иной хеш-функции определяется спецификой решаемой задачи. Простейшими примерами хеш-функций могут служить контрольная сумма или CRC .

История

Первой серьёзной работой, связанной с поиском в больших файлах, была статья Уэсли Питерсона (англ. W. Wesley Peterson ) в IBM Journal of Research and Development 1957 года, в которой он определил открытую адресацию, а также указал на ухудшение производительности при удалении. Спустя шесть лет был опубликована работа Вернера Бухгольца (нем. Werner Buchholz ), в которой проведено обширное исследование хеш-функций. В течение нескольких последующих лет хеширование широко использовалось, однако не было опубликовано никаких значимых работ.

В 1967 году хеширование в современном значении упомянуто в книге Херберта Хеллермана «Принципы цифровых вычислительных систем» . В 1968 году Роберт Моррис (англ. Robert Morris ) опубликовал в Communications of the ACM большой обзор по хешированию, эта работа считается ключевой публикацией, вводящей понятие о хешировании в научный оборот и закрепившей ранее применявшийся только в жаргоне специалистов термин «хеш».

До начала 1990-х годов в русскоязычной литературе в качестве эквивалента термину «хеширование» благодаря работам Андрея Ершова использовалось слово «расстановка» , а для коллизий использовался термин "конфликт" (Ершов использовал «расстановку» с 1956 года, в русскоязычном издании книги Вирта «Алгоритмы и структуры данных» 1989 года также используется термин «расстановка»). Предлагалось также назвать метод русским словом «окрошка» . Однако ни один из этих вариантов не прижился, и в русскоязычной литературе используется преимущественно термин «хеширование».

Виды хеш-функций

Хорошая хеш-функция должна удовлетворять двум свойствам:

  1. Быстро вычисляться;
  2. Минимизировать количество коллизий

Предположим, для определённости, что количество ключей , а хеш-функция имеет не более различных значений:

В качестве примера «плохой» хеш-функции можно привести функцию с , которая десятизначному натуральном числу сопоставляет три цифры выбранные из середины двадцатизначного квадрата числа . Казалось бы значения хеш-кодов должны равномерно распределиться между «000» и «999», но для реальных данных такой метод подходит лишь в том случае, если ключи не имеют большого количества нулей слева или справа.

Однако существует несколько более простых и надежных методов, на которых базируются многие хеш-функции.

Хеш-функции основанные на делении

Первый метод заключается в том, что мы используем в качестве хеша остаток от деления на , где это количество всех возможных хешей:

При этом очевидно, что при чётном значение функции будет чётным, при чётном , и нечётным - при нечётном, что может привести к значительному смещению данных в файлах. Также не следует использовать в качестве степень основания счисления компьютера, так как хеш-код будет зависеть только от нескольких цифр числа , расположенных справа, что приведет к большому количеству коллизий. На практике обычно выбирают простое - в большинстве случаев этот выбор вполне удовлетворителен.

Ещё следует сказать о методе хеширования, основанном на делении на полином по модулю два. В данном методе также должна являться степенью двойки, а бинарные ключи () представляются в виде полиномов. В этом случае в качестве хеш-кода берутся значения коэффциентов полинома, полученного как остаток от деления на заранее выбранный полином степени :

При правильном выборе такой способ гарантирует отсутствие коллизий между почти одинаковыми ключами.

Мультипликативная схема хеширования

Второй метод состоит в выборе некоторой целой константы , взаимно простой с , где - количество представимых машинным словом значений (в компьютерах IBM PC ). Тогда можем взять хеш-функцию вида:

В этом случае, на компьютере с двоичной системой счисления, является степенью двойки и будет состоять из старших битов правой половины произведения .

Среди преимуществ этих двух методов стоит отметь, что они выгодно используют то, что реальные ключи неслучайны, например в том случае если ключи представляют собой арифметическую прогрессию (допустим последовательность имён «ИМЯ1», «ИМЯ2», «ИМЯ3»). Мультипликативный метод отобразит арифметическую прогрессию в приближенно арифметическую прогрессию различных хеш-значений, что уменьшает количество коллизий по сравнению со случайной ситуацией.

Одной из вариаций данного метода является хеширование Фибоначчи , основанное на свойствах золотого сечения . В качестве здесь выбирается ближайшее к целое число, взаимно простое с

Хеширование строк переменной длины

Вышеизложенные методы применимы и в том случае, если нам необходимо рассматривать ключи, состоящие из нескольких слов или ключи переменной длины. Например можно скомбинировать слова в одно при помощи сложения по модулю или операции «исключающее или». Одним из алгоритмов, работающих по такому принципу является хеш-функция Пирсона.

Универсальное хеширование

Универсальным хешированием (англ. Universal hashing ) называется хеширование, при котором используется не одна конкретная хеш-функция, а происходит выбор из заданного семейства по случайному алгоритму . Использование универсального хеширования обычно обеспечивает низкое число коллизий. Универсальное хеширование имеет множество применений, например, в реализации хеш-таблиц и криптографии.

Описание

Предположим, что мы хотим отобразить ключи из пространства в числа . На входе алгоритм получает некоторый набор данных и размерностью , причем неизвестный заранее. Как правило целью хеширования является получение наименьшего числа коллизий , чего трудно добиться используя какую-то определенную хеш-функцию.

В качестве решения такой проблемы можно выбирать функцию случайным образом из определенного набора, называемого универсальным семейством .

Методы борьбы с коллизиями

Как уже говорилось выше, коллизией (иногда конфликтом или столкновением) хеш-функции называются такие два входных блока данных, которые дают одинаковые хеш-коды.

В хеш-таблицах

Большинство первых работ описывающих хеширование было посвящено методам борьбы с коллизиями в хеш-таблицах, так как хеш-функции применялись для поиска в больших файлах. Существует два основных метода используемых в хеш-таблицах:

  1. Метод цепочек(метод прямого связывания)
  2. Метод открытой адресации

Первый метод заключается в поддержке связных списков , по одному на каждое значение хеш-функции. В списке хранятся ключи, дающие одинаковое значение хеш-кодов. В общем случае, если мы имеем ключей и списков, средний размер списка будет и хеширование приведет к уменьшению среднего количества работы по сравнению с последовательным поиском примерно в раз.

Второй метод состоит в том, что в массиве таблицы хранятся пары ключ-значение. Таким образом мы полностью отказываемся от ссылок и просто просматриваем записи таблицы, пока не найдем нужный ключ или пустую позицию. Последовательность, в которой просматриваются ячейки таблицы называется последовательностью проб.

Криптографическая соль

Существует несколько способов для защиты от подделки паролей и подписей , работающих даже в том случае, если криптоаналитику известны способы построения коллизий для используемой хеш-функции. Одним из таких методов является добавление криптографической соли (строки случайных данных) к входным данным (иногда «соль» добавляется и к хеш-коду), что значительно затрудняет анализ итоговых хеш-таблиц. Данный метод, к примеру, используется для хранения паролей в UNIX-подобных операционных системах .

Применение хеш-функций

Криптографические хеш-функции

Среди множества существующих хеш-функций принято выделять криптографически стойкие , применяемые в криптографии , так как на них накладываются дополнительные требования. Для того чтобы хеш-функция считалась криптографически стойкой, она должна удовлетворять трем основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

Данные требования не являются независимыми:

  • Обратимая функция нестойка к коллизиям первого и второго рода.
  • Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.

Следует отметить, что не доказано существование необратимых хеш-функций, для которых вычисление какого-либо прообраза заданного значения хеш-функции теоретически невозможно. Обычно нахождение обратного значения является лишь вычислительно сложной задачей.

Хеширование часто используется в алгоритмах электронно-цифровой подписи, где шифруется не само сообщение, а его хеш-код, что уменьшает время вычисления, а также повышает криптостойкость. Также в большинстве случаев, вместо паролей хранятся значения их хеш-кодов.

Контрольные суммы

Несложные, крайне быстрые и легко осуществимые аппаратные алгоритмы, используемые для защиты от непреднамеренных искажений, в том числе ошибок аппаратуры. С точки зрения математики является хеш-функцией, которая вычисляет контрольный код, применяемый для обнаружения ошибок при передаче и хранении информации

По скорости вычисления в десятки и сотни раз быстрее, чем криптографические хеш-функции, и значительно проще в аппаратном исполнении.

Платой за столь высокую скорость является отсутствие криптостойкости - лёгкая возможность подогнать сообщение под заранее известную сумму. Также обычно разрядность контрольных сумм (типичное число: 32 бита) ниже, чем криптографических хешей (типичные числа: 128, 160 и 256 бит), что означает возможность возникновения непреднамеренных коллизий.

Простейшим случаем такого алгоритма является деление сообщения на 32- или 16- битные слова и их суммирование, что применяется, например, в TCP/IP .

Как правило, к такому алгоритму предъявляются требования отслеживания типичных аппаратных ошибок, таких, как несколько подряд идущих ошибочных бит до заданной длины. Семейство алгоритмов т. н. «циклических избыточных кодов » удовлетворяет этим требованиям. К ним относится, например, CRC32 , применяемый в устройствах Ethernet и в формате сжатия данных ZIP .

Контрольная сумма, например, может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор.

Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом. Данный метод легко дополнить до защиты от фальсификации передаваемой информации (метод MAC). В этом случае хеширование производится криптостойкой функцией над сообщением, объединенным с секретным ключом, известным только отправителю и получателю сообщения. Таким образом, криптоаналитик не сможет восстановить код по перехваченному сообщению и значению хеш-функции, то есть, не сможет подделать сообщение (См. имитозащита).

Геометрическое хеширование

Геометрическое хеширование (англ. Geometric hashing ) – широко применяемый в компьтерной графике и вычислительной геометрии метод для решения задач на плоскости или в трёхмерном пространстве, например для нахождения ближайших пар в множестве точек или для поиска одинаковых изображений. Хеш-функция в данном методе обычно получает на вход какое-либо метрическое пространство и разделяет его, создавая сетку из клеток. Таблица в данном случае является массивом с двумя или более индексами и называется файл сетки(англ. Grid file ). Геометрическое хеширование также применяется в телекоммуникациях при работе с многомерными сигналами.

Ускорение поиска данных

Хеш-таблицей называется структура данных, позволяющая хранить пары вида (ключ,хеш-код) и поддерживающая операции поиска, вставки и удаления элемента. Задачей хеш-таблиц является ускорение поиска, например, при записи текстовых полей в базе данных может рассчитываться их хеш код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).

Бытовым аналогом хеширования в данном случае может служить помещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.

Примечания

Литература

  • Брюс Шнайер "Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си". - М .: Триумф, 2002. - ISBN 5-89392-055-4
  • Дональд Кнут Искусство программирования, том 3. Сортировка и поиск = The Art of Computer Programming, vol.3. Sorting and Searching. - 2-е изд. - М .: «Вильямс», 2007. - С. 824. -

Алгоритмы хэширования строк помогают решить очень много задач. Но у них есть большой недостаток: что чаще всего они не 100%-ны, поскольку есть множество строк, хэши которых совпадают. Другое дело, что в большинстве задач на это можно не обращать внимания, поскольку вероятность совпадения хэшей всё-таки очень мала.

Определение хэша и его вычисление

Один из лучших способов определить хэш-функцию от строки S следующий:

H(S) = S + S * P + S * P^2 + S * P^3 + ... + S[N] * P^N

где P - некоторое число.

Разумно выбирать для P простое число, примерно равное количеству символов во входном алфавите. Например, если строки предполаются состоящими только из маленьких латинских букв, то хорошим выбором будет P = 31. Если буквы могут быть и заглавными, и маленькими, то, например, можно P = 53.

Во всех кусках кода в этой статье будет использоваться P = 31.

Само значение хэша желательно хранить в самом большом числовом типе - int64, он же long long. Очевидно, что при длине строки порядка 20 символов уже будет происходить переполнение значение. Ключевой момент - что мы не обращаем внимание на эти переполнения, как бы беря хэш по модулю 2^64.

Пример вычисления хэша, если допустимы только маленькие латинские буквы:

Const int p = 31; long long hash = 0, p_pow = 1; for (size_t i=0; i

В большинстве задач имеет смысл сначала вычислить все нужные степени P в каком-либо массиве.

Пример задачи. Поиск одинаковых строк

Уже теперь мы в состоянии эффективно решить такую задачу. Дан список строк S, каждая длиной не более M символов. Допустим, требуется найти все повторяющиеся строки и разделить их на группы, чтобы в каждой группе были только одинаковые строки.

Обычной сортировкой строк мы бы получили алгоритм со сложностью O (N M log N), в то время как используя хэши, мы получим O (N M + N log N).

Алгоритм. Посчитаем хэш от каждой строки, и отсортируем строки по этому хэшу.

Vector s (n); // ... считывание строк... // считаем все степени p, допустим, до 10000 - максимальной длины строк const int p = 31; vector p_pow (10000); p_pow = 1; for (size_t i=1; i > hashes (n); for (int i=0; i

Хэш подстроки и его быстрое вычисление

Предположим, нам дана строка S, и даны индексы I и J. Требуется найти хэш от подстроки S.

По определению имеем:

H = S[I] + S * P + S * P^2 + ... + S[J] * P^(J-I)

H * P[I] = S[I] * P[I] + ... + S[J] * P[J], H * P[I] = H - H

Полученное свойство является очень важным.

Действительно, получается, что, зная только хэши от всех префиксов строки S, мы можем за O (1) получить хэш любой подстроки .

Единственная возникающая проблема - это то, что нужно уметь делить на P[I]. На самом деле, это не так просто. Поскольку мы вычисляем хэш по модулю 2^64, то для деления на P[I] мы должны найти к нему обратный элемент в поле (например, с помощью Расширенного алгоритма Евклида), и выполнить умножение на этот обратный элемент.

Впрочем, есть и более простой путь. В большинстве случаев, вместо того чтобы делить хэши на степени P, можно, наоборот, умножать их на эти степени .

Допустим, даны два хэша: один умноженный на P[I], а другой - на P[J]. Если I < J, то умножим перый хэш на P, иначе же умножим второй хэш на P. Теперь мы привели хэши к одной степени, и можем их спокойно сравнивать.

Например, код, который вычисляет хэши всех префиксов, а затем за O (1) сравнивает две подстроки:

String s; int i1, i2, len; // входные данные // считаем все степени p const int p = 31; vector i2 && h1 == h2 * p_pow) cout << "equal"; else cout << "different";

Применение хэширования

Вот некоторые типичные применения хэширования:

  • Определение количества различных подстрок за O (N^2 log N) (см. ниже)
  • Определение количества палиндромов внутри строки

Определение количества различных подстрок

Пусть дана строка S длиной N, состоящая только из маленьких латинских букв. Требуется найти количество различных подстрок в этой строке.

Для решения переберём по очереди длину подстроки: L = 1 .. N.

Для каждого L мы построим массив хэшей подстрок длины L, причём приведём хэши к одной степени, и отсортируем этот массив. Количество различных элементов в этом массиве прибавляем к ответу.

Реализация:

String s; // входная строка int n = (int) s.length(); // считаем все степени p const int p = 31; vector p_pow (s.length()); p_pow = 1; for (size_t i=1; iH (s.length()); for (size_t i=0; i hs (n-l+1); for (int i=0; i