Ракетные Двигатели

Реферат выполнила

Ученица 9Б класса

Кожасова Индира


введение. 2

назначение и виды ракетных двигателей. 2

Термохимические ракетные двигатели. 3

Ядерные ракетные двигатели. 6

другие виды ракетных двигателей. 8

Электрические ракетные двигатели. 9

Использованная литература. 10

Ракетный двигатель – это реактивный двигатель, не использующий для работы окружающую среду (воздух, воду). Наиболее широко применяются химические ракетные двигатели. Разрабатываются и испытываются другие виды ракетных двигателей – электрические, ядерные и другие. На космических станциях и аппаратах широко применяют и простейшие ракетные двигатели, работающие на сжатых газах. Обычно в качестве рабочего тела в них используют азот.

По назначению ракетные двигатели подразделяют на несколько основных видов: разгонные (стартовые), тормозные, маршевые, управляющие и другие. Ракетные двигатели в основном применяются на ракетах (отсюда взято название). Кроме этого ракетные двигатели иногда применяют в авиации. Ракетные двигатели являются основными двигателями в космонавтике.

По виду применяемого топлива (рабочего тела) ракетные двигатели подразделяются на:

Твердотопливные

Жидкостные

Военные (боевые) ракеты обычно имеют твердотопливные двигатели. Это связанно с тем, что такой двигатель заправляется на заводе и не требует обслуживания весь срок хранения и службы самой ракеты. Часто твердотопливные двигатели применяют как разгонные для космических ракет. Особенно широко, в этом качестве, их применяют в США, Франции, Японии и Китае.

Жидкостные ракетные двигатели имеют более высокие тяговые характеристики, чем твердотопливные. Поэтому их применяют для вывода космических ракет на орбиту вокруг Земли и на межпланетные перелёты. Основными жидкими топливами для ракет являются керосин, гептан (диметилгидразин) и жидкий водород. Для таких видов топлива обязательно необходим окислитель (кислород). В качестве окислителя в таких двигателях применяют азотную кислоту и сжиженный кислород. Азотная кислота уступает сжиженному кислороду по окислительным свойствам, но не требует поддержания особого температурного режима при хранении, заправки и использовании ракет.

Двигатели для космических полетов отличаются от земных тем, что они при возможно меньшей массе и объеме должны вырабатывать как можно большую мощность. Кроме того, к ним предъявляются такие требования, как исключительно высокая эффективность и надежность, значительное время работы. По виду используемой энергии двигательные установки космических аппаратов подразделяются на четыре типа: термохимические, ядерные, электрические, солнечно – парусные. Каждый из перечисленных типов имеет свои преимущества и недостатки и может применяться в определенных условиях.

В настоящее время космические корабли, орбитальные станции и беспилотные спутники Земли выводятся в космос ракетами, оснащенными мощными термохимическими двигателями. Существуют также миниатюрные двигатели малой силы тяги. Это уменьшенная копия мощных двигателей. Некоторые из них могут уместиться на ладони. Сила тяги таких двигателей очень мала, но её бывает достаточно, чтобы управлять положением корабля в пространстве.

Известно, что в двигателе внутреннего сгорания, топке парового котла – всюду, где происходит сгорание, самое активное участие принимает атмосферный кислород. В космическом пространстве воздуха нет, а для работы ракетных двигателей в космическом пространстве необходимо иметь два компонента – горючее и окислитель.

В жидкостных термохимических ракетных двигателях в качестве горючего используется спирт, керосин, бензин, анилин, гидразин, диметилгидразин, жидкий водород. В качестве окислителя применяют жидкий кислород, перекись водорода, азотная кислота. Возможно, в будущем будет применяться в качестве окислителя жидкий фтор, когда будут изобретены способы хранения и использования такого активного химического вещества.

Горючее и окислитель для жидкостных реактивных двигателей хранятся раздельно, в специальных баках и с помощью насосов подаются в камеру сгорания. При их соединении в камере сгорания развивается температура до 3000 – 4500 °С.

Продукты сгорания, расширяясь, приобретают скорость от 2500 до 4500 м/с. Отталкиваясь от корпуса двигателя, они создают реактивную тягу. При этом, чем больше масса и скорость истечения газов, тем больше силы тяги двигателя.

Удельную тягу двигателей принято оценивать величиной тяги создаваемой единицей массы топлива сгораемой за одну секунду. Эту величину называют удельным импульсом ракетного двигателя и измеряют в секундах (кг тяги / кг сгоревшего топлива в секунду). Лучшие твердотопливные ракетные двигатели имеют удельный импульс до 190 с., то есть 1 кг топлива сгорающий за одну секунду создает тягу 190 кг. Водородно-кислородный ракетный двигатель имеет удельный импульс 350 с. Теоретически водородно-фторовый двигатель может развить удельный импульс более 400 с.

Обычно применяемая схема жидкостного ракетного двигателя работает следующим образом. Сжатый газ создает необходимый напор в баках с криогенным горючим, для предотвращения возникновения газовых пузырей в трубопроводах. Насосы подают топливо в ракетные двигатели. Топливо впрыскивается в камеру сгорания через большое количество форсунок. Также через форсунки в камеру сгорания впрыскивают и окислитель.

В любой машине при сгорании топлива образуются большие тепловые потоки, нагревающие стенки двигателя. Если не охлаждать стенки камеры, то она быстро прогорит, из какого бы материала она ни была сделана. Жидкостный реактивный двигатель, как правило, охлаждают одним из компонентов топлива. Для этого камеру делают двух стеночной. В зазоре между стенками протекает холодный компонент топлива.

Большую силу тяги создает двигатель, работающий на жидком кислороде и жидком водороде. В реактивной струе этого двигателя газы мчатся со скоростью немногим больше 4 км/с. Температура этой струи около 3000°С, и состоит она из перегретого водяного пара, который образуется при сгорании водорода и кислорода. Основные данные типичных топлив для жидкостных реактивных двигателей приведены в таблице №1

Но у кислорода наряду с достоинствами есть и один недостаток – при нормальной температуре он представляет собой газ. Понятно, что применять в ракете газообразный кислород нельзя ведь в этом случае пришлось бы его хранить под большим давлением в массивных баллонах. Поэтому уже Циолковский, первым предложивший кислород в качестве компонента ракетного топлива, говорил о жидком кислороде как о компоненте без которого космические полеты не будут возможны.

Чтобы превратить кислород в жидкость, его нужно охладить до температуры -183°С. Однако сжиженный кислород легко и быстро испаряется, даже если его хранить в специальных теплоизолированных сосудах. Поэтому нельзя долго держать снаряженной ракету, двигатель которой использует в качестве окислителя жидкий кислород. Заправлять кислородный бак такой ракеты приходится непосредственно перед запуском. Если такое возможно для космических и других ракет гражданского назначения, то для военных ракет, которые требуется поддерживать в готовности к немедленному запуску в течение длительного времени такое неприемлемо. Азотная кислота не обладает таким недостатком и поэтому является «сохраняющимся» окислителем. Этим объясняется её прочное положение в ракетной технике, особенно военной, несмотря на существенно меньшую силу тяги, которую она обеспечивает.

Использование наиболее сильного из всех известных химии окислителей – фтора позволит существенно увеличить эффективность жидкостных реактивных двигателей. Однако жидкий фтор очень неудобен в эксплуатации и хранении из-за ядовитости и низкой температуры кипения (-188°С). Но это не останавливает ученых-ракетчиков: экспериментальные двигатели на фторе уже существуют и испытываются в лабораториях и на экспериментальных стендах.

Советский ученый Ф.А. Цандер еще в тридцатые годы в своих трудах предложил использовать в межпланетных полетах в качестве горючего легкие металлы, из которых будет изготовлен космический корабль – литий, бериллий, алюминий и др. В особенности как добавку к обычному топливу, например водородно-кислородному. Подобные «тройные композиции» способны обеспечить наибольшую из возможных для химических топлив скорость истечения – до 5 км/с. Но это уже практически предел ресурсов химии. Большего она практически сделать не может.

Хотя в предлагаемом описании пока преобладают жидкостные ракетные двигатели, нужно сказать, что первым в истории человечества был создан термохимический ракетный двигатель на твердом топливе – РДТТ.

Топливо – например специальный порох – находится непосредственно в камере сгорания. Камера сгорания с реактивным соплом, заполненная твердым топливом – вот и вся конструкция. Режим сгорания твердого топлива зависит от предназначения РДТТ (стартовый, маршевый или комбинированный). Для твердотопливных ракет применяемых в военном деле характерно наличие стартового и маршевого двигателей. Стартовый РДТТ развивает большую тягу на очень короткое время, что необходимо для схода ракеты с пусковой установки и её первоначального разгона. Маршевый РДТТ предназначен для поддержания постоянной скорости полета ракеты на основном (маршевом) участке траектории полета. Различия между ними заключаются в основном в конструкции камеры сгорания и профиле поверхности горения топливного заряда, которые определяют скорость горения топлива от которой зависит время работы и тяга двигателя. В отличие от таких ракет космические ракеты-носители для запуска спутников Земли, орбитальных станций и космических кораблей, а также межпланетных станций работают только в стартовом режиме со старта ракеты до вывода объекта на орбиту вокруг Земли или на межпланетную траекторию.

В целом твердотопливные ракетные двигатели на имеют много преимуществ перед двигателями на жидком топливе: они просты в изготовлении, длительное время могут храниться, всегда готовы к действию, относительно взрывобезопасны. Но по удельной тяге твердотопливные двигатели на 10-30% уступают жидкостным.

Один из основных недостатков ракетных двигателей, работающих на жидком топливе, связан с ограниченной скоростью истечения газов. В ядерных ракетных двигателях представляется возможным использовать колоссальную энергию, выводящуюся при разложении ядерного «горючего», для нагревания рабочего вещества.

Принцип действия ядерных ракетных двигателей почти не отличается от принципа действия термохимических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет своей собственной химической энергии, а за счет «посторонней» энергии, выделяющейся при внутриядерной реакции. Рабочее тело пропускается через ядерный реактор, в котором происходит реакция деления атомных ядер (например, урана), и при этом нагревается.

У ядерных ракетных двигателей отпадает необходимость в окислителе и поэтому может быть использована только одна жидкость.

В качестве рабочего тела целесообразно применять вещества, позволяющие двигателю развивать большую силу тяги. Этому условию наиболее полно удовлетворяет водород, затем следует аммиак, гидразин и вода.

Процессы, при которых выделяется ядерная энергия, подразделяют на радиоактивные превращения, реакции деления тяжелых ядер, реакцию синтеза легких ядер.

Радиоизотопные превращения реализуются в так называемых изотопных источниках энергии. Удельная массовая энергия (энергия, которую может выделить вещество массой 1кг) искусственных радиоактивных изотопов значительно выше, чем химических топлив. Так, для 210 Ро она равна 5*10 8 КДж/кг, в то время как для наиболее энергопроизводительного химического топлива (бериллий с кислородом) это значение не превышает 3*10 4 КДж/кг.

К сожалению, подобные двигатели применять на космических ракетах-носителях пока не рационально. Причина этого – высокая стоимость изотопного вещества и трудности эксплуатации. Ведь изотоп выделяет энергию постоянно, даже при его транспортировке в специальном контейнере и при стоянке ракеты на старте.

В ядерных реакторах используется более энергопроизводительное топливо. Так, удельная массовая энергия 235 U (делящегося изотопа урана) равна 6,75*10 9 КДж/кг, то есть примерно на порядок выше, чем у изотопа 210 Ро. Эти двигатели можно «включать» и «выключать», ядерное горючее (233 U, 235 U, 238 U, 239 Pu) значительно дешевле изотопного. У таких двигателей в качестве рабочего тела может применяться не только вода, но и более эффективные рабочие вещества – спирт, аммиак, жидкий водород. Удельная тяга двигателя с жидким водородом равна 900 с.

В простейшей схеме ядерного ракетного двигателя с реактором, работающим на твердом ядерном горючем рабочее тело размещено в баке. Насос подает его в камеру двигателя. Распыляясь с помощью форсунок, рабочее тело вступает в контакт с тепловыделяющим ядерным горючим, нагревается, расширяется и с большой скоростью выбрасывается через сопло наружу.

Ядерное горючее по запасу энергии превосходит любой другой вид топлива. Тогда возникает закономерный вопрос – почему же установки на этом горючем имеют все-таки сравнительно небольшую удельную тягу и большую массу? Дело в том, что удельная тяга твердофазного ядерного ракетного двигателя ограничена температурой делящегося вещества, а энергетическая установка при работе испускает сильное ионизирующее излучение, оказывающее вредное действие на живые организмы. Биологическая защита от таких излучений имеет большой вес не применима на космических летательных аппаратах.

Практические разработки ядерных ракетных двигателей, использующих твердое ядерное горючее, были начаты в середине 50-х годов 20-го столетия в Советском Союзе и США, почти одновременно со строительством первых ядерных электростанций. Работы проводились в обстановке повышенной секретности, но известно, что реального применения в космонавтике такие ракетные двигатели до сих пор не получили. Все пока ограничилось использованием изотопных источников электроэнергии относительно небольшой мощности на беспилотных искусственных спутниках Земли, межпланетных космических аппаратах и всемирно известном советском «луноходе».

Существуют и более экзотические проекты ядерных ракетных двигателей, в которых делящееся вещество находится в жидком, газообразном или даже плазменном состоянии, однако реализация подобных конструкций на современном уровне техники и технологий нереальна.

Существуют, пока на стадии теоретической или лабораторной следующие проекты ракетных двигателей:

Импульсные ядерные ракетные двигатели использующие энергию взрывов небольших ядерных зарядов;

Термоядерные ракетные двигатели, в которых в качестве топлива может использоваться изотоп водорода. Энергопроизводительность водорода в такой реакции составляет 6,8*10 11 КДж/кг, то есть примерно на два порядка выше производительности ядерных реакций деления;

Солнечно-парусные двигатели – в которых используется давление солнечного света (солнечный ветер), существование которого опытным путем доказал русский физик П.Н. Лебедев еще в 1899 году. Расчетным путем ученые установили, что аппарат массой в 1 т, снабженный парусом диаметром 500 м, может долететь от Земли до Марса примерно за 300 суток. Однако эффективность солнечного паруса быстро уменьшается с удалением от Солнца.

Почти все рассмотренные выше ракетные двигатели, развивают огромную силу тяги и предназначены для вывода космических аппаратов на орбиту вокруг Земли и разгона их до космических скоростей для межпланетных полетов. Совсем другое дело – двигательные установки для уже выведенных на орбиту или на межпланетную траекторию космических аппаратов. Здесь, как правило, нужны двигатели малой мощности (несколько киловатт или даже ватт) способные работать сотни и тысячи часов и многократно включаться и выключаться. Они позволяют поддерживать полет на орбите или по заданной траектории, компенсируя сопротивление полету создаваемое верхними слоями атмосферы и солнечным ветром.

В электрических ракетных двигателях разгон рабочего тела до определенной скорости производится нагреванием его электрической энергией. Электроэнергия поступает от солнечных батарей или атомной электростанции. Способы нагревания рабочего тела различны, но реально применяется в основном электродуговой. Он показал себя очень надежным и выдерживает большое количество включений. В качестве рабочего тела в электродуговых двигателя применяют водород. С помощью электрической дуги водород нагревается до очень высокой температуры и он превращается в плазму - электрически нейтральную смесь положительных ионов и электронов. Скорость истечения плазмы из двигателя достигает 20 км/с. Когда ученые решат проблему магнитной изоляции плазмы от стенок камеры двигателя, тогда можно будет значительно повысить температуру плазмы и довести скорость истечения до 100 км/с.

Первый электрический ракетный двигатель был разработан в Советском Союзе в 1929-1933 гг. под руководством В.П. Глушко (впоследствии он стал создателем двигателей для советских космических ракет и академиком) в знаменитой газодинамической лаборатории (ГДЛ).

1. Советский энциклопедический словарь

2. С.П. Уманский. Космонавтика сегодня и завтра. Кн. Для учащихся.

Конструкция двигателя на твердом топливе (ТТРД) проста; он состоит из корпуса (камеры сгорания) и реактивного сопла. Камера сгорания является основным несущим элементом двигателя и ракеты в целом. Материалом для его изготовления служит сталь или пластик. Сопло предназначено для разгона газов до определенной скорости и придания потоку требуемого направления. Представляет собой закрытый канал специального профиля. В корпусе находится топливо. Корпус двигателя обычно изготавливают из стали, иногда - из стеклопластика. Часть сопла, которая испытывает наибольшее напряжение, делается из графита, тугоплавких металлов и их сплавов, остальная часть - из стали, пластмасс, графита.

Когда газ, образовавшийся в результате сгорания топлива, проходит через сопло, он вылетает со скоростью, которая может быть больше скорости звука. Как результат - возникновение силы отдачи, направление которой противоположно истечению струи газа. Эту силу называют реактивной , или просто тягой. Корпус и сопло работающих двигателей необходимо защищать от прогорания, для этого в них применяют теплоизолирующие и жаропрочные материалы.

По сравнению с другими типами ракетных двигателей, ТТРД достаточно просто устроен, но имеет пониженную тягу, малое время работы и сложности в управлении. Поэтому, являясь достаточно надежным, он используется, в основном, для создания тяги при «вспомогательных» операциях и в двигателях межконтинентальных баллистических ракет.

До настоящего времени ТТРД редко использовались на борту космических аппаратов. Одна из причин этого - чрезмерное ускорение, которое сообщается конструкции и аппаратуре ракеты при работе твердотопливного двигателя. А для старта ракеты необходимо, чтобы двигатель развивал небольшую по величине тягу в течение продолжительного промежутка времени.

Твердотопливные двигатели позволили США осуществить в 1958 году вслед за СССР запуск первого своего искусственного спутника и вывести в 1959 году космический аппарат на траекторию полета к другим планетам. На сегодняшний день именно в США создан самый мощный космический ТТРД - DM-2, способный развить тягу в 1634 т.

Перспективами развития космических двигателей на твердом топливе являются:

  • улучшение технологий изготовления двигателя;
  • разработка реактивных сопел, которые смогут работать большее время;
  • использование современных материалов;
  • совершенствование составов смесевого топлива и т. д.

Твердотопливный ракетный двигатель (ТТРД) - двигатель, работающий на твердом горючем, наиболее часто используется в ракетной артиллерии и значительно реже в космонавтике; является старейшим из тепловых двигателей.

В качестве топлива в таких двигателях применяют твердое вещество (смесь отдельных веществ), способное гореть без доступа кислорода, выделяя при этом большое количество раскаленных газов, которые используются для создания реактивной тяги.

Существуют два класса горючего для ракет: двухосновные топлива и смесевые топлива.

Двухосновные топлива — представляют собой твердые растворы в нелетучем растворителе (чаще всего нитроцеллюлоза в нитроглицерине). Достоинства - хорошие механические, температурные и другие конструкционные характеристики, сохраняют свои свойства при длительном хранении, просты и дешевы в изготовлении, экологичны (при сгорании нет вредных веществ). Недостаток - сравнительно невысокая мощность и повышенная чувствительность к ударам. Заряды из этого топлива применяются чаще всего в небольших корректирующих двигателях.

Смесевые топлива — современные смеси состоят из перхлората аммония (в качестве окислителя), алюминия в форме порошка и органического полимера - для связывания смеси. Алюминий и полимер играют роль горючего, причем металл является основным источником энергии, а полимер - основным источником газообразных продуктов. Характеризуются нечувствительностью к ударам, высокой интенсивностью горения при низких давлениях и очень трудно гасятся.

Горючее в виде топливных зарядов помещается в камеру сгорания. После старта горение продолжается до полного выгорания горючего, тяга изменяется по законам, обусловленным горением топлива, и практически не регулируется. Изменение тяги достигается использованием топлива с различными скоростями горения и выбором подходящей конфигурации заряда.

При помощи воспламенителя компоненты топлива разогреваются, между ними начинается химическая реакция окисления-восстановления, и топливо постепенно сгорает. При этом образуется газ с высоким давлением и температурой. Давление раскаленных газов при помощи сопла превращается в реактивную тягу, которая по своей величине пропорциональна массе продуктов сгорания и скорости их вылета из сопла двигателя.

При всей простоте точный расчет эксплуатационных параметров ТТРД является сложной задачей.

Твердотопливные двигатели обладают рядом преимуществ перед жидкостными ракетными двигателями: двигатель достаточно прост для изготовления, может храниться долгое время, сохраняя при этом свои характеристики, относительно взрывобезопасен. Однако по мощности они уступают жидкостным двигателям примерно на 10–30 %, имеют сложности при регулировании мощности и большую массу двигателя в целом.

В ряде случаев применяется разновидность ТТРД, в котором один компонент горючего находится в твёрдом состоянии, а второй (чаще всего окислитель) - в жидком.

Ракетное топливо

НЕМНОГО ТЕОРИИ Из школьного курса физики (закон сохранения количества движения) известно, что если от покоящегося тела массой М отделится масса m со скоростью V то оставшаяся часть тела массой М-m будет двигаться со скоростью m/(M-m) x V в противоположном направлении. Значит, чем больше отбрасываемая масса и ее скорость,тем большую ско- рость приобретет оставшаяся часть массы т.е. тем больше будет сила приводящая ее в движение. Для работы ракетного двигателя (РД), как и любого реактивного, необходим источник энергии (топливо), рабочее тело (РТ) которое обеспечивает аккумулирование энергии источника ее перенос и преобразование) ,устройство в котором энергия пере- дается РТ и устройство в котором внутренняя энергия РТ преобразуется в кинетичес- кую энергию струи газов и передается ракете в виде силы тяги. Известны химические и нехимические топлива: у первых (жидкостные ракетные дви- гатели - ЖРД и ракетные двигатели твердого топлива - РДТТ) необходимая для работы двигателя энергия выделяется в результате химических реакций, а образующиеся при этом газообразные продукты служат рабочим телом, у вторых для нагрева рабочего тела используются другие источники энергии (например ядерная энергия). Эффективность РД, как и эффективность топлива измеряется его удельным импуль- сом. Удельный импульс тяги (удельная тяга), определяемый как отношение силы тяги к секундному массовому расходу рабочего тела. Для ЖРД и РДТТ расход рабочего тела совпадает с расходом топлива и удельный импульс является величиной обратной удель- ному расходу топлива. Удельный импульс характеризует эффективность РД - чем он больше тем меньше топлива (в общем случае - рабочего тела) расходуется на создание единицы тяги. В системе СИ удельный импульс измеряется в м/сек и практически сов- падает по величине со скоростью реактивной струи. В технической системе единиц (другое ее наименование МКГСС что значит: Метр - КилоГрамм Силы - Секунда), широко применявшейся в СССР, килограмм массы был производной единицей и определялся как масса которой сила в 1 кгс сообщает ускорение 1 м/сек за сек. Она называлась «техническая единица массы» и составляла 9,81 кг. Такая единица была неудобной, поэтому вместо массы использовали вес, вместо плотности - удельный вес и т.д. В ракетной технике при расчете удельного импульса также использовали не массовый а весовой расход топлива. В результате уделный импульс (в системе МКГСС) измерялся в секундах (по величине он в 9,81 раз меньше удельного «массового» импульса). Величина удельного импульса РД обратно пропорциональна квадратному корню мо- лекулярной массы рабочего тела и прямо пропорциональна квадратному корню из зна- чения температуры рабочего тела перед соплом. Температура рабочего тела определя- ется теплотворной способностью топлива. Максимальное ее значение для пары берил- лий+кислород составляет 7200 ккап/кг. что ограничивает величину максимального удельного импульса ЖРД величиной не более 500 сек. Величина удельного импульса зависит от термического коэффициента полезного действия РД - отношения кинетичес- кой энергии, сообщенной в двигателе рабочему телу, ко всей теплотворной способ- ности топлива. Преобразование теплотворной способности топлива в кинетическую энергию истекающей струи в двигателе происходит с потерями поскольку часть тепла уносится с истекающим рабочим телом, часть из-за неполного сгорания топлива не выделяется вовсе. Наиболее высокий удельный импульс имеют электрореактианые дви- гатели. У плазменного ЭРД он доходит до 29000 сек. Максимальный импульс серийных российских двигателей РД-107 составляет 314 сек, Характеристики РД на 90% определяются применяемым топливом. Ракетное топливо - вещество (одно или несколько), представляющих собой источник энергии и РТ для РД. Оно должно удовлетворять следующим основным требованиям: иметь высокий уд.импульс, высокую плотность, требуемое агрегатное состояние компонентов в условиях эксплуа- тации, должно быть стабильным, безопасным в обращении, нетоксичным, совместимым с конструкционными материалами, иметь сырьевые ресурсы и др. Большинство существу- ющих РД работает на химическом топливе. Основная энергетическая характеристика (уд. импульс) определяется количеством выделившейся теплоты (теплотворностью топлива) и химическим составом продуктов реакции, от которого зависит полнота преобразования тепловой энергии в кинетическую энергию потока (чем ниже молекулярная масса, тем выше уд.импульс). По числу раздельно хранимых компонентов химические ракетные топ- лива делятся на одно-(унитарные), двух-, трёх- и многокомпонентные, по агрегатному состоянию компонентов - на жидкие, твёрдые, гибридные, псевдожидкие, желеобразные. Однокомпонентные топлива - соединения типа гидразина N 2 H 4 , перекиси водорода Н 2 О 2 в камере РД распадаются с выделением большого количества теплоты и газообразных продуктов, обладают невысокими энергетическими свойствамивами. Например 100%-я перекись водорода имеет уд.импульс 145с. и применяется как вспомогательные топлива для систем управления и ориентации, приводов турбонасосов РД. Гелеобразные топлива - обычно загущенное солями высокомолекулярных органических кислот или специальными добавками горючее (реже окислитель). Повышение уд.импульса ракетных топлив дости- гается добавлением порошков металлов (Al и др.). Например "Сатурн-5" сжигает за время полета 36т. алюминиевого порошка. Наибольшее применение получили 2-х компо- нентные жидкие и твёрдые топлива. ЖИДКОЕ ТОПЛИВО Двухкомпонентное жидкое топливо состоит из окислителя и горючего. К жидким топливам предъявляются следующие специфические требования: возможно более широкий температурный интервал жидкого состояния, пригодность, по крайней мере, одного из компонентов для охлаждения жидкостного РД (термическая стабильность, высокие тем- пература кипения и теплоёмкость), возможность получения из основных компонентов генераторного газа высокой работоспособности, минимальная вязкость компонентов и малая зависимость её от температуры. Для улучшения характеристик в состав топлива вводятся различные присадки (металлы, например Be и Al для повышения уд.импульса, ингибиторы коррозии, стабилизаторы, активаторы воспламенения, вещества понижающие температуру замерзания). В качестве горючего используются керосин (лигроино-кероси- новые и керосино-газойлевые нефтяные фракции с диапазоном кипения 150-315°С), жид- кий водород, жидкий метан (CH 4), спирты (этиловый, фурфуриловый); гидразин (N 2 H 4), и его производные (диметилгидразин), жидкий аммиак (NH 3), анилин, метил-, диметил- и триметиламины и т.д. В качестве окислителя применяют: жидкий кислород, концентри- рованную азотную кислоту (HNO 3), азотный тетраксид (N 2 O 4), тетранитроме- тан; жидкие фтор, хлор и их соединения с кислородом и др. При подаче в камеру сго- рания компоненты топлива могут самовоспламеняться (конц.азотная кислота с анилином, азотный тетроксид с гидразином и др.)или нет. Применение самовоспламеняющихся топ- лив упрощает конструкцию РД и позволяет наиболее просто осуществлять многоразовые запуски. Максимальный уд.импульс имеют пары водород-фтор(412с), водород-кислород (391с). С точки зрения химии идеальный окислитель – жидкий кислород. Он использо- вался в первых балистических ракетх ФАУ,ее американских и советских копиях. Но его температура кипения (-183 0 С) не устраивала военных. Требуемый диапазон рабочих температур от –55 0 С до +55 0 С. Азотная кислота –другой очевидный окислитель для ЖРД больше устраивала военных. Она имеет высокую плотность,невысокую стоимость, производится в больших количествах, достаточно стабильна, в том числе при высоких температурах, пожаро- и взрывобезопасна. Главное ее преимущество перед жидким кис- лородом в высокой температуре кипения, а следовательно в возможности неограниченно долго храниться без всякой теплоизоляции. Но азотная кислота настолько агрессивное вещество, что непрерывно реагирует само с собой – атомы водорода отщепляются от одной молекулы кислоты и присоединяются к соседним, образуя непрочные, но чрезвы- чайно химически активные агрегаты. Даже самые стойкие сорта нержавеющей стали мед- ленно разрушаются концентрированной азотной кислотой (в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов). Для уменьшения коррозионной активности в азотную кислоту стали добавлять различные вещества,всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержаве- ющей стали в десять раз. Для повышения уд.импульса в кислоту добавляют двуокись азота (NO 2). Это газ бурого цвета, с резким запахом. При охлаждении ниже 21 0 С он сжижается при этом образуется четырехокись азота (N 2 O 4), или азотный тетраксид (АТ). При атмосферном давлении АТ кипит при температуре +21 0 С, а при –11 0 С замер- зает. Газ состоит в основном из молекул NO 2 , жидкость из смеси NO 2 и N 2 O 4 , а в твердом веществе остаются одни только молекулы тетроксида. Кроме всего прочего добавка АТ в кислоту связывает попадающую в окислитель воду, что уменьшает корро- зионную активность кислоты, увеличивается плотность раствора, достигая максимума при 14% растворенного АТ. Эту концентрацию использовали американцы для своих бое- вых ракет. Наши для получения максимального уд. импульса использовали 27% раствор АТ. Такой окислитель получил обозначение АК-27. Параллельно поискам лучшего окислителя шли поиски оптимального горючего. Пер- вым широко использовавшимся горючим был спирт(этиловый), применявшийся на первых советских ракетах Р-1, Р-2, Р-5 ("наследство" ФАУ-2). Кроме низких энергетических показателей военных очевидно не устраивала низкая стойкость личного состава к «от- равлению» таким горючим. Военных больше всего устраивал продукт перегонки нефти,но проблема была в том, что такое топливо не самовоспламеняется при контакте с азот- ной кислотой. Этот недостаток обошли применением пускового горючего. Его состав был найден еще немецкими ракетчиками во время Второй мировой войны, и называлось оно «Тонка-250» (в СССР оно именовалось ТГ-02). Лучше всего воспламеняются с азот- ной кислотой вещества,имеющие в составе, кроме углерода и водорода еще азот. Таким веществом, обладающим высокими энргетическими характеристиками, был гидразин (N 2 H 4). По физическим свойствам он очень похож на воду (плотность на несколько процентов больше, температура замерзания +1,5 0 С, кипения +113 0 С, вязкость и все прочее – как у воды). Но военных не устраивала высокая температура замерзания (выше,чем у воды). В СССР был разработан способ получения несимметричного диметилгидразина (НДМГ), а американцы использовали более простой процесс получения монометилгидразин. Обе эти жидкости, были чрезвычайно ядовиты зато менее взрывоопасны, меньше впитывали водя- ные пары, были термически более стойкими чем гидразин. Но вот температура кипения и плотность по сравнению с гидразином понизились. Несмотря на некоторые недостатки новое топливо вполне устраивало и конструкторов, и военных. НДМГ имеет и другое, «несекретное» название - «гептил». «Аэрозин-50» использовавшийся американцами на своих жидкостных ракетах представляет собой смесь гидразина и НДМГ, что было след- ствием изобретения технологического процесса,в котором они получались одновременно. После того как баллистические ракеты стали размещаться в шахтах, в герметичном контейнере с системой термостатирования требования к диапазону рабочих температур ракетного топлива были снижены. В результате от азотной кислоты отказались,перейдя на чистый АТ так же получивший несекретное наименование – «амил». Давление наддува в баках повышало температуру кипения до приемлемой величины. Коррозия баков и тру- бопроводов с при использовании АТ уменьшилась настолько, что стало возможным хра- нить ракету заправленной на протяжении всего срока боевого дежурства. Первыми раке- тами использующими в качестве окислителя АТ стали УР-100 и тяжелая Р-36. Они могли стоять заправленными до 10 лет подряд. Основные характеристики двухкомпонентных жидких топлив при оптимальном соотношении компонентов (давление в камере сгорания, 100 кгс/см2, на срезе сопла 1 кгс/см2) Окислитель Горючее Теплотвор- Плотность Температура Уд.импульс ность топлива*, г /см 2 * в камере в пустоте, ккал/кг сгорания, К сек Азотная Керосин 1460 1,36 2980 313 к-та (98%) ТГ-02 1490 1,32 3000 310 Анилин(80%)+ фурфуриловый 1420 1.39 3050 313 спирт (20%) Кислород Спирт(94%) 2020 0,39 3300 255 (Жидкий) Водород ж. 0,32 3250 391 Керосин 2200 1,04 3755 335 НДМГ 2200 1,02 3670 344 Гидразин 1,07 3446 346 Аммиак ж. 0,84 3070 323 АТ Керосин 1550 1,27 3516 309 НДМГ 1,195 3469 318 Гидразин 1,23 3287 322 Фтор Водород ж. 0,62 4707 412 (жидкий) Гидразин 2230 1,31 4775 370 * отношение суммарной массы окислителя и горючего к их объёму. ТВЕРДОЕ ТОПЛИВО Твердое топливо подразделяется на баллиститное прессованные - нитроглицерино- вые пороха) представляющее собой гомогенную смесь компонентов (в современных мощных РД не применяется) и смесевое представляющее собой гетерогенные смеси окис- лителя, горючего-связующего (способствующего образованию монолитного топливного блока) и различных добавок (пластификатора, порошки металлов и их гидридов, отвер- дителя и т.д.). Твердотопливные заряды изготавливаются в виде канальных шашек, горящих по внешней либо внутренней поверхности. Основные специфические требования, предъявляемые к твёрдым топливам: равномерность распределения компонентов и, след- овательно, постоянство физико-химических и энергетических свойств в блоке, устой- чивость и закономерность горения в камере РД, а также комплекс физико-механических свойств, обеспечивающих работоспособность двигателя в условиях перегрузок, пере- менной температуры, вибраций. По уд.импульсу (около 200с.) твёрдое топливо усту- пает жидкому, т.к. из-за химической несовместимости не всегда удаётся использовать в составе твёрдого топлива энергетически эффективные компоненты. Недостатком твер- дого топлива является подверженость "старению" (необратимому изменению свойств вследствие происходящих в полимерах химических и физических процессов). Американские ракетчики быстро отказались от жидкого топлива и для боевых ракет предпочли твердое смесевое,работы по созданию которого в США проводились еще с середины 40-х годов, что позволило уже в 1962г. принять на вооружение первую твердотопливную МБР «Минитмен-1». В нашей стране широкомасштабные исследования начались со значительным опозданием. Постановлением от 20 ноября 1959г. предусмат- ривалось создание трёхступенчатой ракеты РТ-1 с твердотопливными ракетными двига- телями (РДТТ) и дальностью 2500км. Поскольку к тому моменту практически отсутство- вали научная, технологическая и производственная базы по смесевым зарядам альтерна- тивы использованию баллиститных твердых топлив не было. Максимально допустимый по технологии диаметр пороховых шашек изготавливаемых методом проходного прессования не превышал 800мм. Поэтому двигатели каждой ступени имели пакетную компоновку из 4 и 2 блоков у первой и второй ступеней соответственно. Вкладной пороховой заряд горел по внутреннему цилиндрическому каналу, торцам и поверхности 4-х продольных щелей, расположенных в передней части заряда. Такая форма поверхности горения обес- печивала необходимую диаграмму давления в двигателе. Ракета имела неудовлетвори- тельные характеристики так, при стартовой массе 29.5т. "Минитмен-1" имел предель- ную дальность 9300км, а у РТ-1 эти характеристики составляли, соответственно 34т. и 2400км. Основной причиной отставания ракеты РТ-1 являлось использование баллист- ного пороха. Для создания МБР на твердом топливе, по своим характеристикам прибли- жающейся к "Минитмен-1", было необходимо использование смесевых топлив, обеспечи- вающих более высокие энергетические и лучшие массовые характеристики двигателей и ракеты в целом. В апреле 1961г. вышло Постановление Правительства о разработке МБР на твердом топливе - РТ-2, было проведено установочное совещание и подготовлена программа "Нейлон-С" по разработке смесевых топлив с уд.импульсом 235с. Эти топ- лива должны были обеспечить возможность изготовления зарядов массой до 40т. мето- дом литья в корпус двигателя. В конце 1968г. ракета была принята на вооружение, но требовала дальнейшего совершенствования. Так, смесевое топливо формовалось в отдельных прессформах, затем заряд вкладывался в корпус, а зазор между зарядом и корпусом заливался связующим веществом. Это создавало определенные трудности при изготовлении двигателя. Ракета РТ-2П, имела твёрдое топливо ПАЛ-17/7 на основе бутил-каучука, обладающего высокой пластичностью, не имеющего заметного старения и растрескивания в процессе хранения, при этом топливо заливалось прямо в корпус дви- гателя, затем производилась его полимеризация и формование необходимых поверхнос- тей горения заряда. По своим летно-техническим характеристикам РТ-2П приближалась к ракете "Минитмен-3". Первыми нашли широкое применение в РДТТ смесевые топлива на основе перхлората калия и полисульфида. Значительное увеличение уд. импульса РДТТ произошло после того, как вместо перхлората калия стал применяться перхлорат аммония, а вместо полисульфидных - полиурстаноеые, а затем полибутадиеновые и другие каучуки, и в состав топлива было введено дополнительное горючее - порошкообразный алюминий. Почти все современные РДТТ содержат заряды, изготовленные из перхлората аммония, алюминия и полимеров бутадиена (СН 2 =СН-СН=СН 2). Готовый заряд имеет вид твердой резины или пластика. Его подвергают тщательному контролю на сплошность и однород- ность массы, прочное сцепление топлива с корпусом и т.д. Трещины и поры в заряде, как и отслоения от корпуса, недопустимы так как могут привести к нерасчетному уве- личению тяги РДТТ (вследствие увеличения горящей поверхности), прогарам корпуса и даже взрывам. Характерный состав смесевого топлива, используемого в современных мощных РДТТ: окислителя (как правило перхлорат аммония NH 4 C1O 4) 60-70%, горючего- связующего (бутилкаучук, нитрильные каучуки, полибутадиены) 10-15%, пластификатора 5-10%, металла (порошки Al,Be,Mg и их гидриды) 10-20%, отвердителя 0,5-2,0% и ката- лизатора горения 0,1-1,0%.(окись железа) В современных космических РДТТ сравнительно редко применяется и модифицирован- ное двухосновное, или смесевое двухосновное топливо. По составу оно является проме- жуточным между обычным баллистным двухосновным (двухосновные пороха – бездымные пороха в которых два основных компонента: нитроцеллюлоза - чаще всего в виде пирок- силина, и нелетучий растворитель – чаще всего нитроглицерин) топливом и смесевым. Двухосновное смесевое топливо содержит обычно кристаллический перхлорат аммония (окислитель) и порошкообразный алюминий (горючее), связанные при помощи нитроцел- люлозно-нитроглицерииовой смеси. Вот типичный состав модифицированного двухоснов- ного топлива: перхлорат аммония -20,4%, алюминий - 21,1%, нитроцеллюлоза - 21,9%, нитроглицерин - 29,0%, триацетин (растворитель) - 5,1%, стабилизаторы - 2,5%. При той же плотности, что и смесевое полибутадиеновоё топливо, модифицированное двух- основное характеризуется несколько большим удельным импульсом. Недостатками же его являются более высокая температура горения, большая стоимость, повышенная взры- воопасность (склонность к детонации). С целью увеличения удельного импульса как в смесевые, так и в модифицированные двухосновные топлива могут вводиться сильно взрывчатые кристаллические окислители например гексоген. ГИБРИДНОЕ ТОПЛИВО В гибридном топливе компоненты находятся в различных агрегатных состояниях. Горючим могут служить: отвержденные нефтепродукты, N 2 H 4 , полимеры и их смеси с порошками - Al, Be, BeH 2 , LiH 2 , окислителями - HNO 3 , N 2 O 4 , H 2 O 2 ,FC1O 3 , C1F 3 , О 2 ,F 2 , OF 2 . По удельному импульсу эти топлива занимают промежуточное положение между жид- кими и твёрдыми. Максимальный уд.импульс имеют топлива: BeH 2 -F 2 (395с), ВеН 2 -Н 2 О 2 (375с), ВеН 2 -О 2 (371с). В основе гибридного топлива, разработанного Стэнфордским университом и NASA, лежит парафин. Он нетоксичен и является экологи- чески чистым (при сгорании образует только углекислый газ и воду) его тяга регули- руется в широких пределах, возможен и повторный запуск. Двигатель имеет довольно простое устройство, сквозь парафиновую трубу, расположенную в камере сгорания, прокачивается окислитель (газообразный кислород), при зажигании и дальнейшем разо- греве поверхностный слой топлива испаряется, поддерживая горение. Разработчикам удалось добиться высокой скорости горения и таким образом решить основную проблему, тормозившую ранее использование подобных двигателей в космических ракетах. Хорошие перспективы может иметь применение металлического горючего. Одним из наиболее под- ходящих для этой цели металлов является литий. При сгорании 1 кг. этого металла выделяется в 4,5 раза больше энергии чем при окислении керосин жидким кислородом. Большей теплотворностью может похвастать лишь бериллий. В США опубликованы патенты на твердое ракетное топливо, содержащее 51-68% металлического лития.

В отличие от традиционных линейных ИП, предполагающих гашение излишнего нестабилизированного напряжения на проходном линейном элементе, импульсные ИП используют иные методы и физические явления для генерации стабилизированного напряжения, а именно: эффект накопления энергии в катушках индуктивности, а также возможность высокочастотной трансформации и преобразования накопленной энергии в постоянное напряжение. Существует три типовых схемы построения импульсных ИП (см. рис. 3.4-1): повышающая (выходное напряжение выше входного), понижающая (выходное напряжение ниже входного) и инвертирующая (выходное напряжение имеет противоположную по отношению к входному полярность). Как видно из рисунка, отличаются они лишь способом подключения индуктивности, в остальном, принцип работы остается неизменным, а именно.

Ключевой элемент (обычно применяют биполярные или МДП транзисторы), работающий с частотой порядка 20-100 кГц, периодически на короткое время (не более 50% времени) прикла


дывает к катушке индуктивности полное входное нестабилизированное напряжение. Импульсный ток. протекающий при этом через катушку, обеспечивает накопление запаса энергии в её магнитном поле 1/2LI^2 на каждом импульсе. Запасенная таким образом энергия из катушки передастся в нагрузку (либо напрямую, с использованием выпрямляющего диода, либо через вторичную обмотку с последующим выпрямлением), конденсатор выходного сглаживающего фильтра обеспечивает постоянство выходного напряжения и тока. Стабилизация выходного напряжения обеспечивается автоматической регулировкой ширины или частоты следования импульсов на ключевом элементе (для слежения за выходным напряжением предназначена цепь обратной связи).

Такая, хотя и достаточно сложная, схема позволяет существенно повысить КПД всего устройства. Дело в том, что, в данном случае, кроме самой нагрузки в схеме отсутствуют силовые элементы, рассеивающие значительную мощность. Ключевые транзисторы работают в режиме насыщенного ключа (т.е. падение напряжения на них мало) и рассеивают мощность только в достаточно короткие временные интервалы (время подачи импульса). Помимо этого, за счет повышения частоты преобразования можно существенно увеличить мощность и улучшить массогабаритные характеристики.

Важным технологическим преимуществом импульсных ИП является возможность построения на их основе малогабаритных сетевых ИП с гальванической развязкой от сети для питания самой разнообразной аппаратуры. Такие ИП строятся без применения громоздкого низкочастотного силового трансформатора по схеме высокочастотного преобразователя. Это, собственно, типовая схема импульсного ИП с понижением напряжения, где в качестве входного напряжения используется выпрямленное сетевое напряжение, а в качестве накопительного элемента - высокочастотный трансформатор (малогабаритный и с высоким КПД), со вторичной обмотки которого и снимается выходное стабилизированное напряжение (этот трансформатор обеспечивает также гальваническую развязку с сетью).

К недостаткам импульсных ИП можно отнести: наличие высокого уровня импульсных шумов на выходе, высокую, сложность и низкую надежность (особенно при кустарном изготовлении), необходимость применения дорогостоящих высоковольтных высокочастотных компонентов, которые в случае малейшей неисправности легко выходят из строя "всем скопом" (при этом. как правило, можно наблюдать впечатляющие пиротехнические эффекты). Любителям покопаться во внутренностях устройств с отверткой и паяльником при конструировании сетевых импульсных ИП придется быть крайне осторожными, так как многие элементы таких схем находятся под высоким напряжением.

3.4.1 Эффективный импульсный стабилизатор низкого уровня сложности

На элементной базе, аналогичной применявшейся в описанном выше (рис. 3.3-3) линейном стабилизаторе, можно построить импульсный стабилизатор напряжения. При таких же характеристиках он будет обладать значительно меньшими габаритами и лучшим тепловым режимом. Принципиальная схема такого стабилизатора приведена на рис. 3.4-2. Стабилизатор собран по типовой схеме с понижением напряжения (рис. 3.4-1а).

При первом включении, когда конденсатор С4 разряжен и к выходу подключена достаточно мощная нагрузка, ток протекает через ИС линейного стабилизатора DA1. Вызванное этим током падение напряжения на R1 отпирает ключевой транзистор VT1, который тут-же входит в режим насыщения, так как индуктивное сопротивление L1 велико и через транзистор протекает достаточно большой ток. Падение напряжения на R5 открывает основной ключевой элемент - транзистор VT2. Ток. нарастающий в L1, заряжает С4, при этом через обратную связь на R8 происходит запи-


рание стабилизатора и ключевого транзистора. Энергия, запасенная в катушке, питает нагрузку. Когда напряжение на С4 падает ниже напряжения стабилизации, открывается DA1 и ключевой транзистор. Цикл повторяется с частотой 20-30 кГц.

Цепь R3. R4, С2 задаст уровень выходного напряжения. Его можно плавно регулировать в небольших пределах, от Ucт DA1 до Uвх. Однако если Uвых поднять близко к Uвх, появляется некото рая нестабильность при максимальной нагрузке и повышенный уровень пульсации. Для подавления высокочастотных пульсации на выходе стабилизатора включен фильтр L2, С5.

Схема достаточно проста и максимально эффективна для данного уровня сложности. Все силовые элементы VT1, VT2, VD1, DA1 снабжаются небольшими радиаторами. Входное напряжение нс должно превышать 30 В. что является максимальным для стабилизаторов КР142ЕН8. Выпрямительные диоды применять на ток не менее 3 А.

3.4.2 Устройство бесперебойного питания на основе импульсного стабилизатора

На рис. 3.4-3 предлагается к рассмотрению устройство для бесперебойного питания систем охраны и видеонаблюдения на основе импульсного стабилизатора, совмещенного с зарядным устройством. В стабилизатор введены системы защиты от перегрузки, перегрева, бросков напряжения на выходе, короткого замыкания.

Стабилизатор имеет следующие параметры:

Входное напряжение, Uвx - 20-30 В:

Выходное стабилизированное напряжение, Uвыx-12B:

Номинальный ток нагрузки, Iнагр ном -5А;

Ток срабатывания системы защиты от перегрузки, Iзащ - 7А;.

Напряжение срабатывания системы защиты от перенапряжения, Uвых защ - 13 В;

Максимальный ток зарядки АКБ, Iзар акб макс - 0,7 А;

Уровень пульсации. Uпульс - 100 мВ,

Температура срабатывания системы защиты от перегрева, Тзащ - 120 С;

Скорость переключения на питание от АКБ, tперекл - 10мс (реле РЭС-б РФО.452.112).

Принцип работы импульсного стабилизатора в описываемом устройстве такой же, как и у стабилизатора, представленного выше.

Устройство дополнено зарядным устройством, выполненным на элементах DA2,R7, R8, R9, R10, VD2, С7. ИС стабилизатора напряжения DA2 с делителем тока на R7. R8 ограничивает максимальный начальный ток заряда, делитель R9, R10 задает выходное напряжение заряда, диод VD2 защищает АКБ от саморазряда при отсутствии напряжения питания.

Защита от перегрева использует в качестве датчика температуры терморезистор R16. При срабатывании защиты включается звуковой сигнализатор, собранный на ИС DD 1 и, одновременно, нагрузка отключается от стабилизатора, переходя на питание от АКБ. Терморезистор монтируют на радиаторе транзистора VT1. Точная подстройка уровня срабатывания температурной защиты осуществляется сопротивлением R18.

Датчик напряжения собран на делителе R13,R15. сопротивлением R15 устанавливают точный уровень срабатывания защиты от перенапряжения (13 В). При превышении напряжения на выходе стабилизатора (в случае выхода последнего из строя) реле S1 отключает нагрузку от стабилизатора и подключает ее к АКБ. В случае отключения питающего напряжения, реле S1 переходит в состояние "по умолчанию"- т.е. подключает нагрузку на АКБ.

Приведенная здесь схема не имеет электронной защиты от короткого замыкания для АКБ. эту роль выполняет плавкий предохранитель в цепи питания нагрузки, рассчитанный на максимальный потребляемый ток.


3.4.3 Источники питания на основе высокочастотного импульсного преобразователя

Достаточно часто при конструировании устройств возникают жесткие требования к размерам источника питания. В этом случае единственным выходом является применение ИП на основе высоковольтных высокочастотных импульсных преобразователей. которые подключаются к сети ~220 В без применения габаритного низкочастотного понижающего трансформатора и могут обеспечить большую мощность при малых размерах и теплоотдаче.

Структурная схема типового импульсного преобразователя с питанием от промышленной сети представлена на рис 34-4.

Входной фильтр предназначен для предотвращения проникновения импульсных помех в сеть. Силовые ключи обеспечивают подачу импульсов высокого напряжения на первичную обмотку высокочастотного трансформатора (могут применяться одно- и


двухтактные схемы). Частота и длительность импульсов задаются управляемым генератором (обычно применяется управление шириной импульсов, реже - частотой). В отличие от трансформаторов синусоидального сигнала низкой частоты, в импульсных ИП применяются широкополосные устройства, обеспечивающие эффективную передачу мощности на сигналах с быстрыми фронтами. Это накладывает существенные требования на тип применяемого магнитопровода и конструкцию трансформатора. С другой стороны, с увеличением частоты требуемые размеры трансформатора (с сохранением передаваемой мощности) уменьшаются (современные материалы позволяют строить мощные трансформаторы с приемлемым КПД на частоты до 100-400 кГц). Особенностью выходного выпрямителя является применение в нем не обычных силовых диодов, а быстродействующих диодов Шоттки, что обусловлено высокой частотой выпрямляемого напряжения. Выходной фильтр сглаживает пульсации выходного напряжения. Напряжение обратной связи сравнивается с опорным напряжением и затем управляет генератором. Обратите внимание на наличие гальванической развязки в цепи обратной связи, что необходимо, если мы хотим обеспечить развязку выходного напряжения с сетью.

При изготовлении таких ИП возникают серьезные требования к применяемым компонентам (что повышает их стоимость по сравнению с традиционными). Во-первых, это касается рабочего напряжения диодов выпрямителя, конденсаторов фильтра и ключевых транзисторов, которое не должно быть менее 350 В во избежание пробоев. Во-вторых, должны применяться высокочастотные ключевые транзисторы (рабочая частота 20-100 кГц) и специальные керамические конденсаторы (обычные оксидные электролиты на высоких частотах будут перегреваться ввиду их высокой индук-


тивности). И. в-третьих, частота насыщения высокочастотного трансформатора, определяемая типом применяемого магнитопро вода (как правило, используются тороидальные сердечники) должна быть значительно выше рабочей частоты преобразователя.

На рис. 3.4-5 приведена принципиальная схема классического ИП на основе высокочастотного преобразователя. Фильтр, состоящий из емкостей С1, С2, СЗ и дросселей L1, L2, служит для зашиты питающей сети от высокочастотных помех со стороны преобразователя. Генератор построен по автоколебательной схеме и совмещен с ключевым каскадом. Ключевые транзисторы VT1 и VT2 работают в противофазе, открываясь и закрываясь по очереди. Запуск генератора и надежную работу обеспечивает транзистор VT3, работающий в режиме лавинного пробоя. При нарастании напряжения на С6 через R3 транзистор открывается и конденсатор разряжается на базу VT2, запуская работу генератора. Напряжение обратной связи снимается с дополнительной (III) обмотки силового трансформатора Tpl.

Транзисторы VT1. VT2 устанавливают на пластинчатые радиаторы не менее 100 см^2. Диоды VD2-VD5 с барьером Шоттки ставятся на небольшой радиатор 5 см^2. Данные дросселей и трансформаторов:L1-1. L2 наматывают на кольцах из феррита 2000НМ К12х8х3 в два провода проводом ПЭЛШО 0,25: 20 витков. ТР1 - на двух кольцах, сложенных вместе, феррит 2000НН КЗ 1х18.5х7;

обмотка 1 - 82 витка проводом ПЭВ-2 0,5: обмотка II - 25+25 витков проводом ПЭВ-2 1,0: обмотка III - 2 витка проводом ПЭВ-2 0.3. ТР2 наматывают на кольце из феррита 2000НН К10х6х5. все обмотки выполнены проводом ПЭВ-2 0.3: обмотка 1 - 10 витков:

обмотки II и III - по 6 витков, обе обмотки (II и III) намотаны так, что занимают на кольце по 50% площади не касаясь и не перекрывая друг друга, обмотка I намотана равномерно по всему кольцу и изолирована слоем лакоткани. Катушки фильтра выпрямителя L3, L4 наматывают на феррите 2000НМ К 12х8х3 проводом ПЭВ-2 1,0 , количество витков - 30. В качестве ключевых транзисторов VT1, VT2 могут применяться КТ809А. КТ812, КТ841.

Номиналы элементов и намоточные данные трансформаторов приведены для выходного напряжения 35 В. В случае, когда требуются иные рабочие значения параметров, следует соответству ющим образом изменить количество витков в обмотке 2 Тр1.

Описанная схема имеет существенные недостатки, обусловленные стремлением предельно уменьшить количество применяемых компонентов Это и низкий "уровень стабилизации выходного напряжения, и нестабильная ненадежная работа, и низкий выходной ток. Однако она вполне пригодна для питания простейших конструкций разной мощности (при применении соответствующих компонентов), таких как: калькуляторы. АОНы. осветительные приборы и т.п.


Еще одна схема ИП на основе высокочастотного импульсного преобразователя приведена на рис. 3.4-6. Основным отличием этой схемы от стандартной структуры, представленной на рис. 3 .4-4 является отсутствие цепи обратной связи. В связи с этим, стабильность напряжения на выходных обмотках ВЧ трансформатора Тр2 достаточно низкая и требуется применение вторичных стабилизаторов (в схеме используются универсальные интегральные стабилизаторы на ИС серии КР142).

3.4.4 Импульсным стабилизатор с ключевым МДП-транзистором со считыванием тока.

Миниатюризации и повышению КПД при разработке и конструировании импульсных источников питания способствует применение нового класса полупроводниковых инверторов - МДП-транзисторов, а также: мощных диодов с быстрым обратным восстановлением, диодов Шоттки, сверхбыстродействующих диодов, полевых транзисторов с изолированным затвором, интегральных схем управления ключевыми элементами. Все эти элементы доступны на отечественном рынке и могут использоваться в конструировании высокоэффективных источников питания, преобразователей, систем зажигания двигателей внутреннего сгорания (ДВС), систем запуска ламп дневного света (ЛДС). Большой интерес у разработчиков также может вызвать класс силовых приборов под названием HEXSense - МДП-транзисторы со считыванием тока. Они являются идеальными переключающими элементами для импульсных источников питания с готовым управлением. Возможность считывать ток ключевого транзистора может быть использована в импульсных ИП для обратной связи по току, требуемой для контроллера широтно-импульсной модуляции. Этим достигается упрощение конструкции источника питания - исключение из него токовых резисторов и трансформаторов.

На рис. 3.4-7 приведена схема импульсного источника питания мощностью 230 Вт. Его основные рабочие характеристики следующие:

Входное напряжение:-110 В 60Гц:

Выходное напряжение: 48 В постоянное:

Ток нагрузки: 4.8 А:

Частота переключения: 110 кГц:

КПДпри полной нагрузке: 78%;

КПД при нагрузке 1/3: 83%.


Схема построена на базе широтно-импульсного модулятора (ШИМ) с высокочастотным преобразователем на выходе. Принцип работы состоит в следующем.

Сигнал управления ключевым транзистором поступает с выхода 6 ШИМ контроллера DA1, коэффициент заполнения ограничивается 50% резистором R4, R4 и СЗ являются времязадающи ми элементами генератора. Питание DA1 обеспечивается цепочкой VD5, С5, С6, R6. Резистор R6 предназначен для подачи питающего напряжения во время запуска генератора, в последующем задей ствуется обратная связь по напряжению через LI, VD5. Эта обратная связь получается от дополнительной обмотки выходного дросселя, которая работает в режиме обратного хода. Помимо питания генератора, напряжение обратной связи через цепочку VD4, Cl, Rl, R2 подается на вход обратной связи по напряжению DA1 (выв.2). Через R3 и С2 обеспечивается компенсация, которая гарантирует стабильность петли обратной связи.

На базе данной схемы возможно построение импульсных стабилизаторов и с другими выходными параметрами.

Сфера применения импульсных блоков питания в быту постоянно расширяется. Такие источники применяются для питания всей современной бытовой и компьютерной аппаратуры, для реализации источников бесперебойного электропитания, зарядных устройств для аккумуляторов различного назначения, реализации низковольтных систем освещения и для других нужд.

В некоторых случаях покупка готового источника питания мало приемлема с экономической или технической точки зрения и сборка импульсного источника собственными руками является оптимальным выходом из такой ситуации. Упрощает такой вариант и широкая доступность современной элементной базы по низким ценам.

Наиболее востребованными в быту являются импульсные источники с питанием от стандартной сети переменного тока и мощным низковольтным выходом. Структурная схема такого источника показана на рисунке.

Сетевой выпрямитель СВ преобразует переменное напряжение питающей сети в постоянное и осуществляет сглаживание пульсаций выпрямленного напряжения на выходе. Высокочастотный преобразователь ВЧП осуществляет преобразование выпрямленного напряжения в переменное или однополярное , имеющее форму прямоугольных импульсов необходимой амплитуды.

В дальнейшем такое напряжение либо непосредственно, либо после выпрямления (ВН) поступает на сглаживающий фильтр, к выходу которого подключается нагрузка. Управление ВЧП осуществляется системой управления, получающей сигнал обратной связи от выпрямителя нагрузки.

Такая структура устройства может быть подвергнута критике из-за наличия нескольких звеньев преобразования, что снижает КПД источника. Однако, при верном выборе полупроводниковых элементов и качественном расчете и изготовлении моточных узлов, уровень потерь мощности в схеме мал, что позволяет получать реальные значения КПД выше 90%.

Принципиальные схемы импульсных блоков питания

Решения структурных блоков включают не только обоснование выбора вариантов схемной реализации, но и практические рекомендации по выбору основных элементов.

Для выпрямления сетевого однофазного напряжения используют одну из трех классических схем изображенных на рисунке:

  • однополупериодную;
  • нулевую (двухполупериодную со средней точкой);
  • двхполупериодную мостовую.

Каждой из них присущи достоинства и недостатки, которые определяют область применения.

Однополупериодная схема отличается простотой реализации и минимальным количеством полупроводниковых компонентов. Основными недостатками такого выпрямителя являются значительная величина пульсации выходного напряжения (в выпрямленном присутствует лишь одна полуволна сетевого напряжения) и малый коэффициент выпрямления.

Коэффициент выпрямления Кв определяется соотношением среднего значения напряжения на выходе выпрямителя Udк действующему значению фазного сетевого напряжения .

Для однополупериодной схемы Кв=0.45.

Для сглаживания пульсации на выходе такого выпрямителя требуются мощные фильтры.

Нулевая, или двухполупериодная схема со средней точкой , хоть и требует удвоенного числа выпрямительных диодов, однако, этот недостаток в значительной мере компенсируется более низким уровнем пульсаций выпрямленного напряжения и ростом величины коэффициента выпрямления до 0.9.

Основным недостатком такой схемы для использования в бытовых условиях является необходимость организации средней точки сетевого напряжения, что подразумевает наличие сетевого трансформатора. Его габариты и масса оказываются несовместимыми с идеей малогабаритного самодельного импульсного источника.

Двухполупериодная мостовая схема выпрямления имеет те же показатели по уровню пульсации и коэффициенту выпрямления, что и нулевая схема,но не требует наличия сетевого . Это компенсирует и главный недостаток – удвоенное количество выпрямительных диодов как с точки зрения КПД, так и по стоимости.

Для сглаживания пульсаций выпрямленного напряжения наилучшим решением является использование емкостного фильтра. Его применение позволяет поднять величину выпрямленного напряжения до амплитудного значения сетевого (при Uф=220В Uфм=314В). Недостатками такого фильтра принято считать большие величины импульсных токов выпрямительных элементов, но критичным этот недостаток не является.

Выбор диодов выпрямителя осуществляется по величине среднего прямого тока Ia и максимального обратного напряжения U BM .

Приняв величину коэффициента пульсации выходного напряжения Кп=10%, получим среднее значение выпрямленного напряжения Ud=300В. С учетом мощности нагрузки и КПД ВЧ преобразователя (для расчета принимается 80%, но на практике получится выше, это позволит получить некоторый запас).

Ia – средний ток диода выпрямителя, Рн- мощность нагрузки, η – КПД ВЧ преобразователя.

Максимальное обратное напряжение выпрямительного элемента не превышает амплитудного значения напряжения сети (314В), что позволяет использовать компоненты с величиной U BM =400В со значительным запасом. Использовать можно как дискретные диоды, так и готовые выпрямительные мосты от различных производителей.

Для обеспечения заданной (10%) пульсации на выходе выпрямителя емкость конденсаторов фильтра принимается из расчета 1мкФ на 1Вт выходной мощности. Используются электролитические конденсаторы с максимальным напряжением не менее 350В. Емкости фильтров для различных мощностей приведены в таблице.

Высокочастотный преобразователь: его функции и схемы

Высокочастотный преобразователь представляет собой однотактный или двухтактный ключевой преобразователь (инвертор) с импульсным трансформатором. Варианты схем ВЧ преобразователей приведены на рисунке.

Однотактная схема . При минимальном количестве силовых элементов и простоте реализации имеет несколько недостатков.

  1. Трансформатор в схеме работает по частной петле гистерезиса, что требует увеличения его размеров и габаритной мощности;
  2. Для обеспечения мощности на выходе необходимо получить значительную амплитуду импульсного тока, протекающего через полупроводниковый ключ.

Схема нашла наибольшее применение в маломощных устройствах, где влияние указанных недостатков не столь значительно.

Чтобы самостоятельно поменять или установить новый счетчик, не требуется особых навыков. Выбор правильной обеспечит корректный учет потребляемого тока и повысит безопасность домашней электросети.

В современных условиях обеспечения освещения как внутри помещений, так и на улице все чаще используют датчики движения. Это придает не только комфорт и удобства в наши жилища, но и позволяет существенно экономить. Узнать практические советы по выбору места установки, схем подключения можно .

Двухтактная схема со средней точкой трансформатора (пушпульная) . Получила свое второе название от английского варианта (push-pull) описания работы. Схема свободна от недостатков однотактного варианта, но имеет собственные – усложненная конструкция трансформатора (требуется изготовление идентичных секций первичной обмотки) и повышенные требования к максимальному напряжению ключей. В остальном решение заслуживает внимания и широко применяется в импульсных источниках питания, изготавливаемых своими руками и не только.

Двухтактная полумостовая схема . По параметрам схема аналогична схеме со средней точкой, но не требует сложной конфигурации обмоток трансформатора. Собственным недостатком схемы является необходимость организации средней точки фильтра выпрямителя, что влечет четырехкратное увеличение количества конденсаторов.

Благодаря простоте реализации схема наиболее широко используется в импульсных источниках питания мощностью до 3 кВт. При больших мощностях стоимость конденсаторов фильтра становится неприемлемо высокой по сравнению с полупроводниковыми ключами инвертора и наиболее выгодной оказывается мостовая схема.

Двухтактная мостовая схема . По параметрам аналогична другим двухтактным схемам, но лишена необходимости создания искусственных «средних точек». Платой за это становится удвоенное количество силовых ключей, что выгодно с экономической и технической точек зрения для построения мощных импульсных источников.

Выбор ключей инвертора осуществляется по амплитуде тока коллектора (стока) I КМАХ и максимальному напряжению коллектор-эмиттер U КЭМАХ. Для расчета используются мощность нагрузки и коэффициент трансформации импульсного трансформатора.

Однако, прежде необходимо рассчитать сам трансформатор. Импульсный трансформатор выполняется на сердечнике из феррита, пермаллоя или витого в кольцо трансформаторного железа. Для мощностей до единиц кВт вполне подойдут ферритовые сердечники кольцевого или Ш-образного типа. Расчет трансформатора ведется исходя из требуемой мощности и частоты преобразования. Для исключения появления акустического шума частоту преобразования желательно вынести за пределы звукового диапазона (сделать выше 20 кГц).

При этом необходимо помнить, что при частотах близких к 100 кГц значительно возрастают потери в ферритовых магнитопроводах. Сам расчет трансформатора не составляет труда и легко может быть найден в литературе. Некоторые результаты для различных мощностей источников и магнитопроводов приведены в таблице ниже.

Расчет произведен для частоты преобразования 50 кГц. Стоит обратить внимание, что при работе на высокой частоте имеет место эффект вытеснения тока к поверхности проводника, что приводит к снижению эффективной площади обмотки. Для предотвращения подобного рода неприятностей и снижения потерь в проводниках необходимо выполнять обмотку из нескольких жил меньшего сечения. При частоте 50 кГц допустимый диаметр провода обмотки не превышает 0.85 мм.

Зная мощность нагрузки и коэффициент трансформации можно рассчитать ток в первичной обмотке трансформатора и максимальный ток коллектора силового ключа. Напряжение на транзисторе в закрытом состоянии выбирается выше, чем выпрямленное напряжение, поступающее на вход ВЧ-преобразователя с некоторым запасом (U КЭМАХ >=400В). По этим данным производится выбор ключей. В настоящее время наилучшим вариантом является использование силовых транзисторов IGBT или MOSFET.

Для диодов выпрямителя на вторичной стороне необходимо соблюдать одно правило – их максимальная рабочая частота должна превышать частоту преобразования. В противном случае КПД выходного выпрямителя и преобразователя в целом значительно снизятся.

Видео о изготовлении простейшего импульсного питающего устройства