Прибор с зарядовой связью был изобретен в 1969 году Уиллардом Бойлом и Джорджем Смитом в Лабораториях Белла (AT&T Bell Labs). Лаборатории работали над видеотелефонией (англ. picture phone ) и развитием «полупроводниковой пузырьковой памяти» (англ. semiconductor bubble memory ). Приборы с зарядовой связью начали свою жизнь как устройства памяти, в которых можно было только поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.

Общее устройство и принцип работы

До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние.

Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции , тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя .

После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.

Пример субпикселя ПЗС-матрицы с карманом n-типа

Архитектура пикселей у производителей разная.

Обозначения на схеме субпикселя ПЗС : 1 - фотоны света, прошедшие через объектив фотоаппарата ;
2 - ;
3 - R - красный светофильтр субпикселя, фрагмент фильтра Байера ;
4 - прозрачный электрод из поликристаллического кремния или сплава индия и оксида олова ;
5 - оксид кремния;
6 - кремниевый канал n-типа: зона генерации носителей - зона внутреннего фотоэффекта ;
7 - зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей заряда ;
8 - кремниевая подложка p-типа .

Классификация по способу буферизации

Матрицы с полнокадровым переносом

Сформированное объективом изображение попадает на ПЗС-матрицу, то есть лучи света падают на светочувствительную поверхность ПЗС-элементов, задача которых-преобразовать энергию фотонов в электрический заряд. Происходит это примерно следующим образом.

Для фотона, упавшего на ПЗС-элемент, есть три варианта развития событий- он либо «срикошетит» от поверхности, либо будет поглощён в толще полупроводника (материала матрицы), либо «пробьёт насквозь» её «рабочую зону». Очевидно, что от разработчиков требуется создать такой сенсор, в котором потери от «рикошета» и «прострела навылет» были бы минимизированы. Те же фотоны, которые были поглощены матрицей, образуют пару электрон-дырка, если произошло взаимодействие с атомом кристаллической решётки полупроводника, или же только электрон (либо дырку), если взаимодействие было с атомами донорных либо акцепторных примесей, а оба перечисленных явления называются внутренним фотоэффектом. Разумеется, внутренним фотоэффектом работа сенсора не ограничивается - необходимо сохранить «отнятые» у полупроводника носители заряда в специальном хранилище, а затем их считать.

Элемент ПЗС-матрицы

В общем виде конструкция ПЗС-элемента выглядит так: кремниевая подложка p-типа оснащается каналами из полупроводника n-типа. Над каналами создаются электроды из поликристаллического кремния с изолирующей прослойкой из оксида кремния. После подачи на такой электрод электрического потенциала, в обеднённой зоне под каналом n -типа создаётся потенциальная яма, назначение которой- хранить электроны. Фотон, проникающий в кремний, приводит к генерации электрона, который притягивается потенциальной ямой и остаётся в ней. Большее количество фотонов (яркий свет) обеспечивает больший заряд ямы. Затем надо считать значение этого заряда, именуемого также фототоком, и усилить его.

Считывание фототоков ПЗС-элементов осуществляется так называемыми последовательными регистрами сдвига, которые преобразовывают строку зарядов на входе в серию импульсов на выходе. Данная серия представляет собой аналоговый сигнал, который в дальнейшем поступает на усилитель.

Таким образом, при помощи регистра можно преобразовать в аналоговый сигнал заряды строки из ПЗС-элементов. Фактически, последовательный регистр сдвига в ПЗС-матрицах реализуется с помощью тех же самых ПЗС-элементов, объединённых в строку. Работа такого устройства базируется на способности приборов с зарядовой связью (именно это обозначает аббревиатура ПЗС) обмениваться зарядами своих потенциальных ям. Обмен осуществляется благодаря наличию специальных электродов переноса (transfer gate), расположенных между соседними ПЗС-элементами. При подаче на ближайший электрод повышенного потенциала заряд «перетекает» под него из потенциальной ямы. Между ПЗС-элементами могут располагаться от двух до четырёх электродов переноса, от их количества зависит «фазность» регистра сдвига, который может называться двухфазным, трёхфазным либо четырёхфазным.

Подача потенциалов на электроды переноса синхронизирована таким образом, что перемещение зарядов потенциальных ям всех ПЗС-элементов регистра происходит одновременно. И за один цикл переноса ПЗС-элементы как бы «передают по цепочке» заряды слева направо (или же справа налево). Ну а оказавшийся «крайним» ПЗС-элемент отдаёт свой заряд устройству, расположенному на выходе регистра- то есть усилителю.

В целом, последовательный регистр сдвига является устройством с параллельным входом и последовательным выходом. Поэтому после считывания всех зарядов из регистра есть возможность подать на его вход новую строку, затем следующую и таким образом сформировать непрерывный аналоговый сигнал на основе двумерного массива фототоков. В свою очередь, входной параллельный поток для последовательного регистра сдвига (то есть строки двумерного массива фототоков) обеспечивается совокупностью вертикально ориентированных последовательных регистров сдвига, которая именуется параллельным регистром сдвига, а вся конструкция в целом как раз и является устройством, именуемым ПЗС-матрицей.

«Вертикальные» последовательные регистры сдвига, составляющие параллельный, называются столбцами ПЗС-матрицы, а их работа полностью синхронизирована. Двумерный массив фототоков ПЗС-матрицы одновременно смещается вниз на одну строку, причём происходит это только после того, как заряды предыдущей строки из расположенного «в самом низу» последовательного регистра сдвига ушли на усилитель. До освобождения последовательного регистра параллельный вынужден простаивать. Ну а сама ПЗС-матрица для нормальной работы обязательно должна быть подключена к микросхеме (или их набору), подающей потенциалы на электроды как последовательного, так и параллельного регистров сдвига, а также синхронизирующей работу обоих регистров. Кроме того, нужен тактовый генератор.

Полнокадровая матрица

Данный тип сенсора является наиболее простым с конструктивной точки зрения и именуется полнокадровой ПЗС-матрицей (full-frame CCD-matrix). Помимо микросхем «обвязки», такой тип матриц нуждается также в механическом затворе, перекрывающем световой поток после окончания экспонирования. До полного закрытия затвора считывание зарядов начинать нельзя - при рабочем цикле параллельного регистра сдвига к фототоку каждого из его пикселов добавятся лишние электроны, вызванные попаданием фотонов на открытую поверхность ПЗС-матрицы. Данное явление называется «размазыванием» заряда в полнокадровой матрице (full-frame matrix smear).

Таким образом, скорость считывания кадра в такой схеме ограничена скоростью работы как параллельного, так и последовательного регистров сдвига. Также очевидно, что необходимо перекрывать световой поток, идущий с объектива, до завершения процесса считывания, поэтому интервал между экспонированием тоже зависит от скорости считывания.

Матрицы с буферизацией кадра

Существует усовершенствованный вариант полнокадровой матрицы, в котором заряды параллельного регистра не поступают построчно на вход последовательного, а «складируются» в буферном параллельном регистре. Данный регистр расположен под основным параллельным регистром сдвига, фототоки построчно перемещаются в буферный регистр и уже из него поступают на вход последовательного регистра сдвига. Поверхность буферного регистра покрыта непрозрачной (чаще металлической) панелью, а вся система получила название матрицы с буферизацией кадра (frame - transfer CCD). Матрица с буферизацией кадра В данной схеме потенциальные ямы основного параллельного регистра сдвига «опорожняются» заметно быстрее, так как при переносе строк в буфер нет необходимости для каждой строки ожидать полный цикл последовательного регистра. Поэтому интервал между экспонированием сокращается, правда при этом также падает скорость считывания- строке приходится «путешествовать» на вдвое большее расстояние. Таким образом, интервал между экспонированием сокращается только для двух кадров, хотя стоимость устройства за счёт буферного регистра заметно возрастает. Однако наиболее заметным недостатком матриц с буферизацией кадра является удлинившийся «маршрут» фототоков, который негативно сказывается на сохранности их величин. И в любом случае между кадрами должен срабатывать механический затвор, так что о непрерывном видеосигнале говорить не приходится.

Матрицы с буферизацией столбцов

Специально для видеотехники был разработан новый тип матриц, в котором интервал между экспонированием был минимизирован не для пары кадров, а для непрерывного потока. Разумеется, для обеспечения этой непрерывности пришлось предусмотреть отказ от механического затвора.

Фактически данная схема, получившая наименование матрицы с буферизацией столбцов (interline CCD -matrix), в чём-то сходна с системами с буферизацией кадра- в ней также используется буферный параллельный регистр сдвига, ПЗС-элементы которого скрыты под непрозрачным покрытием. Однако буфер этот не располагается единым блоком под основным параллельным регистром- его столбцы «перетасованы» между столбцами основного регистра. В результате рядом с каждым столбцом основного регистра находится столбец буфера, а сразу же после экспонирования фототоки перемещаются не «сверху вниз», а «слева направо» (или «справа налево») и всего за один рабочий цикл попадают в буферный регистр, целиком и полностью освобождая потенциальные ямы для следующего экспонирования. Попавшие в буферный регистр заряды в обычном порядке считываются через последовательный регистр сдвига, то есть «сверху вниз». Поскольку сброс фототоков в буферный регистр происходит всего за один цикл, даже при отсутствии механического затвора не наблюдается ничего похожего на «размазывание» заряда в полнокадровой матрице. А вот время экспонирования для каждого кадра в большинстве случаев по продолжительности соответствует интервалу, затрачиваемому на полное считывание буферного параллельного регистра. Благодаря всему этому появляется возможность создать видеосигнал с высокой частотой кадров- не менее 30кадров секунду. Матрица с буферизацией столбцов Зачастую в отечественной литературе матрицы с буферизацией столбцов ошибочно именуют «чересстрочными». Вызвано это, наверное, тем, что английские наименования «interline» (буферизация строк) и «interlaced» (чересстрочная развёртка) звучат очень похоже. На деле же при считывании за один такт всех строк можно говорить о матрице с прогрессивной разверткой (progressive scan), а когда за первый такт считываются нечётные строки, а за второй- чётные (или наоборот), речь идёт о матрице с чересстрочной развёрткой (interlace scan).

Размеры матриц фотоаппаратов

Обозначение Ширина Высота Диагональ Площадь Пример
Полнокадровые,
плёнка типа 135 .
1 - 1,01 35,8 - 36 23,8 - 24 43 - 43,3 852-864 Canon EOS 5D , Canon EOS-1Ds (КМОП-матрица)
APS-H 1,26 - 1,28 28,1 - 28,7 18,7 - 19,1 33,8 - 34,5 525,5 - 548,2 Canon EOS-1D Mark III (КМОП-матрица)
1,33 27 18 32,4 486 Leica M8
APS-C , , 1.8" 1,44 - 1,74 20,7 - 25,1 13,8 - 16,7 24,9 - 30,1 285,7 - 419,2 Pentax K10D
Foveon X3 1,74 20,7 13,8 24,9 285,7 Sigma SD14
4/3 " 1,92 - 2 17,3 - 18 13 −13,5 21,6 - 22,5 224,9 - 243 Olympus E-330
1" 2,7 12,8 9,6 16 122,9 Sony ProMavica MVC-5000
2/3" 3,93 8,8 6,6 11 58,1 Pentax EI-2000
1/1,6" ≈4 8 6 10 48 Panasonic Lumix DMC-LX3
1/1,65" ≈4 Panasonic Lumix DMC-LX2
1/1,7" ≈4,5 7,6 5,7 9,5 43,3 Canon PowerShot G10
1/1,8" 4,84 7,176 5,319 8,9 38,2 Casio EXILIM EX-F1
1/1,9" ≈5 Samsung Digimax V6
1/2" 5,41 6,4 4,8 8 30,7 Sony DSC-D700
1/2,3" ≈6 6,16 4,62 7,70 28,46 Olympus SP-560 UZ
1/2,35" ≈6 Pentax Optio V10
1/2,4" ≈6 Fujifilm FinePix S8000fd
1/2,5" 5,99 5,8 4,3 7,2 24,9 Panasonic Lumix DMC-FZ8
1/2,6" ≈6 HP Photosmart M447
1/2,7" 6,56 5,27 3,96 6,6 20,9 Olympus C-900 zoom
1/2,8" ≈7 Canon DC40
1/2,9" ≈7 Sony HDR-SR7E
1/3" 7,21 4,8 3,6 6 17,3 Canon PowerShot A460
1/3,1" ≈7 Sony HDR-SR12E
1/3,2" 7,62 4,536 3,416 5,7 15,5 Canon HF100
1/3,4" ≈8 Canon MVX35i
1/3,6" 8,65 4 3 5 12 JVC GR-DZ7
1/3,9" ≈9 Canon DC22
1/4" Canon XM2
1/4,5" Samsung VP-HMX10C
1/4,7" Panasonic NV-GS500EE-S
1/5" Sony DCR-SR80E
1/5,5" JVC Everio GZ-HD7
1/6" 14,71 2,4 1,7 2,9 4,1 Sony DCR-DVD308E
1/8" Sony DCR-SR45E

Размеры матриц цифровых кинокамер

Обозначение соответствие
формату
кинопленки
Ширина

Что такое ПЗС-матрица?

Немного истории

В качестве приёмника света раньше использовались фотоматериалы: фотопластинки, фотоплёнка, фотобумага. Позже появились телевизионные камеры и ФЭУ (фото-электрический умножитель).
В конце 60-х - начале 70-х годов начали разрабатываться так называемые "Приборы с Зарядовой Связью", что сокращённо пишется как ПЗС. На английском языке это выглядит как "charge-coupled devices" или сокращённо - CCD. В принципе ПЗС-матриц лежал факт, что кремний способен реагировать на видимый свет. И этот факт привёл к мысли что этот принцип может использоваться для получения изображений светящихся объектов.

Астрономы были одними из первых, кто распознал экстраординарные способности ПЗС для регистрации изображений. В 1972 году группа исследователей из JPL (Лаборатория Реактивного Движения, США) основала программу развития ПЗС для астрономии и космических исследований. Три года спустя, совместно с учеными Аризонского университета, эта команда получила первое астрономическое ПЗС изображение. На снимке Урана в ближнем инфракрасном диапазоне с помощью полутораметрового телескопа были обнаружены темные пятна возле южного полюса планеты, свидетельствующие о наличии там метана...

Применение ПЗС-матриц на сегодняшний день нашло широкое применение: цифровые фотокамеры, видеокамеры; ПЗС-матрица как фотокамеры стало возможным встраивать даже в мобильные телефоны.

Устройство ПЗС

Типичное устройство ПЗС (рис.1): на полупроводниковой поверхности находится тонкий (0.1-0.15 мкм) слой диэлектрика (обычно окисла), на котором располагаются полоски проводящих электродов (из металла или поликристаллического кремния). Эти электроды образуют линейную или матричную регулярную систему, причем расстояния между электродами столь малы, что существенными являются эффекты взаимного влияния соседних электродов. Принцип работы ПЗС основан на возникновении, хранении и направленной передаче зарядовых пакетов в потенциальных ямах, образующихся в приповерхностном слое полупроводника при приложении к электродам внешних электрических напряжений.



Рис. 1. Принципиальное устройство ПЗС-матрицы.

На рис. 1 символами С1, С2 и С3 обозначены МОП-конденсаторы (металл-окисел-полупроводник).

Если к какому-либо электроду приложить положительное напряжение U, то в МДП-структуре возникает электрическое поле, под действием которого основные носители (дырки) очень быстро (за единицы пикосекунд) уходят от поверхности полупроводника. В результате у поверхности образуется обедненный слой, толщина которого составляет доли или единицы микрометра. Неосновные носители (электроны), генерированные в обедненном слое под действием каких-либо процессов (например, тепловых) или попавшие туда из нейтральных областей полупроводника под действием диффузии, будут перемещаться (под действием поля) к границе раздела полупроводник-диэлектрик и локализоваться в узком инверсном слое. Таким образом, у поверхности возникает потенциальная яма для электронов, в которую они скатываются из обедненного слоя под действием поля. Генерированные в обедненном слое основные носители (дырки) под действием поля выбрасываются в нейтральную часть полупроводника.
В течение заданного интервала времени каждый пиксель постепенно заполняется электронами пропорционально количеству попавшего в него света. По окончании этого времени электрические заряды, накопленные каждым пикселем, по очереди передаются на "выход" прибора и измеряются.

Размер светочувствительного пикселя матриц составляет от одного-двух до нескольких десятков микрон. Размер же кристаллов галоидного серебра в светочувствительном слое фотопленки колеблется от 0.1 (позитивные эмульсии) до 1 микрона (высокочувствительные негативные).

Одним из основных параметров матрицы является, так называемая, квантовая эффективность. Это название отражает эффективность преобразования поглощенных фотонов (квантов) в фотоэлектроны и схоже фотографическому понятию светочувствительности. Поскольку энергия световых квантов зависит от их цвета (длины волны), невозможно однозначно определить сколько электронов родится в пикселе матрицы при поглощении им например потока из ста разнородных фотонов. Поэтому квантовая эффективность обычно дается в паспорте на матрицу как функция от длины волны, и на отдельных участках спектра может достигать 80%. Это гораздо больше, чем у фотоэмульсии или глаза (примерно 1%).

Какие бывают ПЗС-матрицы?

Если пиксели выстроены в один ряд, то приемник называется ПЗС-линейкой, если же участок поверхности заполнен ровными рядами - тогда приемник называется ПЗС-матрицей.

ПЗС-линейка имела широкий круг применения в 80-х и 90-х годах для астрономических наблюдений. Достаточно было провести изображение по ПЗС-линейке и оно появлялось на мониторе компьютера. Но это процесс сопровождался многими трудностями и поэтому в настоящее время ПЗС-линейки всё больше вытесняются ПЗС-матрицами.

Нежелательные эффекты

Одним из нежелательных побочных эффектов переноса заряда на ПЗС-матрице, который может мешать наблюдениям, являются яркие вертикальные полосы (столбы) на месте ярких зон изображения небольшой площади. Также к возможным нежелательным эффектам ПЗС-матриц можно отнести: высокий темновой шум, наличие "слепых" или "горячих" пикселей, неравномерность чувствительности по полю матрицы. Для уменьшения темнового шума используют автономное охлаждение ПЗС-матриц до температур -20°С и ниже. Либо же снимается темновой кадр (например с закрытым объективом) с такой же длительностью (экспозицией) и температурой, с какими был произведён предыдущий кадр. Впоследствии специальной программой на компьютере вычитается темновой кадр из изображения.

Телевизионные камеры на базе ПЗС-матриц хороши тем, что они дают возможность получать изображения со скоростью до 25 кадров в секунду с разрешением 752 x 582 пикселей. Но непригодность нектороых камер этого типа для астрономических наблюдений состоит в том, что в них производителем реализуются внутренние предобработки изображения (читать - искажения) для лучшего восприятия получаемых кадров зрением. Это и АРУ (автоматизированная регулировка управления) и т.н. эффект "резких границ" и прочие.

Прогресс…

В целом, использование ПЗС-приемников значительно удобнее, чем использование нецифровых приемников света, поскольку полученные данные сразу оказываются в виде, пригодном для обработки на компьютере и, кроме того, скорость получения отдельных кадров очень высока (от нескольких кадров в секунду до минут).

В настоящий момент быстрыми темпами развивается и совершенствуется производство ПЗС-матриц. Увеличивается количество "мегапикселей" матриц - количества отдельных пикселей на единицу площади матрицы. Улучшается качество изображений получаемых с помощью ПЗС-матриц и т.д.

Использованные источники:
1. 1. Виктор Белов. С точностью до десятых долей микрона.
2. 2. С.Е.Гурьянов. Знакомьтесь - ПЗС.

Матрица является главным структурным элементом фотоаппарата и одним из ключевых параметров, принимаемых во внимание пользователем при выборе фотокамеры. Матрицы современных цифровых фотоаппаратов можно классифицировать по нескольким прознакам, но основным и наиболее распространенным всеже является деление матриц по методу считывания заряда , на: матрицы CCD типа и CMOS матрицы. В данной статье мы рассмотрим принципы работы, а также достоинства и недостатки этих двух типов матриц, так как именно они повсеместно используются в современных фото- и видеотехнике.

CCD матрица

Матрицу CCD называют еще ПЗС-матрицей (Приборы с Зарядовой Связью). ПЗС матрица представляет собой прямоугольную пластину светочувствительных элементов (фотодиодов), расположенных на полупроводниковом кристалле кремния. В основе принципа ее действия лежит построчное перемещение зарядов, которые накопились в прорехах, образованных фотонами в атомах кремния. То есть, при столкновении с фотодиодом, фотон света поглощается и при этом выделяется электрон (происходит внутренний фотоэффект). В результате образуется заряд, который нужно как-то сохранить для дальнейшей обработки. Для этой цели в кремниевой подложке матрицы встроен полупроводник, над которым располагается прозрачный электрод из поликристаллического кремния. И в результате подачи на данный электрод электрического потенциала в обеднённой зоне под полупроводником образуется так называемая потенциальная яма, в которой и хранится полученный от фотонов зарад. При считывании с матрицы электрического заряда осуществляется перенос зарядов (хранящихся в потенциальных ямах) по электродам переноса к краю матрицы (последовательный регистр сдвига) и в сторону усилителя, который усиливает сигнал и передает его в аналогово-цифровой преобразователь (АЦП), откуда преобразованный сигнал направляется в процессор, который обрабатывает сигнал и сохраняет полученное изображение на карту памяти.

Для изготовления ПЗС-матриц используются поликремневые фотодиоды. Такие матрицы отличаются небольшими размерами и позволяют получать достаточно качественные фотографии при съемке с нормальным освещением.

Преимущества ПЗС-матриц :

  1. Кконструкция матрицы обеспечивает высокую плотность размещения фотоэлементов (пикселей) на подложке;
  2. Высокая эффективность (отношение зарегистрированных фотонов к их общему числу, составляет около 95%);
  3. Высокая чувствительность;
  4. Хорошая цветопередача (при достаточном освещении).

Недостатки ПЗС-матриц:

  1. Высокий уровень шума на высоких ISO (на низких ISO, уровень шума умеренный);
  2. Низкая скорость работы в сравнении с CMOS-матрицами;
  3. Высокое энергопотребление;
  4. Более сложная технология считывания сигнала, так как необходимо много управляющих микросхем;
  5. Производство обходится дороже чем CMOS-матриц.

CMOS матрица

Матрица CMOS , или КМОП-матрица (Комплементарные Металл-Оксидные Полупроводники) использует активные точечные сенсоры. В отличие от ПЗС-матриц, КМОП-матрица содержат отдельный транзистор в каждом светочувствительном элементе (пикселе) в результате чего преобразование заряда выполняется непосредственно в пикселе. Полученный заряд может быть считан из каждого пикселя индивидуально, поэтому отпадает необходимость переноса заряда (как это происходит в ПЗС-матрицах). Пиксели КМОП-матрицы интегрируется непосредственно с аналогово-цифровым преобразователем или даже с процессором. В результате применения такой рациональной технологии происходит экономия энергии за счет сокращения цепочек действий по сравнению с матрицами CCD, а также удешевление устройства за счет более простой конструкции.


Краткий принцип работы КМОП-матрицы: 1) Перед съемкой на транзистор сброса подается сигнал сброса. 2) Во время экспозиции свет проникает через линзу и фильтр на фотодиод и в результате фотосинтеза в потенциальной яме накапливается заряд. 3) Считывается значение полученного напряжения. 4) Обработка данных и сохранение изображения.

Преимущества КМОП-матриц :

  1. Низкое энергопотребление (особенно в ждущих режимах);
  2. Высокое быстродействие;
  3. Требует меньше затрат при производстве, благодаря схожести технологии с производством микросхем;
  4. Единство технологии с другими цифровыми элементами, что позволяет объединить на одном кристале аналоговую, цифровую и обрабатывающую части (т.е. кроме захвата света в пикселе можно преобразовать, обработать и очистить сигнал от шума).
  5. Возможность произвольного доступа к каждому пикселю или группе пикселей, что позволяет уменьшить размер захваченного изображения и увеличить скорость считывания.

Недостатки КМОП-матриц:

  1. Фотодиод занимает малую площать пикселя, в результате получается низкая светочувствительность матрицы, но в современных КМОП-матрицах этот минус практически устранен;
  2. Наличие теплового шума от нагревающихся транзисторов внутри пикселя в процессе считывания.
  3. Относительно большие размеры, фтооборудование с таким типом матриц отличается большим весом и размерами.

Кроме вышеупомянутых типов, существуют еще трехслойные матрицы, каждый слой которых представляет собой CCD. Отличие состоит в том, что ячейки могут одновременно воспринимать три цвета, которые образуются дихроидными призмами при попадании на них пучка света. Затем каждый пучок направляется на отдельную матрицу. В результате яркость синего, красного и зеленого цветов определяется на фотоэлементе сразу. Трехслойные матрицы применяют в видеокамерах высокого уровня, которые имеют специальное обозначение - 3CCD .

Подводя итоги хотелось бы отметить, что с развитием технологий производства CCD и CMOS матриц, меняются и их характеристики, поэтому все сложнее сказать какая из матриц однозначно лучше, но при этом в последнее время в производстве зеркальных фотокамер все большей популярностью пользуются КМОП-матрицы. На основе характерных особенностей различных видов матриц, можно составить четкое представление, почему профессиональная фототехника, обеспечивающая высокое качество съемок, довольно громоздкая и тяжелая. Эту информацию обязательно следует помнить при выборе фотоаппарата - то есть, учитывать физические размеры матрицы, а не количество пикселей.

| ПЗС-матрица (Прибор с зарядовой связью ) или CCD-матрица (на англ. Charge-Coupled Device ) – это аналоговая интегральная микросхема, в состав которой входят светочувствительные фотодиоды, выполненные на основе кремния или оксида олова. Данная микросхема использует технологию ПЗС (Приборов с зарядовой связью).

История CCD-матрицы

Первый прибор с зарядовой связью был разработан в 1969 году Джорджем Смитом (George Smith) и Уиллардом Бойлом (Willard Boyle) в Лабораториях Белла (AT&T Bell Labs) в США. Разработки велись в области видеотелефонии (Picture Phone) и развитии актуальной в то время, «полупроводниковой пузырьковой памяти» (Semiconductor Bubble Memory). Вскоре приборы с зарядовой связью начали использоваться как устройства памяти, в которых можно было поместить заряд во входной регистр микросхемы. Но позднее способность элемента памяти устройства получать заряд за счет фотоэлектрического эффекта сделала применение CCD устройств основным.

В 1970 году исследователи Лаборатории Белла научились фиксировать изображения с помощью простейших линейных устройств.

Вскоре, под руководством Кадзуо Ивамы, компания Sony стала активно разрабатывать и заниматься CCD технологиями, вложив в это огромные средства, и сумела наладить массовое производство ПЗС-матриц для своих видео камер.

Кадзуо Ивама скончался в августе 1982 года. Для увековечения его вклада, микросхема ПЗС-матрицы была установлена на его надгробной плите.

В 2006 году за работы над CCD, Уиллард Бойл и Джордж Смит были награждены Национальной Инженерной Академией США (USA National Academy of Engineering).

Позднее, в 2009 году создатели были награждены Нобелевской премией по физике.

Принцип работы ПЗС-матрицы

CCD-матрица в основном состоит из поликремния, отделённого от кремниевой подложки мембраной, у которой при подаче напряжения питания через поликремневые затворы сильно изменяются электрические потенциалы вблизи электродов проводника.

До экспонирования и подачей определённой комбинации напряжений на электроды, происходит сброс всех зарядов образовавшихся ранее и преобразование всех элементов в идентичное или первоначальное состояние.

Затем комбинация напряжений на электродах создаёт потенциальный запас или яму, в которой накапливаться электроны, образовавшиеся в определенном пикселе матрицы в результате воздействия световых лучей при экспонировании. Чем интенсивней сила светового потока во время экспозиции, тем больше накапливается запас электронов в потенциальной яме, соответственно тем выше мощность итогового заряда определенного пикселя.

После экспонирования, последовательные изменения напряжения питания на электродах формируются в каждом отдельно взятом пикселе и рядом с ним происходит распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным пикселям ПЗС-матрицы.

Пример пикселя CCD-матрицы с карманом n-типа

Примечание: архитектура субпикселей у каждого производителя своя.

Обозначения пикселя CCD на схеме:

1 - Частицы света (фотоны), прошедшие через объектив видеокамеры;
2 - Микролинза субпикселя;
3 - Красный светофильтр субпикселя (является фрагментом фильтра Байера);
4 - Светопропускающий электрод из оксида олова или поликристаллического кремния;
5 - Изолятор (состоит из оксида кремния);
6 - Специальный кремниевый канал n-типа. Зона внутреннего фотоэффекта (зона генерации носителей);
7 - Зона возможного запаса или ямы (карман n-типа). Место где собираются электроны из зоны генерации носителей;
8 - Кремниевая подложка p-типа.

Полнокадровый перенос CCD-матрицы

Полностью сформированное объективом видео изображение попадает на CCD-матрицу, то есть световые лучи падают на светочувствительную поверхность CCD-элементов, цель которых - преобразовать энергию частиц (фотонов) в электрический заряд.
Данный процесс протекает следующим образом.
Для фотона, попавшего на CCD-элемент, есть три варианта развития событий - он либо «отлетит» от поверхности, либо поглотится толщей полупроводника (состав материала матрицы), либо пробьет его поверхность. Поэтому от разработчиков требуется создать такой сенсор, в котором потери от отражения и поглащения были бы минимизированы. Те же частицы, которые были поглощены CCD-матрицей, образуют пару электрон-дырка, если произошло слабое взаимодействие с атомом кристаллической решётки полу проводника, или взаимодействие было с атомами донорских, либо акцепторных примесей. Оба из вышеперечисленных явлений называются - внутренним фотоэффектом. Но, внутренним фотоэффектом работа сенсора не ограничивается – главное необходимо сохранить «отнятые» у полупроводника носители заряда в специализированном хранилище, а потом их считать.

Строение элементов CCD-матрицы

В общем виде конструкция CCD-элемента выглядит примерно так: кремниевая подложка p-типа снабжается каналами из полу проводника n-типа. Над этими каналами размещаются электроды из поликристаллического кремния с изолирующей мембраной из оксида кремния. После подачи на этот электрод электрического потенциала, в ослабленной зоне под каналом n-типа создаётся потенциальная ловушка (яма), задача которой - сохранить электроны. Частица света, проникающая в кремний, приводит к генерации электрона, который притягивается потенциальной ловушкой и «застревает» в ней. Огромное количество фотонов или яркий свет обеспечивает больший заряд ловушки. Потом надо считать значение полученного заряда, также именуемого фототоком, и затем усилить его.

Считывание фототоков CCD-элементов происходит с так называемыми последовательными регистрами сдвига, которые конвертируют строку зарядов на входе в серию импульсов на выходе. Созданная серия импульсов – это и есть аналоговый сигнал, который в дальнейшем поступает на усилитель.

Так, при помощи регистра возможно преобразовать в аналоговый сигнал заряды строки из CCD-элементов. Практически, последовательный регистр сдвига в CCD-матрицах реализуется с помощью тех же CCD-элементов, объединённых в одну строку. Работа данного устройства базируется на умении приборов с зарядовой связью обмениваться зарядами своих потенциальных ловувшек. Этот обмен происходит благодаря наличию специализированных электродов переноса (по англ. Transfer Gate), расположенных между соседними CCD-элементами. При подаче повышенного потенциала на ближайший электрод, заряд «мигрирует» под него из потенциальной ловушки. Между CCD-элементами обычно располагаются от двух до четырёх электродов переноса, и от их количества зависит фазность регистра сдвига, который также называется двухфазным, трёхфазным или четырёхфазным.

Подача разных потенциалов на электроды переноса синхронизирована так, что перетекание зарядов потенциальных ловушек всех CCD-элементов регистра происходит практически одновременно. Так за один цикл переноса, CCD-элементы передают по цепочке заряды справа налево или слева направо. А крайний CCD-элемент отдаёт свой заряд усилителю, размещенного на выходе регистра.

Итак, последовательный регистр сдвига это и есть устройство с последовательным выходом и параллельным входом. После считывания абсолютно всех зарядов из регистра возникает возможность подать на его вход новую строку, потом следующую и так сформировать непрерывный аналоговый сигнал в основе которых лежит двумерный массив фототоков. Затем, входной параллельный поток для последовательного регистра сдвига обеспечивается совокупностью вертикально ориентированных последовательных регистров сдвига, которая называется параллельным регистром сдвига, а вся конструкция в сборе как раз и является устройством, называемое CCD-матрицей.