Контрольно-курсовая работа

по Информационным системам в экономике на тему №69:

«Сетевые технологии Ethernet, Token Ring, FDDI и Х.25»

Выполнил: студент гр. 720753 Авдеева Д.М.

Проверил: доцент, к.э.н. Огнянович А.В.

Введение…………………………………………………………………………...3

1. Понятие сетевых технологий……………………………………………...5

2. Технология Ethernet………………………………………………………..7

3. Технология Token Ring…………………………………………………...12

4. Технология FDDI………………………………………………………….15

5. Протокол Х.25…………………………………………………………….19

Заключение……………………………………………………………………….22

Список источников и литературы………………………………………………23

Введение

Компьютерные сети, называемые также вычислительными сетями, или сетями передачи данных, являются логическим результатом эволюции двух важнейших научно-технических отраслей современной цивилизации - компьютерных и телекоммуникационных технологий. С одной стороны, сети представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет набор взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютерные сети могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.

Основными технологиями локальных сетей остаются Ethernet, Token Ring, FDDI, Fast и Gigabit Ethernet, Token Ring и FDDI - это функционально намного более сложные технологии, чем Ethernet на разделяемой среде. Разработчики этих технологий стремились наделить сеть на разделяемой среде многими положительными качествами: сделать механизм разделения среды предсказуемым и управляемым, обеспечить отказоустойчивость сети, организовать приоритетное обслуживание для чувствительного к задержкам трафика, например голосового. Во многом их усилия оправдались, и сети FDDI довольно долгое время успешно использовались как магистрали сетей масштаба кампуса, в особенности в тех случаях, когда нужно было обеспечить высокую надежность магистрали.



Token Ring является главным примером сетей с передачей маркера. Сети с передачей маркера перемещают вдоль сети небольшой блок данных, называемый маркером. Владение этим маркером гарантирует право передачи. Если узел, принимающий маркер, не имеет информации для отправки, он просто переправляет маркер к следующей конечной станции. Каждая станция может удерживать маркер в течение определенного максимального времени.

Благодаря более высокой, чем в сетях Ethernet, скорости, детерминированности распределения пропускной способности сети между узлами, а также лучших эксплуатационных характеристик (обнаружение и изоляция неисправностей), сети Token Ring были предпочтительным выбором для таких чувствительных к подобным показателям приложений, как банковские системы и системы управления предприятием.

Технологию FDDI можно считать усовершенствованным вариантом Token Ring, так как в ней, как и в Token Ring, используется метод доступа к среде, основанный на передаче токена, а также кольцевая топология связей, но вместе с тем FDDI работает на более высокой скорости и имеет более совершенный механизм отказоустойчивости.

В стандартах FDDI много внимания отводится различным процедурам, которые позволяют определить факт наличия отказа в сети, а затем произвести необходимое реконфигурирование. Технология FDDI расширяет механизмы обнаружения отказов технологии Token Ring за счет резервных связей, которые предоставляет второе кольцо.

Актуальность данной работы обусловлена важностью изучения технологий локальных компьютерных систем.

Целью работы является изучение характеристик сети Token Ring, Ethernet, FDDI и Х.25.

Для достижения данной цели в работе были поставлены следующие задачи:

Изучить понятия основных сетевых технологий;

Выявить специфику применения технологий;

Рассмотреть преимущества и недостатки Ethernet, Token Ring, FDDI и Х.25;

Проанализировать виды сетевых технологий.

Понятие сетевых технологий

В локальных сетях, как правило, используется разделяемая среда передачи данных (моноканал) и основная роль отводится протоколами физического и канального уровней, так как эти уровни в наибольшей степени отражают специфику локальных сетей.

Сетевая технология – это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения локальной вычислительной сети. Сетевые технологии называют базовыми технологиями или сетевыми архитектурами локальных сетей.

Сетевая технология или архитектура определяет топологию и метод доступа к среде передачи данных, кабельную систему или среду передачи данных, формат сетевых кадров тип кодирования сигналов, скорость передачи в локальной сети. В современных локальных вычислительных сетях широкое распространение получили такие технологии или сетевые архитектуры, как: Ethernet, Token Ring, FDDI и Х.25.

Развитие компьютерных сетей началось с решение более простой задачи – доступ к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров. Терминалы в этом случае соединялись с компьютером через телефонные сети с помощью специальных устройств модемов. Следующим этапом в развитии компьютерных сетей стали соединения через модем не только «терминал – компьютер», но и «компьютер – компьютер». Компьютеры получили возможность обмениваться данными в автоматическом режиме, что является базовым механизмом любой компьютерной сети. Тогда впервые появились в сети возможности обмена файлами, синхронизация баз данных, использования электронной почты, т.е. те службы, являющимися в настоящее время традиционными сетевыми сервисами. Такие компьютерные сети получили название глобальных компьютерных сетей.

По своей сущности компьютерная сети является совокупностью компьютеров и сетевого оборудования, соединенных каналами связи. Поскольку компьютеры и сетевое оборудование могут быть разных производителей, то возникает проблема их совместимости. Без принятия всеми производителя общепринятых правил построения оборудования создание компьютерной сети было бы невозможно.

Для обычного пользователя сеть, это провод или несколько проводов, с помощью которых компьютер соединяется с другим компьютером или модемом, для выхода в интернет, но на самом деле все не так уж и просто. Возьмем самый обычный провод с разъемом RJ-45 (такие применяются почти везде в проводных сетях) и соединим два компьютера, в данном соединении использоваться будет Ethernet 802.3 протокол, позволяющий передавать данные со скоростью до 100 Мбит/с. Стандарт этот, как впрочем и многие другие, именно стандарт, то есть во всем мире применяется один набор инструкций и путаницы не происходит, информация передается от отправителя к адресату.

Передача информации по кабелю, как некоторые знают, осуществляется потоком битов, которые есть ничто иное, как отсутствие или прием сигнала. Биты, или нолики и единицы, интерпретируются специальными устройствами в компьютерах в удобный вид и мы видим на экране картинку или текст, а возможно даже и фильм. Чтобы вручную передать даже маленький кусочек текстовой информации посредством компьютерных сетей, человеку потребовалось бы очень много времени, а вычисления бы растянулись бы на огромные стопки бумаг. Чтобы такого не происходило, люди и придумали все эти протоколы и средства связи компьютеров в единое целое.

Технология Ethernet

Ethernet – это самый распространенный на сегодняшний день стандарт локаль­ных сетей. Общее количество сетей, работающих по протоколу Ethernet в на­стоящее время, оценивается в несколько миллионов.

Когда говорят Ethernet, то под этим обычно понимают любой из вариантов этой технологии. В более узком смысле Ethernet - это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году.

Метод доступа был опробован еще раньше: во второй половине 60-х годов в радиосети Гавайского университета использовались раз­личные варианты случайного доступа к общей радиосреде, получившие общее название Aloha. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коак­сиального кабеля. Эту последнюю версию фирменного стандарта Ethernet назы­вают стандартом Ethernet DIX, или Ethernet П.

На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, кото­рый во многом совпадает со своим предшественником, но некоторые разли­чия все же имеются. В то время как в стандарте IEEE 802.3 функции протоко­ла разделены на уровни MAC и LLC, в оригинальном стандарте Ethernet они объединены в единый канальный уровень. В Ethernet DIX определяется про­токол тестирования конфигурации (Ethernet Configuration Test Protocol), ко­торый отсутствует в IEEE 802.3. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают.

Часто для того, чтобы отличить стандарт Ethernet, определенный IEEE, и фир­менный стандарт Ethernet DIX, первый называют технологией 802.3, а за фирменным стандартом оставляют название Ethernet без дополнительных обозначений. В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации - 10Base-5, 10Base-2, 10Base-T, 10Base-FL, lOBase-FB. В 1995 году был принят стандарт Fast Ethernet, который во многом не является самостоятельным стандартом, о чем говорит и тот факт, что его описание просто является дополнительным разделом к основному стандарту 802.3 - разделом 802.3b. Аналогично, принятый в 1998 году стандарт Gigabit Ethernet описан в разделе 802.3z основного документа.

Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet, обеспечивающих пропускную способность 10 Мбит/с, используется манчестерский код. В более скоростных версиях Ethernet приме­няются более эффективные в отношении полосы пропускания избыточные логи­ческие коды. Все виды стандартов Ethernet (в том числе Fast Ethernet и Gigabit Ethernet) используют один и тот же метод разделения среды передачи данных - метод CSMA/CD. Рассмотрим, каким образом описанные выше общие подходы к решению наибо­лее важных проблем построения сетей воплощены в наиболее популярной сете­вой технологии - Ethernet.

Сетевая технология - это согласованный набор стандартных протоколов и реа­лизующих их программно-аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъемов), достаточный для построения вычислительной сети. Эпитет «достаточный» подчеркивает то обстоятельство, что этот набор представляет собой минимальный набор средств, с помощью которых можно по­строить работоспособную сеть. Возможно, эту сеть можно улучшить, например, за счет выделения в ней подсетей, что сразу потребует кроме протоколов стан­дарта Ethernet применения протокола IP, а также специальных коммуникацион­ных устройств - маршрутизаторов. Улучшенная сеть будет, скорее всего, более надежной и быстродействующей, но за счет надстроек над средствами техноло­гии Ethernet, которая составляет базис сети.

Термин «сетевая технология» чаще всего используется в описанном выше узком смысле, но иногда применяется и его расширенное толкование как любого набо­ра средств и правил для построения сети, например «технология сквозной мар­шрутизации», «технология создания защищенного канала», «технология IP-сетей». Протоколы, на основе которых строится сеть определенной технологии (в узком смысле), специально разрабатывались для совместной работы, поэтому от разра­ботчика сети не требуется дополнительных усилий по организации их взаимо­действия. Иногда сетевые технологии называют базовыми технологиями, имея в виду то, что на их основе строится базис любой сети. Примерами базовых сете­вых технологий могут служить наряду с Ethernet такие известные технологии локальных сетей, как Token Ring и FDDI, или же технологии территориальных сетей Х.25 и frame relay. Для получения работоспособной сети в этом случае достаточно приобрести программные и аппаратные средства, относящиеся к одной базовой технологии - сетевые адаптеры с драйверами, концентраторы, коммута­торы, кабельную систему и т. п., - и соединить их в соответствии с требования­ми стандарта на данную технологию.

Основной принцип, положенный в основу Ethernet, - случайный метод доступа к разделяемой среде передачи данных. В качестве такой среды может использо­ваться толстый или тонкий коаксиальный кабель, витая пара, оптоволокно или радиоволны (кстати, первой сетью, построенной на принципе случайного досту­па к разделяемой среде, была радиосеть Aloha Гавайского университета). В стандарте Ethernet строго зафиксирована топология электрических связей. Ком­пьютеры подключаются к разделяемой среде в соответствии с типовой структу­рой «общая шина». С помощью разделяемой во времени шины любые два компьютера могут обмениваться данными. Управление доступом к линии связи осуществляется специальными контроллерами – сетевыми адаптерами Ethernet. Каждый компьютер, а более точно, каждый сетевой адаптер, имеет уни­кальный адрес. Передача данных происходит со скоростью 10 Мбит/с. Эта вели­чина является пропускной способностью сети Ethernet.

Суть случайного метода доступа состоит в следующем. Компьютер в сети Ethernet может передавать данные по сети, только если сеть свободна, то есть если никакой другой компьютер в данный момент не занимается обменом. По­этому важной частью технологии Ethernet является процедура определения дос­тупности среды. После того как компьютер убеждается, что сеть свободна, он начинает передачу, при этом «захватывает» среду.

Время монопольного использования разделяемой среды одним узлом ограничивается временем передачи одного кадра. Кадр - это единица данных, которыми обмениваются компьютеры в сети Ethernet. Кадр имеет фиксированный формат и наряду с полем данных содержит различную служебную информацию, например адрес получателя и адрес отправителя. Сеть Ethernet устроена так, что при попадании кадра в разделяемую среду пере­дачи данных все сетевые адаптеры одновременно начинают принимать этот кадр. Все они анализируют адрес назначения, располагающийся в одном из начальных полей кадра, и, если этот адрес совпадает с их собственным адресом, кадр поме­щается во внутренний буфер сетевого адаптера.

Таким образом компьютер-адре­сат получает предназначенные ему данные. Иногда может возникать ситуация, когда одновременно два или более компью­тера решают, что сеть свободна, и начинают передавать информацию. Такая си­туация, называемая коллизией, препятствует правильной передаче данных по сети. В стандарте Ethernet предусмотрен алгоритм обнаружения и корректной обра­ботки коллизий. Вероятность возникновения коллизии зависит от интенсивно­сти сетевого трафика. После обнаружения коллизии сетевые адаптеры, которые пытались передать свои кадры, прекращают передачу и после паузы случайной длительности пытаются снова получить доступ к среде и передать тот кадр, который вызвал коллизию.

Главным достоинством сетей Ethernet, благодаря которому они стали такими по­пулярными, является их экономичность. Для построения сети достаточно иметь по одному сетевому адаптеру для каждого компьютера плюс один физический сегмент коаксиального кабеля нужной длины. Другие базовые технологии, на­пример Token Ring, для создания даже небольшой сети требуют наличия допол­нительного устройства - концентратора. Кроме того, в сетях Ethernet реализованы достаточно простые алгоритмы досту­па к среде, адресации и передачи данных. Простая логика работы сети ведет к упрощению и, соответственно, удешевлению сетевых адаптеров и их драйверов. По той же причине адаптеры сети Ethernet обладают высокой надежностью.

И, наконец, еще одним замечательным свойством сетей Ethernet является их хо­рошая расширяемость, то есть легкость подключения новых узлов. Другие базовые сетевые технологии - Token Ring, FDDI, - хотя и обладают многими индивидуальными чертами, в то же время имеют много общих свойств с Ethernet. В первую очередь - это применение регулярных фиксированных то­пологий (иерархическая звезда и кольцо), а также разделяемых сред передачи данных. Существенные отличия одной технологии от другой связаны с особен­ностями используемого метода доступа к разделяемой среде. Так, отличия тех­нологии Ethernet от технологии Token Ring во многом определяются специфи­кой заложенных в них методов разделения среды – случайного алгоритма доступа в Ethernet и метода доступа путем передачи маркера в Token Ring.


Технология Token Ring

Token Ring - технология локальной вычислительной сети (LAN) кольца с «маркерным доступом» - протокол локальной сети, который находится на канальном уровне (DLL) модели OSI. Он использует специальный трехбайтовый фрейм, названный маркером, который перемещается вокруг кольца. Владение маркером предоставляет право обладателю передавать информацию на носителе. Кадры кольцевой сети с маркерным доступом перемещаются в цикле.

Станции на локальной вычислительной сети (LAN) Token Ring логически организованы в кольцевой топологии с данными, передаваемыми последовательно от одной кольцевой станции до другой с управляющим маркером, циркулирующим вокруг кольцевого доступа управления. Этот механизм передачи маркера совместно использован ARCNET, маркерной шиной, и FDDI, и имеет теоретические преимущества перед стохастическим CSMA/CD Ethernet.

Изначально технология была разработана компанией IBM в 1984 году. В 1985 комитет IEEE 802 на основе этой технологии принял стандарт IEEE 802.5. В последнее время даже в продукции IBM доминируют технологии семейства Ethernet, несмотря на то, что ранее в течение долгого времени компания использовала Token Ring в качестве основной технологии для построения локальных сетей.

Данная технология предлагает вариант решения проблемы коллизий, которая возникает при работе локальной сети. В технологии Ethernet, такие коллизии возникают при одновременной передаче информации несколькими рабочими станциями, находящимися в пределах одного сегмента, то есть использующих общий физический канал данных.

Если у станции, владеющей маркером, имеется информации для передачи, она захватывает маркер, изменяет у него один бит (в результате чего маркер превращается в последовательность «начало блока данных»), дополняет информацией, которую он хочет передать и отсылает эту информацию к следующей станции кольцевой сети. Когда информационный блок циркулирует по кольцу, маркер в сети отсутствует (если только кольцо не обеспечивает «раннего освобождения маркера» - early token release), поэтому другие станции, желающие передать информацию, вынуждены ожидать. Следовательно, в сетях Token Ring не может быть коллизий. Если обеспечивается раннее высвобождение маркера, то новый маркер может быть выпущен после завершения передачи блока данных.

Информационный блок циркулирует по кольцу, пока не достигнет предполагаемой станции назначения, которая копирует информацию для дальнейшей обработки. Информационный блок продолжает циркулировать по кольцу; он окончательно удаляется после достижения станции, отославшей этот блок. Станция отправки может проверить вернувшийся блок, чтобы убедиться, что он был просмотрен и затем скопирован станцией назначения.

В отличие от сетей CSMA/CD (например, Ethernet) сети с передачей маркера являются детерминистическими сетями. Это означает, что можно вычислить максимальное время, которое пройдет, прежде чем любая конечная станция сможет передавать. Эта характеристика, а также некоторые характеристики надежности, делают сеть Token Ring идеальной для применений, где задержка должна быть предсказуема и важна устойчивость функционирования сети. Примерами таких применений является среда автоматизированных станций на заводах. Применяется как более дешевая технология, получила распространение везде, где есть ответственные приложения, для которых важна не столько скорость, сколько надежная доставка информации. В настоящее время Ethernet по надежности не уступает Token Ring и существенно выше по производительности.

Сети стандарта Token Ring, также как и сети Ethernet, используют разделяемую среду передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему используется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциями права на использование кольца в определенном порядке. Право на использование кольца передается с помощью кадра специального формата, называемого маркером или токеном.

Стандарт Token Ring был принят комитетом 802.5 в 1985 году. В это же время компания IBM приняла стандарт Token Ring в качестве своей основной сетевой технологии. В настоящее время именно компания IBM является основным законодателем моды технологии Token Ring, производя около 60% сетевых адаптеров этой технологии.

Сети Token Ring работают с двумя битовыми скоростями - 4 Мб/с и 16 Мб/с. Первая скорость определена в стандарте 802.5, а вторая является новым стандартом де-факто, появившимся в результате развития технологии Token Ring. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Сети Token Ring, работающие со скоростью 16 Мб/с, имеют и некоторые усовершенствования в алгоритме доступа по сравнению со стандартом 4 Мб/с.


Технология FDDI

Технология Fiber Distributed Data Interface – первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.

Попытки применения света в качестве среды, несущей информацию, предпринимались давно – еще в 1880 году Александр Белл запатентовал устройство, которое передавало речь на расстояние до 200 метров с помощью зеркала, вибрировавшего синхронно со звуковыми волнами и модулировавшего отраженный свет.

В 1960-е годы появились оптические волокна, которые могли передавать свет в кабельных системах, подобно тому как медные провода передают электрические сигналы в традиционных кабелях. Однако потери света в этих волокнах были слишком велики, чтобы они могли быть использованы как альтернатива медным жилам.

В 1980-е годы начались также работы по созданию стандартных технологий и устройств для использования оптоволоконных каналов в локальных сетях. Работы по обобщению опыта и разработке первого оптоволоконного стандарта для локальных сетей были сосредоточены в Американском Национальном Институте по Стандартизации – ANSI, в рамках созданного для этой цели комитета X3T9.5.

Начальные версии различных составляющих частей стандарта FDDI были разработаны комитетом Х3Т9.5 в 1986 - 1988 годах, и тогда же появилось первое оборудование – сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот стандарт.

В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает хорошую степень совместимости.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

· повысить битовую скорость передачи данных до 100 Мб/с;

· повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода – повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.;

· максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети.

Использование двух колец – это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru – «сквозным» или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, образуя вновь единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному – по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Этот случай приведен на рисунке. Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.

Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), передает его поле данных для последующей обработки протоколу лежащего выше над FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции. В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее. При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.


Протокол Х.25

X.25 - семейство протоколов сетевого уровня сетевой модели OSI. Предназначалось для организации WAN на основе телефонных сетей с линиями с достаточно высокой частотой ошибок, поэтому содержит развитые механизмы коррекции ошибок. Ориентирован на работу с установлением соединений. Исторически является предшественником протокола Frame Relay.

X.25 обеспечивает множество независимых виртуальных каналов (Permanent Virtual Circuits, PVC и Switched Virtual Circuits, SVC) в одной линии связи, идентифицируемых в X.25-сети по идентификаторам подключения к соединению (идентификаторы логического канала (Logical Channel Identifyer, LCI) или номера логического канала (Logical Channel Number, LCN).

Благодаря надёжности протокола и его работе поверх телефонных сетей общего пользования X.25 широко использовался как в корпоративных сетях, так и во всемирных специализированных сетях предоставления услуг, таких как SWIFT (банковская платёжная система) и SITA (фр. Société Internationale de Télécommunications Aéronautiques - система информационного обслуживания воздушного транспорта), однако в настоящее время X.25 вытесняется другими технологиями канального уровня (Frame Relay, ISDN, ATM) и протоколом IP, оставаясь, однако, достаточно распространённым в странах и территориях с неразвитой телекоммуникационной инфраструктурой.

Разработан Study Group VII Международного союза электросвязи (ITU) в качестве пакетного протокола передачи данных в телефонных сетях принят в 1976 г. и стал основой всемирной системы PSPDN (англ. Packet-Switched Public Data Networks), то есть WAN. Существенные дополнения к протоколу были приняты в 1984 г., в настоящее время действует стандарт ISO 8208 протокола X.25, стандартизовано также и применение X.25 в локальных сетях (стандарт ISO 8881).

Х.25 определяет характеристики телефонной сети для передачи данных. Чтобы начать связь, один компьютер обращается к другому с запросом о сеансе связи. Вызванный компьютер может принять или отклонить связь. Если вызов принят, то обе системы могут начать передачу информации с полным дублированием. Любая сторона может в любой момент прекратить связь.

Спецификация Х.25 определяет двухточечное взаимодействие между терминальным оборудованием (DTE) и оборудованием завершения действия информационной цепи (DCE). Устройства DTE (терминалы и главные вычислительные машины в аппаратуре пользователя) подключаются к устройствам DCE (модемы, коммутаторы пакетов и другие порты в сеть PDN, обычно расположенные в аппаратуре этой сети), которые соединяются с «коммутаторами переключения пакетов» (packet switching exchange) (PSE или просто switches) и другими DCE внутри PSN и, наконец, к другому устройству DTE.

DTE может быть терминалом, который не полностью реализует все функциональные возможности Х.25. Такие DTE подключаются к DCE через трансляционное устройство, называемое пакетный ассемблер/дизассемблер - packet assembler/disassembler – PAD. Действие интерфейса терминал/PAD, услуги, предлагаемые PAD и взаимодействие между PAD и главной вычислительной машиной определены соответственно CCITT Recommendations X.28, X3 и Х.29.

Спецификация Х.25 составляет схемы Уровней 1-3 эталонной модели OSI. Уровень 3 Х.25 описывает форматы пакетов и процедуры обмена пакетами между равноправными объектами Уровня 3. Уровень 2 Х.25 реализован Протоколом Link Access Procedure, Balanced (LAPB). LAPB определяет кадрирование пакетов для звена DTE/DCE. Уровень 1 Х.25 определяет электрические и механические процедуры активации и дезактивации физической среды, соединяющей данные DTE и DCE. Необходимо отметить, что на Уровни 2 и 3 также ссылаются как на стандарты ISO - ISO 7776 (LAPB) и ISO 8208 (пакетный уровень Х.25).

Сквозная передача между устройствами DTE выполняется через двунаправленную связь, называемую виртуальной цепью. Виртуальные цепи позволяют осуществлять связь между различными элементами сети через любое число промежуточных узлов без назначения частей физической среды, что является характерным для физических цепей. Виртуальные цепи могут быть либо перманентными, либо коммутируемыми (временно). Перманентные виртуальные цепи обычно называют PVC; переключаемые виртуальные цепи – SVC. PVC обычно применяются для наиболее часто используемых передач данных, в то время как SVC применяются для спорадических передач данных. Уровень 3 Х.25 отвечает за сквозную передачу, включающую как PVC, так и SVC.

После того, как виртуальная цепь организована, DTE отсылает пакет на другой конец связи путем отправки его в DCE, используя соответствующую виртуальную цепь. DCE просматривает номер виртуальной цепи для определения маршрута этого пакета через сеть Х.25. Протокол Уровня 3 Х.25 осуществляет мультиплексную передачу между всеми DTE, которые обслуживает устройство DCE, расположенное в сети со стороны пункта назначения, в результате чего пакет доставлен к DTE пункта назначения.


Заключение

Развитие компьютерной техники и информационных технологий послужило толчком к развитию общества, построенного на использовании различной информации и получившего название информационного общества.

Информационные сетевые технологии ориентированы в основном на предоставление информационных услуг пользователям.

Все сетевые технологии, как-то: Ethernet, Token Ring, FDDI или Х.25 – можно сказать одно из самых значительных и ярких демократических достижений технологического процесса. С их появлением информация, и право на правду и свободу слова становится потенциальным достоянием и возможностью большинства жителей планеты, люди могут объединяться и взаимодействовать вне зависимости от временных, расстояния, государственных и многих других границ.

В настоящее время весь мир охвачен глобальной сетью Интернет. Именно Интернет стирает все границы и обеспечивает распространение информации для практически не­ограниченного круга людей. Позволяет людям в любой точке планеты без всякого труда включиться в обсуждение насущных проблем. Главная особенность и назначение Интернета – это свободное распространение информации и установление связи между людьми.


Список источников и литературы:

1) Вендров А.М. Проектирование программного обеспечения экономических информационных систем: Учебник для экон. вузов / А.М.Вендров. – М.: Финансы и статистика, 2000. – 352с.: ил.

2) Гейн А.Г., Сенокосов А.И. Информатика и ИКТ: учеб. / Рекомендовано Министерством образования и науки РФ.- М: Московские учебники, 2010.- 336с.

3) Карпенков, С.Х. Современные средства информационных технологий: учеб. пособие для вузов / С.Х. Карпенков. - 2-е изд., испр. и доп. - М.: Кнорус, 2009. - 400 с.

4) Коноплева, И.А. Информационные технологии [Электронный ресурс]: электронный учебник / И.А. Коноплева, О.А. Хохлова, А.В. Денисов. - М.: Проспект, 2009.

5) Корнеев, И.К. Информационные технологии: учебник / И.К. Корнеев, Г.Н. Ксандопуло, В.А. Машурцев. - М.: Проспект, 2009. – 222 с.

6) Петров В.Н. Информационные системы / Петров В.Н. – СПб.: Питер, 2008. – 688с.: ил.

7) Информационные системы и технологии: Учебник. – 3-е изд. /Под ред. Г.А.Титоренка. – М.: Юнити-Дана, 2010. – 591 с.

8) Трофимов В. В. Информационные технологии. Учебник для вузов / Трофимов В. В. Издательство: Москва, ЮРАЙТ, 2011. – 624 с.

9) http://nwzone.ru/ - «Современные технологии»: новости со всего мира: hi-tech инновации, гаджеты, мобильная электроника, интернет, дизайн, наука.


Информационные системы и технологии: Учебник. – 3-е изд. / Под ред. Г.А.Титоренка. – М.: Юнити-Дана, 2010. – с. 176, 177.

Карпенков, С.Х. Современные средства информационных технологий: учеб. пособие для вузов / С.Х. Карпенков. - 2-е изд., испр. и доп. - М.: Кнорус, 2009. – с. 140 с.

Корнеев, И.К. Информационные технологии: учебник / И.К. Корнеев, Г.Н. Ксандопуло, В.А. Машурцев. - М.: Проспект, 2009. – с. 87.

Гейн А.Г., Сенокосов А.И. Информатика и ИКТ: учеб. / Рекомендовано Министерством образования и науки РФ.- М: Московские учебники, 2010.- с.33.

Http://nwzone.ru/ - «Современные технологии»: новости со всего мира: hi-tech инновации, гаджеты.

Петров В.Н. Информационные системы / Петров В.Н. – СПб.: Питер, 2008. – с.68.

Вендров А.М. Проектирование программного обеспечения экономических информационных систем: Учебник для экон. вузов / А.М.Вендров. – М.: Финансы и статистика, 2000. – с.35.

Коноплева, И.А. Информационные технологии [Электронный ресурс] : электронный учебник / И.А. Коноплева, О.А. Хохлова, А.В. Денисов. - М.: Проспект, 2009.

Гейн А.Г., Сенокосов А.И. Информатика и ИКТ: учеб. / Рекомендовано Министерством образования и науки РФ.- М: Московские учебники, 2010.- с.95.

Гейн А.Г., Сенокосов А.И. Информатика и ИКТ: учеб. / Рекомендовано Министерством образования и науки РФ.- М: Московские учебники, 2010.- с.99.

Информационные системы и технологии: Учебник. – 3-е изд. /Под ред. Г.А.Титоренка. – М.: Юнити-Дана, 2010. – с.91, 92.

Коноплева, И.А. Информационные технологии [Электронный ресурс] : электронный учебник / И.А. Коноплева, О.А. Хохлова, А.В. Денисов. - М.: Проспект, 2009.

По специализации: специализированные и универсальные

специализированные - для решения небольшого количества специальных задач. Примером специализированной служит технология резервирования мест на авиационные рейсы.

Классическим примером универсальной технологии является Академсеть Российской Федерации, предназначенная для решения большого количества разнообразных информационных задач.

по способу организации :одноуровневые и двухуровневые

В одноуровневой системе маршрутизации все роутеры равны по отношению друг к другу.

двухуровневые технологии имеют кроме ПК, с которыми непосредственно общаются пользователи и которые называются рабочими станциями, специальные компьютеры, называемые серверами (англ. to serve - обслуживать). Задачей сервера и является обслуживание рабочих станций с предоставлением им своих ресурсов, которые обычно существенно выше, чем ресурсы рабочей станции.

По способу связи: проводные,беспроводные.

В проводных технологиях в качестве физической среды в каналах используются:

Плоский двухжильный кабель;

Витая пара проводов

Коаксиальный кабель

Световод.

Беспроводные сетевые технологии , использующие частотные каналы передачи данных (средой является эфир), представляют в настоящее время разумную альтернативу обычным проводным сетям и становятся все более привлекательными. Самое большое преимущество беспроводных технологий - это возможности, предоставляемые пользователям портативных компьютеров. Однако скорость передачи данных, достигаемая в беспроводных технологиях, не может пока сравниться с пропускной способностью кабеля, хотя она в последнее время и значительно выросла

По составу ПК. Однородные и неоднородными

Однородные сетевые технологии предполагают увязку в сети однотипных средств, разрабатываемых одной фирмой. Подключение к такой сети средств других производителей возможно только при условии соблюдения в них стандартов, принятых в однородной архитектуре.

Другой подход состоит в разработке единой универсальной сетевой технологии независимо от типов применяемых в ней средств. Такие технологии называются неоднородными. Первым стандартом для таких сетей была базовая эталонная модель ВОС (взаимосвязь открытых систем). Настоящий стандарт на эталонную модель взаимосвязи открытых систем является общим базисом, координирующим работы по созданию стандартов для обеспечения взаимосвязи систем. Он разрешает использование существующих стандартов и определяет их будущее местоположение в рамках эталонной модели.

Требования данного стандарта являются обязательными

По Охвату территории

Использование персональных компьютеров (ПК) в составе локальных вычислительных сетей (ЛВС) обеспечивает постоянное и оперативное взаимодействие между отдельными пользователями в пределах коммерческой либо научно-производственной структуры. Свое название ЛВС получила за то, что все ее компоненты (ПК, каналы коммуникаций, средства связи) физически размешаются на небольшой территории одной организации или ее отдельных подразделений.

Территориальной (региональной ) называют технологию (сеть), компьютеры которой находятся на большом удалении друг от друга, как правило, от десятков до сотен километров. Иногда территориальную сеть называют корпоративной или ведомственной. Такая сеть обеспечивает обмен данными между имеющими доступ к ресурсам сети абонентами по телефонным каналам сети общего назначения, каналам сети «Телекс», а также по спутниковым каналам связи. Количество абонентов сети не ограничено. Им гарантируется надежный обмен данными в режиме «реального времени», передача факсов и телефонных (телексных) сообщений в заданное время, телефонная связь по спутниковым каналам. Территориальные сети строятся по идеологии открытых систем. Их абонентами являются отдельные ПК, ЛВС, телексные установки, факсимильные и телефонные установки, сетевые элементы (узлы сети связи).

Основная задача федеральной сети - создание магистральной сети передачи данных с коммутацией пакетов и предоставление услуг по передаче данных в реальном масштабе времени широкому кругу пользователей, к числу которых относятся и территориальные сети.

Глобальные сети обеспечивают возможность общения по переписке и телеконференции. Основная задача глобальной сети - обеспечение абонентам не только доступа к компьютерным ресурсам, но и возможности взаимодействия между собой различных профессиональных групп, рассредоточенных на большой территории.

Топологии

Топология (конфигурация) – это способ соединения компьютеров в сеть.

Тип топологии определяет стоимость, защищенность, производительность и

надежность эксплуатации рабочих станций, для которых имеет значение

время обращения к файловому серверу

Существуют пять основных топологий:

− общая шина (Bus);

− кольцо (Ring);

− звезда (Star);

− древовидная (Tree);

− ячеистая (Mesh).

Общая шина это тип сетевой топологии, в которой рабочие станции рас-

положены вдоль одного участка кабеля, называемого сегментом

В данном случае кабель используется всеми станциями по очереди, по-

этому принимаются специальные меры для того, чтобы при работе с общим

кабелем компьютеры не мешали друг другу передавать и принимать данные.

Все сообщения, посылаемые отдельными компьютерами, принимаются и

прослушиваются всеми остальными компьютерами, подключенными к сети.

Кольцо это топология ЛВС, в которой каждая станция соединена с

двумя другими станциями, образуя кольцо (рис.4.2). Данные передаются от

одной рабочей станции к другой в одном направлении (по кольцу). Каждый

ПК работает как повторитель, ретранслируя сообщения к следующему ПК,

т.е. данные, передаются от одного компьютера к другому как бы по эстафете.

Если компьютер получает данные, предназначенные для другого компьюте-

ся. Основная проблема при кольцевой топологии заключается в том, что ка-

ждая рабочая станция должна активно участвовать в пересылке информации,

и в случае выхода из строя хотя бы одной из них, вся сеть парализуется. То-

пология Кольцо имеет хорошо предсказуемое время отклика, определяемое

числом рабочих станций.

Звезда это топология ЛВС, в которой все рабочие станции

присоединены к центральному узлу (например, к концентратору), который

устанавливает, поддерживает и разрывает связи между рабочими станциями.

Преимуществом такой топологии является возможность простого исключе-

ния неисправного узла . Однако, если неисправен центральный узел, вся сеть

выходит из строя.

Древовидная топология– достигается из звездообразной путем

каскадирования концентраторов. Такая топология широко используется в со-

временных высокоскоростных локальных компьютерных сетях. В качестве

узлов коммутации чаще всего выступают высокоскоростные коммутаторы.

Наиболее характерным представителем сетей с подобной структурой являет-

ся сеть 100VG AnyLan. И кроме того, высокоскоростной вариант магист-

ральной сети Ethernet – Fast Ethernet также имеет древовидную структуру.

По сравнению с шинными и кольцевыми сетями древовидные локаль-

ные сети обладают более высокой надежностью. Отключение или выход из

строя одной из линий или коммутатора, как правило, не оказывает сущест-

венного влияния на работоспособность оставшейся части локальной сети.

Ячеистая топология– это топология, при которой все рабочие

станции соединены со всеми (полносвязанная топология). Ячеистая тополо-

гия нашла применение в последние несколько лет. Ее привлекательность за-

ключается в относительной устойчивости к перегрузкам и отказам. Благодаря

множественности путей из устройств, включенных в сеть, трафик может

быть направлен в обход отказавших или занятых узлов. Даже несмотря на то,

что данный подход отмечается сложностью и дороговизной (протоколы

ячеистых сетей могут быть достаточно сложными с точки зрения логики,

чтобы обеспечить эти характеристики), некоторые пользователи предпочи-

тают ячеистые сети сетям других типов вследствие их высокой надежности

Беспроводные технологии

Методы беспроводной технологии передачи данных (Radio Waves) являются удобным, а иногда незаменимым средством связи. Беспроводные технологии различаются по типам сигнала, частоте (большая частота означает большую скорость передачи) и расстоянию передачи. Большое значение

имеют помехи и стоимость. Можно выделить три основных типа беспроводной технологии:

− радиосвязь;

− связь в микроволновом диапазоне;

− инфракрасная связь.

протоколы маршрутизации

Internet - это общемировая совокупность компьютерных сетей, связывающая между собой миллионы компьютеров. Сегодня Internet имеет около 400 миллионов абонентов в более чем 150 странах мира. Ежемесячно размер сети увеличивается на 7-10%.
Отдельные локальные сети могут объединяются в глобальные вычислительные сети (WAN - wide area network). Устройства, не относящиеся к одной и той же локальной физической сети LAN, устанавливают соединения с глобальной сетью через специализированное коммуникационное оборудование. Наиболее распространен метод подключения "внутренней" подсети к "внешней" подсети через компьютер-шлюз. Internet образует ядро, обеспечивающее связь различных сетей, принадлежащих различным учреждениям во всем мире, одна с другой. Состоит Internet из множества локальных и глобальных сетей. Internet можно представить себе в виде мозаики сложенной из небольших сетей разной величины, которые активно взаимодействуют одна с другой, пересылая файлы, сообщения и т. п.
С самого начала в структуре Internet выделяли магистральную сеть и сети , присоединенные к магистрали (автономные, локальные). Магистральная сеть и каждая из автономных имели свое собственное административное управление и собственные


Похожая информация.


Что это такое - сетевая технология? Зачем она нужна? Для чего используется? Ответы на эти, а также на ряд других вопросов и будут даны в рамках данной статьи.

Несколько важных параметров

  1. Скорость передачи данных. От этой характеристики зависит, какое же количество информации (измеряется в большинстве случаев в битах) может быть передано через сеть за определённый промежуток времени.
  2. Формат кадров. Информация, которая передаётся через сеть, объединяется в пакеты информации. Они и называются кадрами.
  3. Тип кодирования сигналов. В данном случае решается, как же зашифровать информацию в электрических импульсах.
  4. Среда передачи. Такое обозначение используется для материала, как правило, это кабель, по которому и осуществляется проход потока информации, что в последующем и выводится на экраны мониторов.
  5. Топология сети. Это схематическое построение конструкции, по которой осуществляется передача информации. Используются, как правило, шина, звезда и кольцо.
  6. Метод доступа.

Набор всех этих параметров и определяет сетевую технологию, чем она является, какие приспособления использует и характеристики имеет. Как можете догадаться, их существует великое множество.

Общая информация

Но что же собой представляет сетевая технология? Ведь определение этому понятию так и не было дано! Итак, сетевая технология - это согласованный набор стандартных протоколов и программно-аппаратных средств, которые их реализовывают в объеме, достаточном для построения локальной вычислительной сети. Это определяет, как же будет получен доступ к среде передачи данных. В качестве альтернативы можно ещё встретить название «базовые технологии». Рассмотреть их все в рамках статьи не представляется возможным из-за большого количества, поэтому внимание будет уделено самым популярным: Ethernet, Token-Ring, ArcNet и FDDI. Что же они собой представляют?

Ethernet

На данный момент это самая популярная во всём мире сетевая технология. Если подведёт кабель, то вероятность того, что используется именно она, близка к ста процентам. Ethernet можно смело зачислять в наилучшие сетевые информационные технологии, что обусловлено низкой стоимостью, большой скоростью и качеством связи. Наиболее известным является тип IEEE802.3/Ethernet. Но на его основе было разработано два очень интересных варианта. Первый (IEEE802.3u/Fast Ethernet) позволяет обеспечить скорость передачи в 100 Мбит/секунду. У этого варианта существует три модификации. Разнятся они между собой по использованному материалу для кабеля, длине активного сегмента и конкретным рамкам диапазона передачи. Но колебания происходят в стиле «плюс-минус 100 Мбит/секунду». Другой вариант - это IEEE802.3z/Gigabit Ethernet. У него передающая способность равна 1000 Мбит/с. У этой вариации существует четыре модификации.

Token-Ring

Сетевые информационные технологии данного типа используются для создания разделяемой среды передачи данных, которая в конечном итоге образуется как объединение всех узлов в одно кольцо. Строится данная технология на звездно-кольцевой топологии. Первая идёт как основная, а вторая - дополнительная. Чтобы получить доступ к сети, применяется маркерный метод. Максимальная длина кольца может составлять 4 тысячи метров, а количество узлов - 260 штук. Скорость передачи данных при этом не превышает 16 Мбит/секунду.

ArcNet

Этот вариант использует топологию «шина» и «пассивная звезда». При этом он может строиться на неэкранированной витой паре и оптоволоконном кабеле. ArcNet - это настоящий старожил в мире сетевых технологий. Длина сети может достигать 6000 метров, а максимальное количество абонентов - 255. При этом следует отметить основной недостаток этого подхода - его низкую скорость передачи данных, которая составляет только 2,5 Мбита/секунду. Но эта сетевая технология всё ещё широко используется. Это происходит благодаря ее высокой надежности, низкой стоимости адаптеров и гибкости. Сети и сетевые технологии, построенные по другим принципам, возможно, и обладают более высокими показателями скорости, но именно из-за того, что ArcNet обеспечивает высокую доходимость данных, это позволяет нам не скидывать её со счетов. Важным преимуществом данного варианта является то, что используется метод доступа посредством передачи полномочий.

FDDI

Сетевые компьютерные технологии данного вида являются стандартизированными спецификациями архитектуры высокоскоростной передачи данных, использующей оптоволоконные линии. На FDDI значительным образом повлияли ArcNet и Token-Ring. Поэтому эту сетевую технологию можно рассматривать как усовершенствованный механизм передачи данных на основании имеющихся наработок. Кольцо этой сети может достигать в длину сто километров. Несмотря на значительное расстояние, максимальное количество абонентов, которые могут подключиться к ней, составляет только 500 узлов. Следует отметить, что FDDI считается высоконадежной благодаря наличию основного и резервного путей передачи данных. Добавляет ей популярность и возможность быстро передавать данные - примерно 100 Мбит/секунду.

Технический аспект

Рассмотрев, что собой представляют основы сетевых технологий, что используются, сейчас давайте уделим внимание тому, как же всё устроено. Первоначально следует отметить, что рассмотренные ранее варианты - это исключительно локальные средства соединения электронно-вычислительных машин. Но есть и глобальные сети. Всего их в мире около двух сотен. Как же работают современные сетевые технологии? Для этого давайте рассмотрим действующий принцип построения. Итак, есть ЭВМ, которые объединены в одну сеть. Условно они делятся на абонентские (основные) и вспомогательные. Первые занимаются всеми информационно-вычислительными работами. От них же зависит то, каковы будут ресурсы сети. Вспомогательные занимаются преобразованием информации и её передачей по каналам связи. Из-за того что им приходится обрабатывать значительное количество данных, серверы могут похвастаться повышенной мощностью. Но конечным получателем любой информации всё же являются обычные хост-ЭВМ, которые чаще всего представлены персональными компьютерами. Сетевые информационные технологии могут использовать такие типы серверов:

  1. Сетевой. Занимается передачей информации.
  2. Терминальный. Обеспечивает функционирование многопользовательской системы.
  3. Баз данных. Занимается обработкой запросов к БД в многопользовательских системах.

Сети коммутации каналов

Они создаются благодаря физическому соединению клиентов на то время, когда будут передаваться сообщения. Как это выглядит на практике? В таких случаях для отправки и получения информации от точки А до точки Б создаётся прямое соединение. Оно включает в себя каналы одного из множества (как правило) вариантов доставки сообщения. И созданное соединение для успешной передачи должно быть неизменным в течение всего сеанса. Но в таком случае проявляются довольно сильные недостатки. Так, приходится относительно долго ожидать соединения. Это сопровождается высокой стоимостью передачи данных и низким коэффициентом использования канала. Поэтому использование сетевых технологий данного типа не распространено.

Сети коммутации сообщений

В этом случае вся информация передаётся небольшими порциями. Прямое соединение в таких случаях не устанавливается. Передача данных осуществляется по первому же свободному из доступных каналов. И так до тех пор, пока сообщение не будет передано своему адресату. Сервера при этом постоянно занимаются приёмом информации, её сбором, проверкой и установлением маршрута. И в последующем сообщение передаётся далее. Из преимуществ необходимо отметить низкую цену передачи. Но в таком случае всё ещё существуют такие проблемы, как низкая скорость и невозможность осуществления диалога между ЭВМ в режиме реального времени.

Сети коммутации пакетов

Это самый совершенный и популярный на сегодняшний день способ. Развитие сетевых технологий привело к тому, что сейчас обмен информацией осуществляется посредством коротких пакетов информации фиксированной структуры. Что же они собой представляют? Пакеты - это части сообщений, что удовлетворяют определённому стандарту. Небольшая их длина позволяет предотвратить блокировку сети. Благодаря этому уменьшается очередь в узлах коммутации. Осуществляется быстрое соединение, поддерживается невысокий уровень ошибок, а также достигнуты значительные высоты в плане увеличения надежности и эффективности сети. Следует отметить и то, что существуют различные конфигурации этого подхода к построению. Так, если сеть обеспечивает коммутацию сообщений, пакетов и каналов, то она называется интегральной, то есть можно провести её декомпозицию. Часть ресурсов при этом может использоваться монопольно. Так, некоторые каналы могут применяться для того, чтобы передавать прямые сообщения. Они создаются на время передачи данных между разными сетями. Когда сеанс отправки информации заканчивается, то они распадаются на независимые магистральные каналы. При использовании пакетной технологии важным является настройка и согласование большого количества клиентов, линий связи, серверов и целого ряда иных устройств. В этом помогает установление правил, которые известны как протоколы. Они являются частью используемой сетевой операционной системы и реализуются на аппаратном и программном уровнях.

Современные сетевые технологии


План

Что такое локальная сеть?

Аппаратные средства компьютерных сетей. Топологии локальных вычислительных сетей

Физические топологии локальных вычислительных сетей

Логические топологии локальных вычислительных сетей

Соединители и разъёмы

Коаксиальный кабель

Витая пара

Передача информации по волоконно-оптическим кабелям

Коммуникационная аппаратура

Аппаратура и технологии беспроводных сетей

Технологии и протоколы локальных вычислительных сетей

Адресация компьютеров в сети и основные сетевые протоколы

Сетевые средства операционных систем MS Windows

Концепции управления сетевыми ресурсами

Возможности ОС семейства MS Windows для организации работы в локальной сети

Настройка параметров сетевых компонентов

Настройка параметров подключения

Подключение сетевого принтера

Подключение сетевого диска


Что такое локальная сеть?

Проблема передачи информации с одного компьютера на другой существовала с момента появления компьютеров. Для её решения использовались различные подходы. Наиболее распространённый, в недавнем прошлом, «курьерский» подход заключался в копировании информации на сменный носитель (ГМД, CD и т.п.), перенос к месту назначения и повторное копирование, но уже со сменного носителя на компьютер адресат. В настоящее время подобные способы перемещения информации уступают место сетевым технологиям. Т.е. компьютеры каким-либо образом соединяются друг с другом, и пользователь имеет возможность перенести информацию к месту назначения, не вставая из-за стола.

Совокупность компьютерных устройств, обладающих возможностью информационного сообщения друг с другом, принято называть компьютерной сетью. В большинстве случаев различают два типа компьютерных сетей: локальные (LAN – LocalAreaNetwork) и глобальные (WAN – Wide-AreaNetwork). В некоторых вариантах классификации рассматривают ряд дополнительных типов: городские, региональные и т.п., однако все эти типы (по своей сути) в большинстве случаев являются вариантами глобальных сетей различного масштаба. Наиболее распространён вариант классификации сетей на локальные и глобальные по географическому признаку. Т.е. под локальной вычислительной сетью в этом случае понимается совокупность конечного числа компьютеров, расположенных на ограниченной территории (в пределах одного здания или соседних зданий), связанных информационными каналами, обладающими высокой скоростью и достоверностью передачи данных и предназначенных для решения комплекса взаимосвязанных задач.

Аппаратные средства компьютерных сетей . Топологии локальных вычислительных сетей

Все компьютеры абонентов (пользователей), работающие в рамках локальной вычислительной сети должны иметь возможность взаимодействовать друг с другом, т.е. быть связанными между собой. Способ организации таких связей существенно влияет на характеристики локальной вычислительной сети и называется её топологией (архитектурой, конфигурацией). Различают физическую и логическую топологии. Под физической топологией локальной вычислительной сети понимают физическое размещение компьютеров, входящих в состав сети и способ их соединения друг с другом проводниками. Логическая топология определяет способ прохождения информации и очень часто не совпадает с выбранной физической топологией соединения абонентов локальной вычислительной сети.

Физические топологии локальных вычислительных сетей

Существует четыре основных физических топологии, используемых при построении локальных вычислительных сетей.

Топология шина (рис.1) предполагает подключение всех компьютеров к одному общему проводнику. На обоих концах такого проводника размещаются специальные согласующие устройства, называемые терминаторами. Основные преимущества данной топологии – дешевизна и простота монтажа. К недостаткам относятся проблематичность локализации места неисправности и низкая надежность: повреждение кабеля в любом месте приводит к прекращению обмена информацией между всеми компьютерами, входящими в сеть. Из-за особенностей распространения электрического сигнала, даже если два компьютера, пытающиеся осуществить обмен информацией, физически соединены друг с другом, при отсутствии терминатора на одном конце такого «обрывка» шины связь между ними будет невозможна.

В топологии кольцо (рис. 2) каждый абонент сети связан с двумя близлежащими абонентами. Достоинства и недостатки аналогичны рассмотренным для топологии шина.

Топология звезда предполагает прокладку для каждого компьютера в сети отдельного кабеля, соединяющего всех абонентов сети с неким центром. В качестве центра звезды может выступать компьютер либо специальное соединительное устройство, называемое концентратором (рис. 3). Достоинство данной топологии – более высокая надёжность. Обрыв любого проводника «отключает» только одного абонента. «Узким местом» этой топологии является концентратор. При его поломке блокируется работа всей сети. Недостатком является более высокая стоимость оборудования (учитывая увеличение общей длины проводников, в сравнении с предыдущими топологиями, а также стоимость дополнительного оборудования – концентратора).

С точки зрения надежности и скорости обмена информацией наилучшими характеристиками обладает полносвязная топология (рис. 4). В этом случае абонентам сети предоставляется отдельный канал связи с каждым из остальных абонентов. Однако по стоимости данная топология проигрывает всем остальным вариантам.

Перечисленные топологии являются базовыми. Большинство локальных вычислительных сетей, создаваемых в различных организациях, имеют более сложную структуру и являются различными вариантами комбинирования вышеупомянутых топологий.

Логические топологии локальных вычислительных сетей

Логическая топология определяет характер распространения информации по компьютерной сети. При передаче информации от одного абонента сети к другому абоненту эта информация должным образом «оформляется». Передаваемые данные оформляются в стандартные фрагменты (пакеты, дейтаграммы). Помимо собственно передаваемых данных (чисел, текстов, рисунков и т.п.) в состав пакета добавляется адрес (приёмника информации или и приёмники и передатчика), контрольная информация (чтобы можно было проверить, пакет принят полностью или только его часть) и ряд другой информации. Рассмотрим три основных варианта логических топологий локальных вычислительных сетей.

Логическая шина определяет равноправный доступ к сети всех абонентов. В этом случае передатчик выставляет в сеть пакет информации, а все остальные абоненты «услышав» передаваемую информацию анализируют её. Если в составе пакета абонент находит свой адрес, он эту информацию «оставляет» себе, если адрес оказался чужим – игнорирует. Если в момент передачи информации одним абонентом «вклинивается в разговор» другой абонент, происходит наложение пакетов, называемое коллизией. Коллизии приводят к «перемешиванию» пакетов и невозможности разобраться «кто что сказал». Обнаружив коллизию, передающий абонент «замолкает» на интервал времени случайной длительности, после чего повторяет попытку передачи информации. При очень большом количестве абонентов в сети вероятность коллизий резко возрастает, и сеть становится неработоспособной.

Логическое кольцо предполагает, что информация проходит полный «круг» и приходит к источнику, т.е. в точку из которой была отправлена. При этом каждый абонент сравнивает адрес «получателя» со своим собственным. Если адреса совпали, информация копируется в буфер, пакет помечается как «дошедший до адресата» и передается следующему абоненту. Если адреса не совпали, пакет передается без всяких пометок. Когда абонент получил пакет отправленный «собственноручно» и с пометкой «принято», он его дальше не передаёт и в работу может вступить другой абонент сети.

Логическая топология звезда (и её версия – дерево) ориентирована на установление канала связи между приёмником и передатчиком средствами коммутаторов. Т.е. при отсутствии коммутатора невозможно связаться между собой даже двум абонентам сети. При передаче данных от одного абонента к другому, все остальные ждут окончания передачи.

Соединители и разъёмы

В настоящее время в локальных вычислительных сетях используются несколько типов проводников. По физической природе передаваемого сигнала различают электрические проводники и оптические проводники. Кроме этого может использоваться аппаратура для организации локальных вычислительных сетей средствами беспроводных каналов.

Коаксиальный кабель

Коаксиальный кабель (рис. 5) представляет собой проводник, заключенный в экранирующую оплётку. От контакта с оплёткой проводник защищен трубчатым изолятором. Важной характеристикой кабельных систем вообще и коаксиального кабеля в частности является волновое сопротивление или импеданс. В локальных вычислительных сетях применяется коаксиальный кабель с волновым сопротивлением 50 Ом и (гораздо реже) в сетях ARCnet кабель с волновым сопротивлением 93 Ом. Существует две разновидности коаксиального кабеля – толстый (внешний диаметр около 10 мм) и тонкий (внешний диаметр около 5 мм). При одинаковом значении волнового сопротивления у толстого и тонкого коаксиального кабеля различные характеристики по длине кабельного сегмента и количеству поддерживаемых абонентов сети. У толстого коаксиального кабеля максимальная длина сегмента 500 метров, максимальное количество точек подключения 100. У тонкого коаксиального кабеля максимальная длина сегмента 185 метров, максимальное количество точек подключения 30.

Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъемов), достаточный для построения вычислительной сети. Эпитет «достаточный» подчеркивает то обстоятельство, что этот набор представляет собой минимальный набор средств, с помощью которых можно построить работоспособную сеть. Возможно, эту сеть можно улучшить, например, за счет выделения в ней подсетей, что сразу потребует кроме протоколов стандарта Ethernet применения протокола IP, а также специальных коммуникационных устройств - маршрутизаторов. Улучшенная сеть будет, скорее всего, более надежной и быстродействующей, но за счет надстроек над средствами технологии Ethernet, которая составила базис сети.

Термин «сетевая технология» чаще всего используется в описанном выше узком смысле, но иногда применяется и его расширенное толкование как любого набора средств и правил для построения сети, например, «технология сквозной маршрутизации», «технология создания защищенного канала», «технология IP-сетей».

Протоколы, на основе которых строится сеть определенной технологии (в узком смысле), специально разрабатывались для совместной работы, поэтому от разработчика сети не требуется дополнительных усилий по организации их взаимодействия. Иногда сетевые технологии называют базовыми технологиями , имея в виду то, что на их основе строится базис любой сети. Примерами базовых сетевых технологий могут служить наряду с Ethernet такие известные технологии локальных сетей как, Token Ring и FDDI, или же технологии территориальных сетей Х.25 и frame relay. Для получения работоспособной сети в этом случае достаточно приобрести программные и аппаратные средства, относящиеся к одной базовой технологии - сетевые адаптеры с драйверами, концентраторы, коммутаторы, кабельную систему и т. п., - и соединить их в соответствии с требованиями стандарта на данную технологию.

Создание стандартных технологий локальных сетей

В середине 80-х годов положение дел в локальных сетях стало кардинально меняться. Утвердились стандартные технологии объединения компьютеров в сеть - Ethernet, Arcnet, Token Ring. Мощным стимулом для их развития послужили персональные компьютеры. Эти массовые продукты явились идеальными элементами для построения сетей - с одной стороны, они были достаточно мощными для работы сетевого программного обеспечения, а с другой - явно нуждались в объединении своей вычислительной мощности для решения сложных задач, а также разделения дорогих периферийных устройств и дисковых массивов. Поэтому персональные компьютеры стали преобладать в локальных сетях, причем не только в качестве клиентских компьютеров, но и в качестве центров хранения и обработки данных, то есть сетевых серверов, потеснив с этих привычных ролей мини-компьютеры и мэйнфреймы.

Стандартные сетевые технологии превратили процесс построения локальной сети из искусства в рутинную работу. Для создания сети достаточно было приобрести сетевые адаптеры соответствующего стандарта, например Ethernet, стандартный кабель, присоединить адаптеры к кабелю стандартными разъемами и установить на компьютер одну из популярных сетевых операционных систем, например, NetWare. После этого сеть начинала работать и присоединение каждого нового компьютера не вызывало никаких проблем - естественно, если на нем был установлен сетевой адаптер той же технологии.

Локальные сети в сравнении с глобальными сетями внесли много нового в способы организации работы пользователей. Доступ к разделяемым ресурсам стал гораздо удобнее - пользователь мог просто просматривать списки имеющихся ресурсов, а не запоминать их идентификаторы или имена. После соединения с удаленным ресурсом можно было работать с ним с помощью уже знакомых пользователю по работе с локальными ресурсами команд. Последствием и одновременно движущей силой такого прогресса стало появление огромного числа непрофессиональных пользователей, которым совершенно не нужно было изучать специальные (и достаточно сложные) команды для сетевой работы. А возможность реализовать все эти удобства разработчики локальных сетей получили в результате появления качественных кабельных линий связи, на которых даже сетевые адаптеры первого поколения обеспечивали скорость передачи данных до 10 Мбит/с.

Конечно, о таких скоростях разработчики глобальных сетей не могли даже мечтать - им приходилось пользоваться теми каналами связи, которые были в наличии, так как прокладка новых кабельных систем для вычислительных сетей протяженностью в тысячи километров потребовала бы колоссальных капитальных вложений. А «под рукой» были только телефонные каналы связи, плохо приспособленные для высокоскоростной передачи дискретных данных - скорость в 1200 бит/с была для них хорошим достижением. Поэтому экономное расходование пропускной способности каналов связи часто являлось основным критерием эффективности методов передачи данных в глобальных сетях. В этих условиях различные процедуры прозрачного доступа к удаленным ресурсам, стандартные для локальных сетей, для глобальных сетей долго оставались непозволительной роскошью.

Современные тенденции

Сегодня вычислительные сети продолжают развиваться, причем достаточно быстро. Разрыв между локальными и глобальными сетями постоянно сокращается во многом из-за появления высокоскоростных территориальных каналов связи, не уступающих по качеству кабельным системам локальных сетей. В глобальных сетях появляются службы доступа к ресурсам, такие же удобные и прозрачные, как и службы локальных сетей. Подобные примеры в большом количестве демонстрирует самая популярная глобальная сеть - Internet.

Изменяются и локальные сети. Вместо соединяющего компьютеры пассивного кабеля в них в большом количестве появилось разнообразное коммуникационное оборудование - коммутаторы, маршрутизаторы, шлюзы. Благодаря такому оборудованию появилась возможность построения больших корпоративных сетей, насчитывающих тысячи компьютеров и имеющих сложную структуру. Возродился интерес к крупным компьютерам - в основном из-за того, что после спада эйфории по поводу легкости работы с персональными компьютерами выяснилось, что системы, состоящие из сотен серверов, обслуживать сложнее, чем несколько больших компьютеров. Поэтому на новом витке эволюционной спирали мэйнфреймы стали возвращаться в корпоративные вычислительные системы, но уже как полноправные сетевые узлы, поддерживающие Ethernet или Token Ring, а также стек протоколов TCP/IP, ставший благодаря Internet сетевым стандартом де-факто.

Проявилась еще одна очень важная тенденция, затрагивающая в равной степени как локальные, так и глобальные сети. В них стала обрабатываться несвойственная ранее вычислительным сетям информация - голос, видеоизображения, рисунки. Это потребовало внесения изменений в работу протоколов, сетевых операционных систем и коммуникационного оборудования. Сложность передачи такой мультимедийной информации по сети связана с ее чувствительностью к задержкам при передаче пакетов данных - задержки обычно приводят к искажению такой информации в конечных узлах сети. Так как традиционные службы вычислительных сетей - такие как передача файлов или электронная почта - создают малочувствительный к задержкам трафик и все элементы сетей разрабатывались в расчете на него, то появление трафика реального времени привело к большим проблемам.

Сегодня эти проблемы решаются различными способами, в том числе и с помощью специально рассчитанной на передачу различных типов трафика технологии АТМ, Однако, несмотря на значительные усилия, предпринимаемые в этом направлении, до приемлемого решения проблемы пока далеко, и в этой области предстоит еще много сделать, чтобы достичь заветной цели - слияния технологий не только локальных и глобальных сетей, но и технологий любых информационных сетей - вычислительных, телефонных, телевизионных и т. п. Хотя сегодня эта идея многим кажется утопией, серьезные специалисты считают, что предпосылки для такого синтеза уже существуют, и их мнения расходятся только в оценке примерных сроков такого объединения - называются сроки от 10 до 25 лет. Причем считается, что основой для объединения послужит технология коммутации пакетов, применяемая сегодня в вычислительных сетях, а не технология коммутации каналов, используемая в телефонии, что, наверно, должно повысить интерес к сетям этого типа.