Основным элементом LCD – мониторов, безусловно, является жидкокристаллическая панель (ЖК-панель). ЖК-панель можно отнести к основным элементам мониторов по следующим соображениям: она является самым габаритным и самым дорогим элементом монитора, а также именно характеристики панели определяют качество изображения и характеристики самого монитора. Устройство панели и принципы, заложенные в ее производство, определяют схемотехнику всей остальной части монитора, определяют его интерфейс и его элементную базу. ЖК-панель, в свою очередь, далеко не простое устройство, ведь в ее составе кроме самой матрицы жидких кристаллов, имеются еще и схемы строчных и столбцовых драйверов, имеются схемы, осуществляющие выборку строк и столбцов. Также внутри панели имеются интерфейсные схемы и микроконтроллер, обслуживающий интерфейсы. Кроме того, многие производители в состав панели вводят и блок задней подсветки. Все это подводит нас к выводу, что грамотный ремонт и диагностика мониторов LCD просто невозможны без знаний о ЖК-панелях.

Самым лучшим способом изучения принципов работы и устройства ЖК-панелей является рассмотрение этих вопросов на примере конкретного изделия. В качества такого примера предлагается выбрать панель модели LTM213U4-L01 производства фирмы Samsung Electronics, являющейся одним из лидеров в производстве данной продукции.

Характеристики ЖК-панели

Вначале, конечно же, стоит определиться, что же за панель предлагается к рассмотрению, ведь ее разрешающая способность, размер, цветовые характеристики и т.п. могут значительно изменять конструктив самой панели. Основные характеристики и особенности ЖК-панели представлены в виде таблицы – табл.1.

Таблица 1.

Параметр, характеристика

Значение

Тип

Активная матрица TFT

Размеры

432 х 324 мм (21.3 дюйма – диагональ), толщина – 26 мм

Вес

3.9 кг

Элемент изображения

Тонкопленочный транзистор на аморфном кремнии (a - Si )

Количество отображаемых цветов

16.7 миллионов (8 бит на каждый цвет)

Количество точек (разрешение)

1600х1200

Типовое время отклика

25 мс

Максимальное время отклика

35 мс

Угол обзора по вертикали или горизонтали

170°

Угол обзора во всех направлениях

Не менее 85 °

Шаг точек

0.27 мм

Режим дисплея

Нормально - черный

Тип задней подсветки

Встроенные лампы типа CCFT – две тройных лампы (всего шесть)

Тип интерфейса

Open LDI (LVDS )

Тип используемого приемника LVDS

DS90CF388

Расположение точек

Вертикальные полосы R , G , B

Используемые технологии

Диапазон рабочих температур

От 0 до +50 °С

Диапазон температур при хранении

От -20 до +65 °С

Допустимые вибрации

До 1 G

Допустимые удары

До 50 G

Конструктив ЖК-панели

Конструктив ЖК-панели

Структурная схема панели LCD -панели показана на рис.1, и по этой схеме можно сделать следующие замечания.

1) В составе панели имеется модуль задней подсветки. Такое решение характерно далеко не для всех моделей LCD -модулей. Однако стоит обратить внимание, что схема инвертора не является составной частью изделия, и инвертор должен разрабатываться производителем монитора. Инвертор – это источник питания, обеспечивающий преобразование напряжения постоянного тока от источника питания в импульсное высоковольтное напряжение, подводимое к лампам. Модуль задней подсветки образован шестью люминесцентными лампами с холодным катодом (CCFL ). Эти шесть ламп собраны в две группы (по три в каждой). Как и в подавляющем большинстве других ЖК-панелей лампы размещаются по краям матрицы жидких кристаллов. Для каждой из шести ламп имеется отдельный соединительный разъем.

2) ЖК-панель оснащена интерфейсом LVDS , что позволяет обеспечить высокую скорость передачи данных и понизить вероятность помех. Применение этого интерфейса также обеспечивает универсальность панели, т.е. ее можно использовать с любой управляющей платой, которая оборудована интерфейсом LVDS . При использовании интерфейса LVDS информация на ЖК-панель передается в последовательном виде, и поэтому в составе панели имеется преобразователь последовательных данных в параллельный вид. Такой преобразователь представляет собой интегральную микросхему, называемую Receiver (приемник). Данные, преобразованные в параллельный вид, передаются далее на микросхему дисплейного контроллера TCON .

3) Микросхема TCON обеспечивает управление синхронизацией, приемом и распределением данных по столбцовым и строковым драйверам. На выходе микросхемы TCON формируется столько управляющих сигналов, сколько всего имеется управляющих транзисторов в панели, а рассчитать их количество достаточно просто. Если данная панель поддерживает «разрешение» 1600х1200, то на экране имеется 1200 строк и 4800 столбцов (1600х3), т.е. каждая цветная точка образована тремя стоящими рядом точками. В данной панели используется именно полосковая топология точек (Stripe ), и пример расположения точек демонстрируется на рис.2.

4) Столбцовые драйверы реализованы в виде интегральной микросхемы. Сигналы на выбор того, или иного драйверного транзистора поступают от микросхемы TCON в виде сигналов TTL – эта взаимосвязь на рис.1показана линией Control . Кроме того, для обеспечения градаций шкалы серого цвета используется метод ШИМ (Pulse Width Modulation - PWM ) . При этом методе используется различная ширина импульсов выборки строки в процессе адресации. При этом поддержка метода ШИМ обеспечивается аппаратно в структуре именно драйвера столбцов. По шине управления (на рис. 1 она обозначена VideoData ) для каждого пиксела передается 8-битовый код, которому соответствует 256 градаций шкалы серого. Коды градации записываются в регистр столбцового драйвера, а затем преобразуются в длительностьимпульсов пропорционально коду.

Оптические характеристики ЖК-панели и методы их измерения

Основные оптические характеристики, которые специфицируются для панелей на основе жидких кристаллов, и их значения для панели Samsung LTM 213 U 4- L 01представлены в табл.2.

Конструктив ЖК-панели

Структурная схема панели LCD-панели показана на рис.1, и по этой схеме можно сделать следующие замечания.

Рис. 1

1) В составе панели имеется модуль задней подсветки. Такое решение характерно далеко не для всех моделей LCD-модулей. Однако стоит обратить внимание, что схема инвертора не является составной частью изделия, и инвертор должен разрабатываться производителем монитора. Инвертор – это источник питания, обеспечивающий преобразование напряжения постоянного тока от источника питания в импульсное высоковольтное напряжение, подводимое к лампам. Модуль задней подсветки образован шестью люминесцентными лампами с холодным катодом (CCFL). Эти шесть ламп собраны в две группы (по три в каждой). Как и в подавляющем большинстве других ЖК-панелей лампы размещаются по краям матрицы жидких кристаллов. Для каждой из шести ламп имеется отдельный соединительный разъем.

2) ЖК-панель оснащена интерфейсом LVDS, что позволяет обеспечить высокую скорость передачи данных и понизить вероятность помех. Применение этого интерфейса также обеспечивает универсальность панели, т.е. ее можно использовать с любой управляющей платой, которая оборудована интерфейсом LVDS. При использовании интерфейса LVDS информация на ЖК-панель передается в последовательном виде, и поэтому в составе панели имеется преобразователь последовательных данных в параллельный вид. Такой преобразователь представляет собой интегральную микросхему, называемую Receiver (приемник). Данные, преобразованные в параллельный вид, передаются далее на микросхему дисплейного контроллера TCON.

3) Микросхема TCON обеспечивает управление синхронизацией, приемом и распределением данных по столбцовым и строковым драйверам. На выходе микросхемы TCON формируется столько управляющих сигналов, сколько всего имеется управляющих транзисторов в панели, а рассчитать их количество достаточно просто. Если данная панель поддерживает «разрешение» 1600х1200, то на экране имеется 1200 строк и 4800 столбцов (1600х3), т.е. каждая цветная точка образована тремя стоящими рядом точками. В данной панели используется именно полосковая топология точек (Stripe), и пример расположения точек демонстрируется на рис.2.


Рис. 2

4) Столбцовые драйверы реализованы в виде интегральной микросхемы. Сигналы на выбор того, или иного драйверного транзистора поступают от микросхемы TCON в виде сигналов TTL – эта взаимосвязь на рис.1 показана линией Control. Кроме того, для обеспечения градаций шкалы серого цвета используется метод ШИМ (Pulse Width Modulation - PWM) . При этом методе используется различная ширина импульсов выборки строки в процессе адресации. При этом поддержка метода ШИМ обеспечивается аппаратно в структуре именно драйвера столбцов. По шине управления (на рис. 1 она обозначена VideoData) для каждого пиксела передается 8-битовый код, которому соответствует 256 градаций шкалы серого. Коды градации записываются в регистр столбцового драйвера, а затем преобразуются в длительность импульсов пропорционально коду.

5) В составе ЖК-панели имеется схема управления питающими напряжениями. Эта схема представляет собой преобразователь и регулятор, формирующий питающие напряжения для всех элементов панели, причем номиналы этих напряжений различны.

Оптические характеристики ЖК-панели и методы их измерения

Основные оптические характеристики, которые специфицируются для панелей на основе жидких кристаллов, и их значения для панели Samsung LTM213U4-L01 представлены в табл.2.

Таблица 2.

Характеристика

Обознач.

Условия измерения

Значение

Ед. измер

мин

тип

макс

Масштаб контрастности

Измерительная аппаратура размещается строго перпендикулярно экрану – угол обзора равен 0° в любом направлении:

θ = 0°

φ = 0°

Время отклика

Нарастающий фронт

мсек

Спадающий фронт

мсек

Яркость белого (центр экрана)

Y(L)

Кд/м 2

Цветовые

координаты

Красного

цвета

(X )

Отклонение

0 .03

0.632

Отклонение

0 .03

(Y )

0.353

Зеленого цвета

(X )

0.293

(Y )

0.590

Синего цвета

(X )

0.140

(Y )

0.090

Белого цвета

(X )

0.310

(Y )

0.340

Угол

обзора

По горизонтали

Влево

Измерение угла осуществляется при уровне контрастности больше 10 (C / R > 10)

град.

Вправо

град.

По

вертикали

Вверх

φ H

град.

Вниз

φ L

град.

Неравномерность яркости

Buni

Достаточно интересными являются методики измерения тех характеристик, которые упоминаются в табл.2, и рассмотрение более подробно этих методик дает очень хорошее представление о том, на что обращать внимание при выборе и определении качества LCD-монитора. Эта информация также необходима и сервисным службам, т.к. после завершения ремонтных работ необходимо осуществлять контроль выходных параметров отремонтированного изделия, и в случае несоответствия их заданным значениям, либо произвести регулировку, либо осуществить замену изделия из-за невозможности обеспечить требуемого качества изображения. Начнем рассмотрение методик по порядку упоминания характеристик монитора в таблице.

Но прежде чем говорить о методиках измерения параметров ЖК-панели, стоит сказать о том, что эти работы необходимо производить только после того, как температура панели стабилизируется. Поэтому следует вначале оставить ЖК-монитор в помещении, где будут производиться измерения примерно на 30 минут. Это помещение должно быть темным, т.е. в нем не должно быть окон, и температура в комнате измерений должна быть стабильной. Температура окружающего воздуха в комнате измерений должна иметь значение +25°С (±2°С). Требование отсутствия окон в помещении связано с тем, что внешний свет может исказить результаты измерения яркости, контрастности и угла обзора.

После истечения 30 минут монитор включается, и начинают светить лампы задней подсветки, что приводит к разогреву самой ЖК-панели. Чтобы избежать возможных искажений и неточностей измерений, необходимо подождать, пока панель не прогреется уже под действием лампы задней подсветки. После включения монитора необходимо подождать еще около 30 минут. И только после этого можно быть уверенным в точности измерений и в отсутствии температурных погрешностей.

Как уже упоминалось, измерительное оборудование должно устанавливаться строго против центра экрана, без каких либо наклонов, так как это показано на рис.3.

Рис. 3

В качестве измерителей характеристик монитора фирмой Samsung предлагается использовать анализаторы (фотодетекторы) следующих типов:

1. TOPCON BM-5A

3. PHOTO RESEARCH PR650

Прибор BM-5A размещают на расстоянии 40 см от экрана и этим прибором проводятся измерения яркости, диапазона контрастности, угла обзора и неравномерности яркости экрана. Прибором BM-7 проводится измерение времени отклика точек, и размещается прибор на расстоянии 50 см от экрана. Прибором PR650, устанавливаемым на расстоянии 50см от поверхности экрана, проводится измерение цветовых характеристик (координат) панели.

Для получения некоторых параметров ЖК-панели измерения нужно производить не только в центре, но и на краях экрана. Эти точки (и их координаты, т.е. строки и столбцы) отмечены на рис.4.

Рис. 4

Измерение контрастности

Масштаб (диапазон) контрастности, обозначаемый в англоязычной технической документации как C/R, является соотношением двух значений яркости: для белого и для черного экрана – формула (1).

Анализатором получают два значения Gmax и Gmin в центральной точке экрана (точка №5 на рис.4). Значение Gmax измеряется, когда все точки ЖК-панели светятся белым цветом. Значение Gmin измеряется анализатором при условии, что все точки экрана – черные.

Большое значение масштаба контрастности является несомненным достоинством изделия, т.к. такая панель обеспечивает широкий диапазон регулировки контрастности изображения.

Измерение времени отклика

Время отклика является суммой двух параметров: времени нарастания (Tr) и временем спада (Tf). Время нарастания измеряется при переключении ЖК-панели с черного цвета на белый. Время спада измеряется при переключении панели с белого цвета на черный. Принцип измерения времени Tr и времени Tf демонстрируется на рис.5.

Рис. 5

Измерение яркости белого

Эта характеристика ЖК-панели измеряется прибором BM-5A в центре экрана (точка №5 на рис.4). Большое значение этой характеристики соответствует широкому диапазону яркости и также является признаком хорошей панели.

Измерение цветовых характеристик

Цветовые координаты каждого цвета измеряются прибором PR650, также устанавливаемым строго напротив центра экрана (точка №5 на рис.4). Измерение цветовых характеристик проводится в соответствии со спецификацией CIE1931. Измерение цветовых координат производится для каждого цвета в отдельности, для чего на экране последовательно включается соответствующий цвет.

Измерение неравномерности яркости экрана

Для получения данной характеристики прибором BM-5A измерение яркости проводится девять раз – в каждой из точек, указанных на рис.4 при условии, что все точки экрана белые. Далее из девяти полученных результатов выбирается два – максимально значение (Bmax) и минимальное (Bmin), и по этим двум результатам вычисляется неравномерность в соответствии с формулой (2).

Кроме визуальных параметров LCD-панель описывается еще и электрическими характеристиками, приведенными в табл. 3.

Таблица 3.

Параметр

Обознач.

Значение

Ед.

измер

мин

тип

макс

Напряжение питания

Тип интерфейса

LVDS

Open LDI

Потребляемый ток

При черном шаблоне

1020

мА

При мозаичном шаблоне

1060

1200

мА

1260

1520

мА

Гц

F H

кГц

F DCLK

МГц

Пиковое значение тока

I RUSH

Некоторые данные, приведенные в таблице, нуждаются в пояснении.

1. Полоса пропускания (основная частота) – это частота синхронизации точек, определяемая на входе передатчика шины LVDS (об этом подробнее читайте в №2 нашего журнала).

2. Пиковое значение тока определяется в момент подачи питающего напряжения на ЖК-панель. Для получения пикового тока в момент подачи напряжения питания должны быть выполнены следующие условия:

- все управляющие и все сигнальные линии ЖК-панели должны быть заземлены;

- время нарастания питающего напряжения должно быть около 470 мкс (если быть точным, то за 470 мкс уровень напряжения в линии питания ЖК-панели должен измениться от величины 10% до 90% от номинального значения).

3. Величина потребляемого ЖК-панелью тока зависит от выводимого изображения. Минимальный ток панель потребляет при выводе сплошного черного изображения, а максимальный – при сплошной белой картинке. Но измерять величину Idd принято при загрузке на экран определенного шаблона. Как видно из таблицы, потребляемый ток измеряется три раза – на разных шаблонах, что дает более объективную картину .

Такими шаблонами являются:

1. Сплошной черный экран - рис.6.

Рис. 6

2. Мозаичный экран, или шахматное поле - рис.7.

Рис. 7

3. Вертикальные чередующиеся черные и белые линии, причем каждая линия (как черна, так и белая) состоит из двух вертикальных логических столбцов – рис.8.


Рис. 8

Модуль задней подсветки

В панели Samsung LTM213U4-L01 модуль задней подсветки состоит из шести ламп, разделенных на две группы – в каждой группе по три лампы. Электрические характеристики пары ламп модуля задней подсветки представлены в табл.4.

Таблица 4.

Параметр

Обознач.

Значение

Ед.

измер

мин

тип

макс

Напряжение питания

Тип интерфейса

LVDS

Open LDI

Потребляемый ток

При черном шаблоне

1020

мА

При мозаичном шаблоне

1060

1200

мА

При шаблоне двух вертикальных линий

1260

1520

мА

Частота кадровой синхронизации

Гц

Частота строчной синхронизации

F H

кГц

Полоса пропускания (основная частота)

F DCLK

МГц

Пиковое значение тока

I RUSH


В современных ЖК-панелях традиционно используются люминесцентные лампы с холодным катодом (CCFL) – исключением не является и рассматриваемая в этом обзоре. Но для всех люминесцентных ламп характерна одна особенность – это значительная зависимость и яркости свечения и режима включения лампы от окружающей температуры.

Напряжение питания на лампы подается с инвертора, который может управляться методом широтно-импульсной модуляции (ШИМ). Яркость ламп и их время «жизни» определяется исключительно схемой инвертора, поэтому задачей производителя монитора будет разработка такой схемы инвертора, которая не должна выдавать слишком высокое напряжение на лампы. В качестве требований к инвертору можно назвать еще и стабильность импульсного высокочастотного напряжения на выходе.

Высокая частота в несколько десятков кГц, на которой работают люминесцентные лампы, может стать причиной явления интерференции, вызванного взаимодействием частоты ламп и частоты срочной развертки. Явление интерференции приводит к появлению на экране монитора такого явления, как «плывущие» строки и муар. Для подавления интерференции частота, на которой работает инвертор, должна отличаться от частоты строчной развертки и от частоты основных гармоник строчной развертки настолько, насколько это возможно обеспечить.

Хорошо спроектированный инвертор должен обеспечивать собственное отключение не позднее чем через 1 сек. В том случае, если разъем ламп задней подсветки не подключен.

Время «жизни» ламп (Hr) является условной величиной, вычисляемой как время, в течение которого выходная яркость ламп уменьшится вдвое по сравнению с начальным периодом работы. При вычислении времени «жизни» необходимо учитывать окружающую температуру, которая должна быть 25°С, а также величину действующего тока лампы, который для данной панели должен быть на уровне 6.5 мArms.

Так как лампы размещают по краям экрана, то для обеспечения симметрии с каждой стороны экрана находится по одной лампе из пары (рис.9).

Рис. 9

На рис.10 демонстрируется распределение выводов модуля задней подсветки по разъемам и их соответствие разъемам инвертора.

Рис. 10

Интерфейсы панели

ЖК-панель соединяется с внешними схемами тремя интерфейсами:

- интерфейс напряжения питания (12-контактный разъем);

- интерфейс напряжения питания модуля задней подсветки (6 разъемов по 3-4 контакта);

- интерфейс LVDS для передачи управляющих сигналов, сигналов синхронизации и цветовой информации.

Интерфейс напряжения питания имеет весьма простое распределение сигналов по контактам – первые шесть выводов – напряжение +5В, оставшиеся шесть выводов – «земля» (табл.5).

Таблица 5.

Назначение

5 В

5 В

5 В

5 В

5 В

5 В

9,10


Интерфейс модуля задней подсветки уже был достаточно подробно расписан в предыдущем разделе статьи. Осталось решить вопрос с информационным интерфейсом.

В ЖК-панели LTM213U4-L01используется интерфейс LVDS, ставший на сегодняшний момент самым широко используемым в LCD-модулях. Так как данные по этому интерфейсу передаются по паре дифференциальных линий в последовательном виде, в составе ЖК-модуля имеется приемник шины LVDS, который обеспечивает преобразование последовательного кода получаемых данных в параллельный вид, удобный для контроллера TCON. В качестве приемника шины LVDS в данном устройстве используется микросхема DS90C388. Но приемник и передатчик сигналов LVDS обычно представляют собой единый набор интегральных микросхем. В паре с приемником в качестве передатчика LVDS применяется микросхема DS90C387, размещаемая на плате управления ЖК-панелью. Интерфейс LVDS выполнен в виде 31-контактного разъема, распределение сигналов на котором описывается таблицей 6.

Таблица 6.

Обознач.

Назначение

Общий

Общий

A 0 M

Вход данных (канал 0) дифференциальной пары (инверсный вывод)

Вход данных (канал 0) дифференциальной пары (прямой вывод)

Вход данных (канал 1) дифференциальной пары (инверсный вывод)

Вход данных (канал 1) дифференциальной пары (прямой вывод)

Вход данных (канал 2) дифференциальной пары (инверсный вывод)

Вход данных (канал 2) дифференциальной пары (прямой вывод)

Общий

Общий

CLKM

Вход синхросигналов для преобразования данных из последовательного вида в параллельный. Инверсный вывод дифференциального усилителя.

CLKP

Вход синхросигналов для преобразования данных из последовательного вида в параллельный. Прямой вывод дифференциального усилителя.

A 3 M

Выход данных (канал 3) дифференциальной пары (инверсный вывод)

Выход данных (канал 3) дифференциальной пары (прямой вывод)

Общий

Общий

Вход данных (канал 4) дифференциальной пары (инверсный вывод)

Вход данных (канал 4) дифференциальной пары (прямой вывод)

Вход данных (канал 5) дифференциальной пары (инверсный вывод)

Вход данных (канал 5) дифференциальной пары (прямой вывод)

Вход данных (канал 6) дифференциальной пары (инверсный вывод)

Вход данных (канал 6) дифференциальной пары (прямой вывод)

Общий

Общий

Вход данных (канал 7) дифференциальной пары (инверсный вывод)

Вход данных (канал 7) дифференциальной пары (прямой вывод)

Зарезервированы

Более полное представление о конфигурации интерфейса дает рис.11.

Рис. 11

Цвет каждой точки кодируется 24-битами, т.е. по 8 разрядов на каждый из основных цветов (красный, зеленый, синий). Информация по каждому из трех цветов передается по двум дифференциальным линиям, что делается для увеличения производительности интерфейса. Таким образом, для передачи цвета используется шесть каналов дифференциальных линий. Еще один дифференциальный канал используется для передачи сигналов строчной и кадровой синхронизации.

На выходе приемника LVDS формируются 24 бита данных четных точек строки (BE...,GE..,RE...) и 24 бита нечетных точек (BO..., GO..., RO...). Временные диаграммы интерфейса представлены на рис.12.

Рис. 12

Техническое обслуживание и эксплуатация ЖК-панели

Рассмотрев все особенности внутреннего устройства ЖК-панели Samsung LTM213U4-L01, переходим к одному из самых практических вопросов: как правильно работать с этим модулем, что допускается с ним делать, а что категорически запрещается, каким образом обеспечить грамотный уход за панелью во время эксплуатации и какие меры предосторожности соблюдать при проведении ремонтных работ. Все правила и рекомендации, приведенные ниже, относятся к ЖК-панели, но так как она является основным элементом мониторов, то автоматически все сказанное можно перенести и на LCD-мониторы в целом.

Правила хранения ЖК-панели

1. Нельзя надолго помещать ЖК-модуль в условия повышенной температуры и повышенной влажности. Наиболее оптимальными условиями для хранения является температура от 0 до +35°С, при относительной влажности менее 70%.

2. Нельзя хранить панели TFT-LCD при воздействии на них прямого солнечного света.

3. ЖК-панели должны храниться в темном месте, защищенном от попадания солнечного света и света люминесцентных ламп.

Правила эксплуатации и обслуживания ЖК-панели

1. ЖК-панель не должна подвергаться механическим деформациям и воздействию сил на скручивание.

2. Избегать воздействия сильных ударов и воздействия перегрузок. Это может приводить к повреждению не только самой матрицы LCD-TFT, но и ламп модуля задней подсветки.

3. Поляризующая поверхность панели очень хрупкая и может быть очень легко повреждена. Нельзя нажимать на поверхность экрана и царапать ее карандашами, ручками и т.п.

4. При попадании на поверхность экрана капель воды, масла или жира немедленно удалить (вытереть) их. Если капли оставить, то это может привести к образованию пятен и потери цветопередачи в данных местах.

5. В случае загрязнения поверхности экрана чистку производить специальными абсорбирующими салфетками или очень мягкой тканью.

6. В качества очищающих средств для чистки экрана желательно использовать воду, изопропиловый спирт или гексан.

7. Категорически запрещается применять растворители класса кетонов (например, ацетон), этиловый спирт, толуол, этиловую кислоту, метолхлорид и все средства, производимые на их основе. Применение перечисленных веществ может мгновенно повредить поляризующий слой экрана за счет возникающей химической реакции.

8. Если из панели вытекает материал жидких кристаллов, то запрещается его трогать руками, подносить к глазам, носу и рту. Если же этот состав все-таки попал на кожу, руки или на одежду, то необходимо промыть все тщательно водой с мылом.

9. Необходимо принять меры по защите панели от электростатических разрядов, которые могут стать причиной отказа электронных элементов (микросхем) внутри панели.

11. Защитная пленка с экрана должна удаляться непосредственно перед применением, т.к. она обеспечивает защиту и от электростатических разрядов.

12. При наружном применении ЖК-панели (на открытом воздухе) желательно использовать ультрафиолетовые фильтры.

13. При эксплуатации необходимо избегать образования конденсата.

14. Если на экране в течение очень долгого времени отображается одна и та же информация, то пользователь может столкнуться с явлением, при котором даже при выключенном мониторе на экране видны контуры этого изображения, т.е. экран как бы «прогорает» под соответствующее изображение.

1. При установке ЖК-панели необходимо следить за тем, чтобы все крепежные элементы были использованы, т.е. панель в корпус должна устанавливаться надежно и крепко.

2. Стоит предотвращать изгиб проводов ламп задней подсветки и запрещается сильно тянуть эти провода.

4. Запрещается трогать голыми руками (без перчаток) контакты соединительных разъемов панели – это может ухудшить их проводимость.

5. Монтажные и демонтажные работы лучше всего проводить на специальных лотках, покрытых мягкими антистатическими материалами и с использованием мягких перчаток.

6. Подключение и отключение панели от управляющих схем следует производить исключительно при выключенном питании.

7. Высокие частоты, на которых работают внутренние электронные схемы ЖК-панели, могут стать причиной явления электромагнитной интерференции. Для уменьшения этих явлений осуществляется «заземление» панели и ее экранировка. Поэтому при монтаже панели все эти меры должны строго соблюдаться.

8. Стоит также учесть тот момент, что длина соединительного кабеля между лампами задней подсветки и инвертором должна быть минимальной, и лампы к инвертору должны подключаться непосредственно. Удлинение соединительных проводов может стать причиной снижения яркости задней подсветки и увеличения пускового напряжения.

Выбирая себе монитор, телевизор или телефон, покупатель часто стает перед выбором типа экрана. Какому же из них отдать предпочтение: IPS или TFT? Причиной такого замешательства стало постоянное усовершенствование технологий по изготовлению дисплеев.

Все мониторы с TFT технологией можно разделить на три основных типа:

  1. TN+Film.
  2. PVA/MVA.

То есть, технология TFT представляет собой жидкокристаллический дисплей с активной матрицей , а IPS — это одна из разновидностей этой матрицы . И сравнение этих двух категорий не возможно, так как практически это одно и тоже. Но если все же разобраться более подробно в том, что собой представляет дисплей с TFT матрицей, то сравнение провести можно, но не между экранами, а между технологиями их изготовления: IPS и TFT-TN.

Общее понятие TFT

TFT (Thin Film Transistor) переводится, как тонкопленочный транзистор . В основе ЖК дисплея с технологией TFT лежит активная матрица. Такая технология подразумевает спиральное расположение кристаллов, которые в условиях сильного напряжения делают поворот таким образом, что экран стает черным. А при отсутствии напряжения большой мощности мы видим белый экран. Дисплеи с такой технологией на выходе выдают лишь темно-серый цвет вместо идеального черного. Поэтому TFT дисплеи пользуются популярностью в основном в изготовлении более дешевых моделей.

Описание IPS

Технология матрицы ЖК экрана IPS (In-Plane Switching) подразумевает параллельное расположение кристаллов по всей плоскости монитора . Спирали здесь отсутствуют. И поэтому кристаллы в условиях сильного напряжения не поворачиваются. Иными словами технология IPS — это ничто иное, как улучшенная TFT. Она намного лучше передает черный цвет, тем самым улучшая степень контрастности и яркости изображения. Именно поэтому данная технология стоит дороже, чем TFT, и используется в более дорогих моделях.

Основные отличия TN-TFT и IPS

Желая реализовать как можно больше продукции, менеджеры по продажам вводят людей в заблуждение о том, что TFT и IPS — это совершенно разные типы экранов. Специалисты из сферы маркетинга не дают исчерпывающих сведений о технологиях и это позволяет им выдавать уже существующую разработку за только что появившуюся.

Рассматривая IPS и TFT, мы видим, что это практически одно и тоже . Разница лишь в том, что монитор с IPS технологией являются более свежей разработкой, по сравнению с TN-TFT. Но несмотря на это, все же можно выделить ряд отличий между данными категориями:

  1. Повышенная контрастность . То, как отображается черный цвет, напрямую влияет на контрастность изображения. Если наклонить экран с технологией TFT без IPS, то прочитать что-либо будет практически не возможно. А все из-за того, что экран при наклоне стает темным. Если же рассматривать IPS матрицу, то, благодаря тому, что передача черного цвета производится кристаллами идеально, изображение получается достаточно четким.
  2. Передача цвета и количество отображаемых оттенков . Матрица TN-TFT не лучшим образом передает цвета. А все из-за того, что каждый пиксель имеет собственный оттенок и это приводит к искажению цвета. Экран с технологией IPS намного бережнее передает изображение.
  3. Задержка отклика . Одним из преимуществ TN-TFT экранов над IPS является высокоскоростной отклик. А все потому, что на поворот множества параллельных кристаллов IPS затрачивает много времени. Отсюда делаем вывод, что там, где скорость прорисовки имеет большое значение, лучше использовать экран с матрицей TN. Дисплеи с технологией IPS работают медленнее, но в повседневной жизни этого не заметно. А выявить данное различие можно лишь применив специально предназначенные для этого технологические тесты. Как правило, предпочтение лучше отдавать дисплеям с матрицей IPS.
  4. Угол обзора . Благодаря широкому углу обзора экран с технологией IPS не искажает изображения, даже если смотреть на него под углом в 178 градусов. При чем такое значение угла обзора может быть как по вертикали, так и по горизонтали.
  5. Энергоемкость . Дисплеи с IPS технологией, в отличии от TN-TFT, требуют больше энергии. Это обусловлено тем, что для того, чтобы повернуть параллельные кристаллы, нужно большое напряжение. В итоге на аккумулятор идет больше нагрузки, чем при использовании TFT матрицы. Если вам необходимо устройство с небольшой энергоемкостью, то TFT технология будет идеальным вариантом.
  6. Ценовая политика . В большинстве бюджетных моделей электроники используют дисплеи на основе TN-TFT технологии, поскольку этот вид матрицы является самым недорогим.На сегодняшний день мониторы с IPS матрицей хоть и стоят дороже, но их используют практически во всех современных электронных моделях. Это постепенно приводит к тому, что IPS матрица практически вытесняет оборудование с технологией TN-TFT.

Итоги

Исходя из всего выше сказанного, можно подвести следующий итог.

Жидкокристаллические телевизоры на рынке появились довольно давно и все уже успели к ним привыкнуть. Однако с каждым годом появляются все новые и новые модели, отличающиеся внешним видом, диагональю экрана, интерфейсом и не только. Кроме того, существуют и такие модели жидкокристаллических дисплеев, которые отличаются особой скоростью обновления, видами светодиодов и подсветки. Однако, обо всем по очереди. Для начала предлагаю разобраться с тем, что же это такое – ЖК мониторы.


Наверное, многие из вас слышали такое понятия, как LCD панели. LCD это аббревиатура, которая расшифровывается, как: Liquid Crystal Display. В переводе на русский это означает жидкокристаллический дисплей, а значит, LCD и ЖК панели это одно и то же.

Технология отображения картинки основывается на использовании кристаллов в жидком виде и их удивительных свойств. Подобные панели обладают огромным количеством положительных качеств, благодаря использованию данной технологии. Поэтому давайте разберемся, как это работает.

Как устроен LCD монитор

Кристаллы, которые используются для создания данных мониторов, называются цианофенилами. Когда они находятся в жидком состоянии, у них появляются уникальные оптические и другие свойства, в том числе умение правильно располагаться в пространстве.

Состоит такой экран из пары прозрачных отполированных пластин, на которые наносятся прозрачные электроды. Между этими двумя пластинами и располагаются цианофенилы в определенном порядке. Через электроды на пластинах подается напряжение, которое поступает к участкам матрицы экрана. Также возле пластин имеются два расположенные параллельно друг другу фильтра.

Получающейся матрицей можно управлять, заставляя кристаллы пропускать луч света или не пропускать. Для того чтоб получались разные цвета, перед кристаллами устанавливают фильтры трех базовых цветов: зеленого, синего и красного. Свет от кристалла проходит через один из этих фильтров и образуется соответствующий цвет пикселя. Определенная комбинация цветов, позволяет создавать другие оттенки, которые будут соответствовать движущейся картинке.

Виды матриц

В ЖК мониторах может использоваться несколько видов матриц, которые отличаются друг от друга своей технологией.

TN+ film . Это одна из самых простых стандартных технологий, которая отличается своей популярностью и небольшой стоимостью. Такой тип модуля обладает низким потреблением электроэнергии и сравнительно небольшой частотой обновления. Особенно часто можно встретить подобный модуль в старых моделях панелей. «+film» в названии значит, что использовался еще один слоя пленки, который должен сделать угол обзора больше. Однако, так как сегодня ее применяют везде, название матрицы может быть сокращено до TN.

Подобный ЖК монитор имеет большое количество недостатков. Во-первых, у них плохая цветопередача из-за использования для каждого цветового канала только 6 бит. Большинство оттенков при этом получается при смешивании основных цветов. Во-вторых, контрастность ЖК мониторов и угол обзора также оставляет желать лучшего. А если у вас перестанут работать какие-то сабпиксели или пиксели, то скорей всего они будут постоянно светиться, что мало кого порадует.

IPS . Такие матрицы отличаются от других видов тем, что имеют наилучшую передачу оттенков и большой угол обзора. Контрастность в таких матрицах также не самая лучшая, а частота обновления меньше, чем даже у TN матрицы. Это значит, что при быстром движении за картинкой может появляться заметный шлейф, что будет мешать смотреть телевизор. Однако если на такой матрице сгорит пиксель, он не будет светиться, а, наоборот, останется черным навсегда.

На основе данной технологии существуют и другие типы матрицы, которые также нередко используются в мониторах, дисплеях, экранах телевизоров и т.д.

  • S-IPS. Такой модуль появился в 1998 году и отличался только меньшей частотой обновления отклика.
  • AS-IPS. Следующий тип матрицы, в котором кроме скорости обновления улучшили еще и контрастность.
  • A-TW-IPS. Это, по сути, та же S-IPS матрица, к которой был добавлен цветовой фильтр под названием «Настоящий белый». Чаще всего такой модуль использовали в мониторах, предназначенных для издательств или фотолабораторий, так как он делал белый цвет более реалистичным и увеличивал спектр его оттенков. Минус такой матрицы заключался в том, что черный цвет обладал при этом фиолетовым оттенком.
  • H-IPS. Появился этот модуль в 2006 году и отличался однородностью экрана и улучшенным контрастом. У него нет такой неприятной засветки черного цвета, правда и угол обзора стал меньше.
  • E-IPS. Появился в 2009 году. Такая технология помогла улучшить угол обзора, яркость и контрастность ЖК мониторов. Кроме того, было уменьшено время обновления экрана до 5 миллисекунд и уменьшено количество потребляемой энергии.
  • P-IPS. Данный тип модуля появился относительно недавно, в 2010 году. Это наиболее усовершенствованная матрица. Она обладает 1024 градациями для каждого сабпикселя, благодаря чему появляется 30-битный цвет, чего не могла достичь ни одна другая матрица.

VA . Это самый первый вид матриц для ЖК дисплеев, который представляет собой компромиссное решение между предыдущими двумя видами модулей. Такие матрицы лучше всего передают контрастность изображения и его цвета, но при определенном угле обзора могут пропадать некоторые детали и изменяться цветовой баланс белого.

У такого модуля также существует несколько производных версий, отличающихся друг от друга по своим характеристикам.

  • MVA – одна из первых и наиболее популярных матриц.
  • PVA – данный модуль был выпущен компанией Samsung и отличается улучшенной контрастностью видео.
  • S- PVA – также была изготовлена компанией Samsung для жидкокристаллических панелей.
  • S-MVA
  • P-MVA, A-MVA – производства AU Optronics. Все дальнейшие матрицы отличаются только компаниями-производителями. Все улучшение основываются только на уменьшении скорости отклика, которая достигается благодаря подачи более высокого напряжения в самом начале изменения положения сабпикселей и использовании полноценной 8-битной системы, которая кодирует цвет на каждом канале.

Также имеется и еще несколько видов ЖК матриц, которые также используются в некоторых моделях панелей.

  • IPS Pro – их используют в телевизорах компании Panasonik.
  • AFFS – матрицы от компании Samsung. Используются только в некоторых специализированных устройствах.
  • ASV - матрицы от корпорации Sharp для жидкокристаллических телевизоров.

Виды подсветки

Жидкокристаллические дисплеи различаются также видами подсветки.

  • Плазменные или газоразрядные лампы. Изначально все LSD мониторы обладали подсветкой из одной или нескольких ламп. В основном такие лампы обладали холодным катодом и имели название CCFL. Позднее начали использовать лампы EEFL. Источником света в таких лампах является плазма, которая появляется в результате электрического разряда проходящего через газ. При этом не нужно путать ЖК ТВ с плазменными, в которых каждый из пикселей является самостоятельным источником света.
  • Светодиодная подсветка или LED. Такие ТВ появились относительно недавно. Такие дисплеи обладают одним или несколькими светодиодами. Однако стоит заметить, что это только тип подсветки, а не сам дисплей, которые состоит из этих миниатюрных диодов.

Быстрота отклика и необходимое значение для просмотра видео в формате 3D

Быстрота отклика – это то, сколько кадров в секунду может показывать телевизор. Этот параметр влияет на качество изображения и его плавность. Для того чтоб было достигнуто данное качество, частота обновления должна составлять 120 Гц. Для того чтоб достичь такой частоты, в телевизорах используют видеокарту. Кроме того, такая частота смены кадров не создает мерцания экрана, что в сою очередь лучше влияет на глаза.

Для просмотра фильмов в 3D формате такой частоты обновления будет вполне достаточно. При этом во многих ТВ устанавливают подсветку, которая обладает частотой обновления 480 Гц. Достигается она при помощи использования специальных TFT транзисторов.

Другие характеристики ЖК телевизоров

Яркость, глубина черного и контрастность Яркость у таких ТВ находится на довольно высоком уровне, но контрастность оставляет желать лучшего. Это связано с тем, что при эффекте поляризации глубина черного цвета будет такой, насколько это позволит лампа подсветки. Из-за недостаточного уровня глубины черного цвета и контрастности, темные оттенки могут сливаться в один цвет.
Диагональ экрана На сегодняшний день можно с легкостью найти ЖК панели как с большой диагональю, которые можно использовать в качестве домашнего кинотеатра, так и модели с довольно маленькой диагональю.
Угол обзора Современные модели ТВ обладают довольно хорошим углом обзора, который может достигать 180 градусов. Но старые модели имеют недостаточный угол, из-за чего при взгляде на экран с определенного ракурса он может выглядеть довольно темным или цвета будут искажены.
Цветопередача Цветопередача у таких дисплеев не всегда довольно хорошего качества. Это опять-таки касается в основном старых моделей экранов. Но и современные модели нередко уступают другим видам ТВ.
Энергоэффективность Жидкокристаллические дисплеи потребляют на 40% меньше электроэнергии, чем другие виды.
Габариты и вес Такие ТВ имеют довольно небольшой вес и толщину, однако на сегодняшний день существуют панели и с меньшей толщиной и весом.

Сейчас технология плоскопанельных мониторов, и жидкокристаллических в том числе, является наиболее перспективной. Хотя в настоящее время на долю ЖК-мониторов приходится лишь около 10% продаж во всем мире, этот сектор рынка является наиболее быстрорастущим (65% в год).

Принцип работы

Экраны LCD-мониторов (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности оптических), связанных с упорядоченностью в ориентации молекул.
Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 г. Однако долгое время никто не знал, как их применить на практике: есть такие вещества и все, и никому, кроме физиков и химиков, они не были интересны. Итак, жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение. Впрочем, дальше этого дело не пошло, поскольку технологическая база в то время была еще слишком слаба. Первый настоящий прорыв совершили ученые Фергесон (Fergason) и Вильямс (Williams) из корпорации RCA (Radio Corporation of America). Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот в конце 1966 г. корпорация RCA продемонстрировала прототип LCD-монитора – цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.
Работа ЖКД основана на явлении поляризации светового потока. Известно, что так называемые кристаллы поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы "просеивает" свет, данный эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.
Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD-дисплеи для настольных компьютеров.

Экран LCD монитора представляет собой массив маленьких сегментов (называемых пикселями), которыми можно манипулировать для отображения информации. LCD монитор имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой [см. рис. 2.1]. На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) при отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковый угол поворота плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу. Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света).

Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели [см. рис. 2.2].
При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы [см. рис. 2.3].
Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем [см. рис 2.4а].

В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным (лучи подсветки поглощаются в экране полностью) [см. рис 2.4б]. Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность при правильном управлении потенциалами этих электродов отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут иметь любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD монитора, и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD дисплея. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.
Вообще-то в случае с цветом несколько возможностей: можно сделать несколько фильтров друг за другом (приводит к малой доле проходящего излучения), можно воспользоваться свойством жидкокристаллической ячейки - при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.
Первые LCD дисплеи были очень маленькими, около 8 дюймов, в то время как сегодня они достигли 15" размеров для использования в ноутбуках, а для настольных компьютеров производятся 20" и более LCD мониторы. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.

Преимущества и недостатки ЖК-мониторов

Среди преимуществ TFT можно отметить отличную фокусировку, отсутствие геометрических искажений и ошибок совмещения цветов. Кроме того, у них никогда не мерцает экран. Почему? Ответ прост - в этих дисплеях не используется электронный луч, рисующий слева направо каждую строку на экране. Когда в ЭЛТ этот луч переводится из правого нижнего в левый верхний угол, изображение на мгновение гаснет (обратный ход луча). Напротив, пиксели дисплея TFT никогда не гаснут, они просто непрерывно меняют интенсивность своего свечения.
В таблице 1.1 показаны все главные отличия рабочих характеристик для разных типов дисплеев:

Таблица 1.1. Сравнительные характеристики ЭЛТ и ЖК-мониторов.

Условные обозначения: (+ ) достоинство, (~ ) допустимо, (- ) недостаток

ЖК-мониторы ЭЛТ-мониторы
Яркость (+ ) от 170 до 250 Кд/м 2 (~ ) от 80 до 120 Кд/м 2
Контрастность (~ ) от 200:1 до 400:1 (+ ) от 350:1 до 700:1
Угол обзора
(по контрасту)
(~ ) от 110 до 170 градусов (+ ) свыше 150 градусов
Угол обзора
(по цвету)
(- ) от 50 до 125 градусов (~ ) свыше 120 градусов
Разрешение (- ) Одно разрешение с фиксированным размером пикселей. Оптимально можно использовать только в этом разрешении; в зависимости от поддерживаемых функций расширения или компрессии можно использовать более высокое или более низкое разрешение, но они не оптимальны. (+ ) Поддерживаются различные разрешения. При всех поддерживаемых разрешениях монитор можно использовать оптимальным образом. Ограничение накладывается только приемлемостью частоты регенерации.
Частота вертикальной развертки (+ ) Оптимальная частота 60 Гц, чего достаточно для отсутствия мерцания (~ ) Только при частотах свыше 75 Гц отсутствует явно заметное мерцание
Ошибки совмещения цветов (+ ) нет (~ ) от 0.0079 до 0.0118 дюйма (0.20 - 0.30 мм)
Фокусировка (+ ) очень хорошая (~ ) от удовлетворительной до очень хорошей>
Геометрические/ линейные искажения (+ ) нет (~ ) возможны
Неработающие пиксели (- ) до 8 (+ ) нет
Входной сигнал (+ ) аналоговый или цифровой (~ ) только аналоговый
Масштабирование
при разных разрешениях
(- ) отсутствует или используются методы интерполяции, не требующие больших накладных расходов (+ ) очень хорошее
Точность отображения цвета (~ ) Поддерживается True Color и имитируется требуемая цветовая температура (+ ) Поддерживается True Color и при этом на рынке имеется масса устройств калибровки цвета, что является несомненным плюсом
Гамма-коррекция
(подстройка цвета под особенности человеческого зрения)
(~ ) удовлетворительная (+ ) фотореалистичная
Однородность (~ ) часто изображение ярче по краям (~ ) часто изображение ярче в центре
Чистота цвета/качество цвета (~ ) хорошее (+ ) высокое
Мерцание (+ ) нет (~ ) незаметно на частоте выше 85 Гц
Время инерции (- ) от 20 до 30 мсек. (+ ) пренебрежительно мало
Формирование изображения (+ ) Изображение формируется пикселями, число которых зависят только от конкретного разрешения LCD панели. Шаг пикселей зависит только от размера самих пикселей, но не от расстояния между ними. Каждый пиксель формируется индивидуально, что обеспечивает великолепную фокусировку, ясность и четкость. Изображение получается более целостным и гладким (~ ) Пиксели формируются группой точек (триады) или полосок. Шаг точки или линии зависит от расстояния между точками или линиями одного цвета. В результате четкость и ясность изображения сильно зависит от размера шага точки или шага линии и от качества ЭЛТ
Энергопотребление и излучения (+ ) Практически никаких опасных электромагнитных излучений нет. Уровень потребления энергии примерно на 70% ниже, чем у стандартных CRT мониторов (от 25 до 40 Вт). (- ) Всегда присутствует электромагнитное излучение, однако их уровень зависит от того, соответствует ли ЭЛТ какому-либо стандарту безопасности. Потребление энергии в рабочем состоянии на уровне 60 - 150 Вт.
Размеры/вес (+ ) плоский дизайн, малый вес (- ) тяжелая конструкция, занимает много места
Интерфейс монитора (+ ) Цифровой интерфейс, однако, большинство LCD мониторов имеют встроенный аналоговый интерфейс для подключения к наиболее распространенным аналоговым выходам видеоадаптеров (- ) Аналоговый интерфейс

Из таблицы 1.1 следует, что дальнейшее развитие ЖК-мониторов будет связано с повышением четкости и яркости изображения, увеличением угла обзора и уменьшением толщины экрана. Так, например, уже существуют перспективные разработки LCD-мониторов, выполненных по технологии с использованием поликристаллического кремния. Это позволяет, в частности, создавать очень тонкие устройства, поскольку микросхемы управления размещаются в этом случае непосредственно на стеклянной подложке дисплея. Кроме того, новая технология обеспечивает высокую разрешающую способность на сравнительно небольшом по размеру экране (1024x768 точек на 10,4-дюймовом экране).

STN, DSTN, TFT, S-TFT

STN - это сокращение, означающее "Super Twisted Nematic".Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD дисплея с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.
Часто STN ячейки используются в паре. Такая конструкция называется DSTN (Double Super Twisted Nematic), в которой одна двухслойная DSTN-ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в "запертом" состоянии, теряет большую часть своей энергии. Контрастность и разрешающая способность DSTN достаточно высокая, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходится три ЖК-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки -- их обязательный атрибут. Для сокращения габаритов лампа находится с боку, а напротив нее зеркало [см. рис. 2.5], поэтому большинство LCD-матриц в центре имеют яркость выше, чем по краям (это не относится к настольным ЖК мониторам).

Также STN ячейки используются в режиме TSTN (Triple Super Twisted Nematic), когда два тонких слоя полимерной пленки добавляются для улучшения цветопередачи цветных дисплеев или для обеспечения хорошего качества монохромных мониторов.
Термин пассивная матрица (passive matrix) появился в результате разделения монитора на точки, каждая из которых, благодаря электродам, может задавать ориентацию плоскости поляризации луча, независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что технология создания LCD дисплеев, которая была описана выше, не может обеспечить быструю смену информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно. Такой дисплей имеет много недостатков с точки зрения качества, потому что изображение не отображается плавно и дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения.
Для решения части вышеописанных проблем применяют специальные технологии, Для улучшения качества динамического изображения было предложено увеличить количество управляющих электродов. То есть вся матрица разбивается на несколько независимых подматриц (Dual Scan DSTN - два независимых поля развертки изображения), каждая из которых содержит меньшее количество пикселей, поэтому поочередное управление ими занимает меньше времени. В результате чего можно сократить время инерции ЖК.
Также лучших результатов с точки зрения стабильности, качества, разрешения, гладкости и яркости изображения можно добиться, используя экраны с активной матрицей, которые, впрочем, стоят дороже.
В активной матрице (active matrix) используются отдельные усилительные элементы для каждой ячейки экрана, компенсирующие влияние емкости ячеек и позволяющие значительно уменьшить время изменения их прозрачности. Активная матрица (active matrix) имеет массу преимуществ по сравнению с пассивной матрицей. Например, лучшая яркость и возможность смотреть на экран даже с отклонением до 45° и более (т.е. при угле обзора 120°-140°) без ущерба качеству изображения, что невозможно в случае с пассивной матрицей, которая позволяет видеть качественное изображение только с фронтальной позиции по отношению к экрану. Заметим, что дорогие модели LCD мониторов с активной матрицей обеспечивают угол обзора в 160° [см рис. 2.6], и есть все основания предполагать, что технология будет совершенствоваться и в дальнейшем. Активная матрица может отображать движущиеся изображения без видимого дрожания, так как время реакции дисплея с активной матрицей около 50 мс против 300 мс для пассивной матрицы, кроме того, контрастность мониторов с активной матрицей выше, чем у ЭЛТ-мониторов. Следует отметить, что яркость отдельного элемента экрана остается неизменной на всем интервале времени между обновлениями картинки, а не представляет собой короткий импульс света, излучаемый элементом люминофором ЭЛТ-монитора сразу после похождения по этому элементу электронного луча. Именно поэтому для LCD мониторов достаточной является частота вертикальной развертки, равная 60 Гц.

Функциональные возможности LCD мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея. В случае с пассивной матрицей разные электроды получают электрический заряд циклическим методом при построчном обновлении дисплея, а в результате разряда емкостей элементов изображение исчезает, так как кристаллы возвращаются к своей изначальной конфигурации. В случае с активной матрицей к каждому электроду добавлен запоминающий транзистор, который может хранить цифровую информацию (двоичные значения 0 или 1) и в результате изображение сохраняется до тех пор, пока не поступит другой сигнал. Частично проблема отсрочки затухания изображения в пассивных матрицах решается за счет использования большего числа жидкокристаллических слоев для увеличения пассивности и уменьшения перемещений, теперь же, при использовании активных матриц появилась возможность сократить число жидкокристаллических слоев. Запоминающие транзисторы должны производиться из прозрачных материалов, что позволит световому лучу проходить сквозь них, а значит, транзисторы можно располагать на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Для этих целей используются пластиковые пленки, называемые "Thin Film Transistor" (или просто TFT).
Thin Film Transistor (TFT), т.е. тонкопленочный транзистор - это те управляющие элементы, при помощи которых контролируется каждый пиксель на экране. Тонкопленочный транзистор действительно очень тонкий, его толщина 0,1 - 0,01 микрона.
В первых TFT-дисплеях, появившихся в 1972г., использовался селенид кадмия, обладающий высокой подвижностью электронов и поддерживающий высокую плотность тока, но со временем был осуществлен переход на аморфный кремний (a-Si), а в матрицах с высоким разрешением используется поликристаллический кремний (p-Si).
Технология создания TFT очень сложна, при этом имеются трудности с достижением приемлемого процента годных изделий из-за того, что число используемых транзисторов очень велико. Заметим, что монитор, который может отображать изображение с разрешением 800х600 пикселей в SVGA режиме и только с тремя цветами имеет 1440000 отдельных транзисторов. Производители устанавливают нормы на предельное количество транзисторов, которые могут быть нерабочими в LCD дисплее. Правда, у каждого производителя свое мнение о том, какое количество транзисторов могут не работать.
Пиксель на основе TFT устроен следующим образом: в стеклянной пластине друг за другом интегрировано три цветных фильтра (красный, зеленый и синий). Каждый пиксель представляет собой комбинацию трех цветных ячеек или субпиксельных элементов [см. рис. 2.7]. Это означает, например, что у дисплея, имеющего разрешение 1280x1024, существует ровно 3840x1024 транзистора и субпиксельных элемента. Размер точки (пикселя) для 15.1" дисплея TFT (1024x768) приблизительно равен 0.0188 дюйма (или 0.30 мм), а для 18.1" дисплея TFT - около 0.011 дюйма (или 0.28 мм).

TFT обладают рядом преимуществ перед ЭЛТ-мониторами, среди которых - пониженное потребление энергии и теплоотдача, плоский экран и отсутствие следа от движущихся объектов. Последние разработки позволяют получить изображение более высокого качества, чем обычные TFT.

Совсем недавно специалистами компании Hitachi была создана новая технология многослойных ЖК-панелей Super TFT, которая значительно увеличила угол уверенного обзора ЖК панели. Технология Super TFT использует простые металлические электроды, установленные на нижней стеклянной пластине и заставляет молекулы вращаться, постоянно находясь в плоскости, параллельной плоскости экрана [см. рис. 2.8]. Так как кристаллы обычной ЖК-панели поворачиваются к поверхности экрана оконечностями, то такие ЖКД более зависимы от угла зрения, чем ЖК-панели Hitachi с технологией Super TFT, В результате изображение на дисплее остается ярким и четким даже при больших углах обзора, достигая качества, сопоставимого с изображением на ЭЛТ-экране.

Японская компания NEC недавно объявила, что по качеству изображения ее LCD дисплеи вскоре достигнут уровня лазерных принтеров, перешагнув порог в 200 ppi, что соответствует 31 точке на мм 2 или шагу точек 0,18 мм. Как сообщили в NEC, применяемые сегодня многими производителями жидкие кристаллы TN (twisted nematic) позволяет строить дисплеи с разрешение до 400 точек на дюйм. Однако главным сдерживающим фактором в повышении разрешения является необходимость создания соответствующих светофильтров. В новой технологии "color filter on TFT" светофильтры, закрывающие тонкопленочные транзисторы, формируются с помощью фотолитографии на нижней стеклянной подложке. В обычных дисплеях светофильтры наносятся на вторую, верхнюю подложку, что требует очень точного совмещения двух пластин.

На прошедшей в 1999 году в США конференции "Society for information Display" было сделано несколько докладов, свидетельствующих об успехах в создании жидкокристаллических дисплеев на пластиковой подложке. Компания Samsung представила прототип монохромного дисплея на полимерном субстрате с диагональю 5,9 дюйма и толщиной 0,5 мм. Толщина самой подложки составляет около 0,12 мм. Дисплей имеет разрешение 480х320 точек и контрастность 4:1. Вес - всего 10 грамм.

Инженеры из Лаборатории кинотехники Университете Штуттгарта использовали не тонкопленочные транзисторы (TFT), а диоды MIM (металл-изолятор-металл). Последнее достижение этой команды - двухдюймовый цветной дисплей с разрешением 96х128 точек и коэффициентом контрастности 10:1.

Группа специалистов IBM разработала технологию производства тонкопленочных транзисторов с применением органических материалов, позволяющую изготавливать гибкие экраны для электронной книги и других устройств. Элементы разработанных IBM транзисторов напыляются на пластиковую подложку при комнатной температуре (традиционные LCD-дисплеи изготавливаются при высокой температуре, что исключает применение органических материалов). Вместо обычного диоксида кремния для изготовления затвора используется цирконат титоната бария (BZT). В качестве полупроводника применяется органическое вещество под названием пентацен (pentacene), представляющее собой соединение фенилэтиламмония с иодидом олова.

Для повышения разрешения LCD-экранов компания Displaytech предложила не создавать изображение на поверхности большого LCD-экрана, а вывести картинку на маленький дисплей высокого разрешения, а затем с помощью оптической проекционной системы увеличить ее до нужных размеров. При этом Displaytech использовала оригинальную технологию Ferroelectric LCD (FLCD). Она основана на так называемых кирально-смектических жидких кристаллах, предложенных для использования еще в 1980 г. Слой материала, обладающего ферроэлектрическими свойствами и способного отражать поляризованный свет с вращением плоскости поляризации, наносится на подающую управляющие сигналы CMOS-подложку. При прохождении отраженного светового потока через второй поляризатор возникает картинка из темных и светлых пикселов. Цветное изображение получается за счет быстрого чередования освещения матрицы красным, зеленым и синим светом.. На базе FLCD-матриц можно производить экраны большого размера с высокой контрастностью и качеством цветопередачи, с широкими углами обзора и малым временем отклика. В 1999 году альянс корпораций Hewlett-Packard и DisplayTech объявил о создании полноцветного микродисплея на базе технологии FLCD. Разрешение матрицы составляет 320х240 точек. Отличительными особенностями устройства являются малое энергопотребление и возможность воспроизведения полноцветного “живого” видео. Новый дисплей предназначен для использования в цифровых камерах, камкодерах, портативных коммуникаторах и мониторах для надеваемых компьютеров.

Развитием низкотемпературной технологии с использованием поликристаллического кремния LTPS занимается Toshiba. По словам представителей этой корпорации, они позиционируют новые устройства пока только как предназначенные для рынка мобильных устройств, не включая сюда ноутбуки, где господствует технология a-Si TFT. Уже выпускаются VGA-дисплеи размером 4 дюйма, а на подходе 5,8-дюймовые матрицы. Специалисты полагают, что 2 млн. пикселов на экране - это далеко не предел. Одной из отличительных черт данной технологии является высокая разрешающая способность.

По оценкам экспертов корпорации DisplaySearch, занимающейся исследованиями рынка плоских дисплеев, в настоящее время при изготовлении практически любых жидкокристаллических матриц происходит замена технологий: TN LCD (Twisted Nematic Liquid Crystal Display) на STN (Super TN LCD) и особенно на a-Si TFT LCD (amorphous-Silicon Thin Film Transistor LCD). В ближайшие 5-7 лет во многих областях применения обычные LCD-экраны будут заменены или дополнены следующими устройствами:

  • микродисплеи;
  • светоизлучающие дисплеи на базе органических материалов LEP;
  • дисплеи на базе автоэлектронной эмиссии FED (Field Emisson Display);
  • дисплеи с использованием низкотемпературного поликристаллического кремния LTPS (Low Temperature PolySilicon);
  • плазменные дисплеи PDP (Plasma Display Panel).

Взято с http://monitors.narod.ru

LCD дисплей – это самый распространенный вид экранов телевизоров и мониторов, а также дисплеев телефонов и других устройств. Такое распространение данный вид экрана получил благодаря целому ряду неоспоримых преимуществ.

Для того чтобы понять все положительные качества ЖК дисплеев следует понять, что это такое, а также знать принцип работы и устройства таких экранов. Именно об этом и пойдет речь в данной статье.

1. Расшифровка LCD

ЖК-дисплей означает – жидкокристаллический экран, если перевести на английский язык - Liquid crystal display. Из этого следует, что ЖК и LCD – это одно и тоже. Данная технология получила такое название благодаря применению уникального вещества, которое всегда находится в жидком состоянии и обладает оптическими свойствами, присущими кристаллам.

Современный ЖК экран отличается рядом преимуществ, которые обеспечиваются именно жидкими кристаллами. Постоянное жидкое состояние молекул жидких кристаллов позволяет управлять их оптическими свойствами, воздействуя на них электричеством. При этом молекулы меняют свое расположение, преломляя проходящий свет под нужным углом, отсеивая определенный спектр излучения.

2. Устройство ЖК дисплея

Практически все существующие сегодня ЖК дисплеи имеют идентичное устройство. Если говорить о конструкции, то любой LCD монитор или телевизор состоит из следующих компонентов:

  • ЖК матрицы;
  • Источник света;
  • Контактного жгута;
  • Обрамление (корпус).

ЖК матрица представляет собой две стеклянные пластины, между которыми располагается тонкий слой жидких кристаллов. По сути – это массив, состоящий из огромного множества ячеек, называемых пикселями. Каждый пиксель матрицы состоит из нескольких молекул жидких кристаллов и двух поляризационных фильтров. Причем плоскости этих фильтров расположены перпендикулярно относительно друг друга.

Каждый пиксель матрицы расположен между двумя специальными прозрачными электродами, что дает возможность управлять расположением молекул в каждом пикселе отдельно. LCD технология может основываться на прохождении либо отражении света, в зависимости от устройства монитора, через молекулы жидких кристаллов. Разницы между этими типами матриц практически нет. Однако стоит отметить, что большинство ЖК дисплеев работают на прохождение света через слой жидких кристаллов.

3. Принцип работы ЖК дисплея

Принцип работы LCD дисплея заключается в том, что при условии отсутствия молекул жидких кристаллов свет пропускается первым поляризационным фильтром и полностью блокируется – вторым.

Сами жидкие кристаллы расположены между этими фильтрами таким образом, чтобы преломлять свет, проходящий через первый фильтр так, чтобы он беспрепятственно проходил через второй. Так устроены TN матрицы. Жидкокристаллические дисплеи с другими типами матриц могут действовать наоборот, однако принцип работы при этом не меняется. То есть в спокойном состоянии излучение блокируется и не проходит через матрицу, а при возбуждении электромагнитного поля плоскость излучения меняется так, чтобы свет проходил без препятствий

Для того чтобы молекулы жидких кристаллов располагались в нужном порядке без воздействия электричеством, на контактирующую поверхность электродов нанесены специальные микроскопические бороздки, выстраивающие молекулы в нужном порядке. Таким образом, если воздействовать на определенные области матрицы получается изображение.

Каждый современный жидкокристаллический экран имеет высокое разрешение. Это означает, что матрица состоит из огромного количества пикселей, при этом управлять ими можно каждым в отдельности. Другими словами, если увеличить какую-либо область экрана можно заметить мелкие ячейки, меняя напряжение каждой из этих ячеек можно изменить угол преломления света именно в данной точке. Путем создания необходимого напряжения в каждой из ячеек и создается определенное изображение.

4. Тип подсветки ЖК матрицы

Современные LCD дисплеи могут использовать два варианта подсветки:

  • Люминесцентные лампы;
  • Светодиодная подсветка.

Конечно же, тип подсветки существенно влияет на качество изображения. Люминесцентные лампы считаются устаревшим методом подсветки. Главной проблемой данного типа подсветки является невозможность равномерного распределения света по всей плоскости экрана, что не позволяет достичь высокого качества изображения. Он использовался в первых ЖК матрицах и сегодня встречается все реже.

Светодиодная подсветка, более известная под название LED, является последней разработкой, которая позволила достичь более высокого качества изображения. Такой тип подсветки отличается рядом преимуществ.

Во-первых – это низкое потребление электроэнергии. Во-вторых, LED подсветка излучает более интенсивный свет, который позволяет более равномерно распределить излучение. Благодаря компактным размерам такая подсветка не занимает много места, что позволяет делать экраны еще более тонкими.

5. Типы ЖК матриц

В мире существует несколько типов LCD матриц, однако на отечественном рынке встречается только два вида:

  • TN+Film;

Оба варианта имеют достаточно высокие характеристики. Если говорить о том, какой вариант лучше выбрать, то следует отметить, что все больше производителей отдают предпочтение IPS матрицам, так как они позволяют передать более естественные цвета.

Конечно, как и в любой другой технологии, здесь также есть свои плюсы и минусы. IPS матрицы отличаются отличным качеством изображения, высокой четкостью и прекрасной цветопередачей. Однако при этом имеют медленный отклик. Современные технологии позволили улучшить этот показатель до высокого уровня.

TN+Film матрицы уступают по качеству и четкости изображения. Однако при этом они имеют быстрый отклик, который позволяет таким мониторам отображать самые яркие спецэффекты и быстрые видео записи. Однако стоит понимать, что все эти измерения проводятся при помощи специальной техники. В домашних условиях вы вряд ли сможете заметить существенную разницу между этими матрицами. Поэтому выбор остается за вами.

6. Устройство TFT дисплея: Видео

Конечно, зная все эти нюансы, люди, которые занимаются обработкой фотографий, предпочитают IPS матрицы, так как им не требуется быстрый отклик, но при этом необходима максимально естественная цветопередача. В других случаях, тип матрицы не играет роли.

Ну и, конечно же, все характеристики зависят и от производителя, а также от используемой технологии и материалов. Не стоит думать, что все IPS матрицы одинаковы, они также могут отличаться между собой. Стоит понимать, что чем дороже монитор (или телевизор) тем более высокое качество изображения вы сможете получить. То же самое можно сказать и о TN+Film матрицах.

Какой бы жидкокристаллический дисплей вы не выбрали, стоит обязательно ознакомиться с его возможностями и техническими характеристиками. На сегодняшний день ЖК-дисплеи являются самыми распространенными по ряду причин. Их преимущества вы уже знаете. Благодаря этому они являются прямыми конкурентами плазменным панелям, но при этом они имеют более низкую стоимость, что делает их более доступными для пользователей. Кроме того, они имеют больший ресурс. Другими словами, ЖК-дисплей служит существенно дольше плазменной панели.