Шина CAN – Введение

Протокол CAN является стандартом ISO (ISO 11898) в области последовательной передачи данных. Протокол был разработан с прицелом на использование в транспортных приложениях. Сегодня CAN получил широкое распространение и используется в системах автоматизации промышленного производства, а также на транспорте.

Стандарт CAN состоит из физического уровня и уровня передачи данных, определяющего несколько различных типов сообщений, правила разрешения конфликтов при доступе к шине и защиту от сбоев.

Протокол CAN

Протокол CAN описан в стандарте ISO 11898–1 и может быть кратко охарактеризован следующим образом:

Физический уровень использует дифференциальную передачу данных по витой паре;

Для управления доступом к шине используется неразрушающее bit–wise разрешение конфликтов;

Сообщения имеют малые размеры (по большей части 8 байт данных) и защищены контрольной суммой;

В сообщениях отсутствуют явные адреса, вместо этого каждое сообщение содержит числовое значение, которое управляет его очередностью на шине, а также может служить идентификатором содержимого сообщения;

Продуманная схема обработки ошибок, обеспечивающая повторную передачу сообщений, если они не были получены должным образом;
имеются эффективные средства для изоляции сбоев и удаления сбойных узлов с шины.

Протоколы более высоких уровней

Сам по себе протокол CAN определяет всего лишь, как малые пакеты данных можно безопасно переместить из точки A в точку B посредством коммуникационной среды. Он, как и следовало ожидать, ничего не говорит о том, как управлять потоком; передавать большое количество данных, нежели помещается в 8–байтное сообщение; ни об адресах узлов; установлении соединения и т.п. Эти пункты определяются протоколом более высокого уровня (Higher Layer Protocol, HLP). Термин HLP происходит из модели OSI и её семи уровней.

Протоколы более высокого уровня используются для:

Стандартизации процедуры запуска, включая выбор скорости передачи данных;

Распределения адресов среди взаимодействующих узлов или типов сообщений;

Определения разметки сообщений;
обеспечения порядка обработки ошибок на уровне системы.

Пользовательские группы и т.п.

Одним из наиболее эффективных способов повышения вашей компетентности в области CAN является участие в работе, осуществляемой в рамках существующих пользовательских групп. Даже если вы не планируете активно участвовать в работе, пользовательские группы могут являться хорошим источником информации. Посещение конференций является ещё одним хорошим способом получения исчерпывающей и точной информации.

Продукты CAN

На низком уровне принципиально различают два типа продуктов CAN, доступных на открытом рынке – микросхемы CAN и инструменты разработки CAN. На более высоком уровне – другие два типа продуктов: модули CAN и инструменты проектирования CAN. Широкий спектр данных продуктов доступен на открытом рынке в настоящее время.

Патенты в области CAN

Патенты, относящиеся к приложениям CAN, могут быть различных типов: реализация синхронизации и частот, передача больших наборов данных (в протоколе CAN используются кадры данных длиной всего лишь 8 байт) и т.п.

Системы распределённого управления

Протокол CAN является хорошей основой для разработки систем распределённого управления. Метод разрешения конфликтов, используемый CAN, обеспечивает то, что каждый узел CAN будет взаимодействовать с теми сообщениями, которые относятся к данному узлу.

Систему распределённого управления можно описать как систему, вычислительная мощность которой распределена между всеми узлами системы. Противоположный вариант – система с центральным процессором и локальными точками ввода–вывода.

Сообщения CAN

Шина CAN относится к широковещательным шинам. Это означает, что все узлы могут «слушать» все передачи. Не существует возможности послать сообщение конкретному узлу, все без исключения узлы будут принимать все сообщения. Оборудование CAN, однако, обеспечивает возможность локальной фильтрации, так что каждый модуль может реагировать только на интересующее его сообщение.

Адресация сообщений CAN

CAN использует относительно короткие сообщениямаксимальная длина информационного поля составляет 94 бита. В сообщениях отсутствует явный адрес, их можно назвать контентно–адрессованными: содержимое сообщения имплицитно (неявным образом) определяет адресата.

Типы сообщений

Существует 4 типа сообщений (или кадров), передающихся по шине CAN:

Кадр данных (Data Frame);

Удаленный кадр (Remote Frame);

Кадр ошибки (Error Frame);

Кадр перегрузки (Overload Frame).

Кадр данных

Кратко: «Всем привет, есть данные с маркировкой X, надеюсь вам понравятся!»
Кадр данных – самый распространенный тип сообщения. Он содержит в себе следующие основные части (некоторые детали не рассматриваются для краткости):

Поле арбитража (Arbitration Field), которое определяет очередность сообщения в том случае, когда за шину борятся два или более узла. Поле арбитража содержит:

В случае CAN 2.0A, 11–битный идентификатор и один бит, бит RTR который является определяющим для кадров данных.

В случае CAN 2.0B, 29–битный идентификатор (который также содержит два рецессивных бита: SRR и IDE) и бит RTR.

Поле данных (Data Field), которое содержит от 0 до 8 байт данных.

Поле CRC (CRC Field), содержащее 15–битную контрольную сумму, посчитанную для большинства частей сообщения. Эта контрольная сумма используется для обнаружения ошибок.

Слот распознавания (Acknowledgement Slot). Каждый контроллер CAN, способный корректно получить сообщение, посылает бит распознавания (Acknowledgement bit) в конце каждого сообщения. Приемопередатчик проверяет наличие бита распознавания и, если таковой не обнаруживается, высылает сообщение повторно.

Примечание 1: Присутствие на шине бита распознавания не значит ничего, кроме того, что каждый запланированный адресат получил сообщение. Единственное, что становится известно, это факт корректного получения сообщения одним или несколькими узлами шины.

Примечание 2: Идентификатор в поле арбитража, несмотря на свое название, необязательно идентифицирует содержимое сообщения.

Кадр данных CAN 2.0B («cтандартный CAN»).

Кадр данных CAN 2.0B («расширенный CAN»).

Удаленный кадр

Кратко: «Всем привет, кто–нибудь может произвести данные с маркировкой X?»
Удаленный кадр очень похож на кадр данных, но с двумя важными отличиями:

Он явно помечен как удаленный кадр (бит RTR в поле арбитража является рецессивным), и

Отсутствует поле данных.

Основной задачей удаленного кадра является запрос на передачу надлежащего кадра данных. Если, скажем, узел A пересылает удаленный кадр с параметром поля арбитража равным 234, то узел B, если он должным образом инициализирован, должен выслать в ответ кадр данных с параметром поля арбитража также равным 234.

Удаленные кадры можно использовать для реализации управления трафиком шины типа «запрос–ответ». На практике, однако, удаленный кадр используется мало. Это не так важно, поскольку стандарт CAN не предписывает действовать именно так, как здесь обозначено. Большинство контроллеров CAN можно запрограммировать так, что они будут автоматически отвечать на удаленный кадр, или же вместо этого извещать локальный процессор.

Есть одна уловка, связанная с удаленным кадром: код длины данных (Data Length Code) должен быть установлен длине ожидаемого ответного сообщения. В противном случае разрешение конфликтов работать не будет.

Иногда требуется чтобы узел, отвечающий на удаленный кадр, начинал свою передачу как только распознавал идентификатор, таким образом «заполняя» пустой удаленный кадр. Это другой случай.

Кадр ошибки (Error Frame)

Кратко (все вместе, громко): «О, ДОРОГОЙ, ДАВАЙ ПОПРОБУЕМ ЕЩЁ РАЗОК»
Кадр ошибки (Error Frame) – это специальное сообщение, нарушающее правила формирования кадров сообщения CAN. Он посылается, когда узел обнаруживает сбой и помогает остальным узлам обнаружить сбой – и они тоже будут отправлять кадры ошибок. Передатчик автоматически попробует послать сообщение повторно. Наличествует продуманная схема счетчиков ошибок, гарантирующая, что узел не сможет нарушить передачу данных по шине путём повторяющейся отсылки кадров ошибки.

Кадр ошибки содержит флаг ошибки (Error Flag), который состоит из 6 бит одинакового значения (таким образом нарушая правило вставки битов) и разграничителя ошибки (Error Delimiter), состоящего из 8 рецессивных бит. Разраничитель ошибки предоставляет некоторое пространство, в котором другие узлы шины могут отправлять свои флаги ошибки после того, как сами обнаружат первый флаг ошибки.

Кадр перегрузки (Overload Frame)

Кратко: «Я очень занятой 82526 маленький, не могли бы вы подождать минуточку?»
Кадр перегрузки упоминается здесь лишь для полноты картины. По формату он очень похож на кадр ошибки и передается занятым узлом. Кадр перегрузки используется нечасто, т.к. современные контроллеры CAN достаточно производительны, чтобы его не использовать. Фактически, единственный контроллер, который будет генерировать кадры перегрузки – это ныне устаревший 82526.

Стандартный и расширенный CAN

Изначально стандарт CAN установил длину идентификатора в поле арбитража равной 11 битам. Позже, по требованию покупателей стандарт был расширен. Новый формат часто называют расширенным CAN (Extended CAN), он позволяет использовать не менее 29 бит в идентификаторе. Для различения двух типов кадров используется зарезервированный бит в поле управления Control Field.

Формально стандарты именуются следующим образом –

2.0A – только с 11–битными идентификаторами;
2.0B – расширенная версия с 29–битными или 11–битными идентификаторами (их можно смешивать). Узел 2.0B может быть

2.0B active (активным), т.е. способным передавать и получать расширенные кадры, или

2.0B passive (пассивным), т.е. он будет молча сбрасывать полученные расширенные кадры (но, смотрите ниже).

1.x – относится к оргинальной спецификации и её ревизиям.

В настоящее время новые контроллеры CAN обычно относятся к типу 2.0B. Контроллер типа 1.x или 2.0A прибудет в замешательство, получив сообщения с 29 битами арбитража. Контроллер 2.0B пассивного типа примет их, опознает, если они верны и, затем – сбросит; a контроллер 2.0B активного типа сможет и передавать, и получать такие сообщения.

Контроллеры 2.0B и 2.0A (равно, как и 1.x) совместимы. Можно использовать их все на одной шине до тех пор, пока контроллеры 2.0B будут воздерживаться от рассылки расширенных кадров.

Иногда люди заявляют, что стандартный CAN «лучше» расширенного CAN, потому что в сообщениях расширенного CAN больше служебных данных. Это необязательно так. Если вы используете поле арбитража для передачи данных, то кадр расширенного CAN может содержать меньше служебных данных, чем кадр стандартного CAN.

Основной CAN (Basic CAN) и полный CAN (Full CAN)

Термины Basic CAN и Full CAN берут начало в «детстве» CAN. Когда–то существовал CAN–контроллер Intel 82526, предоставлявший программисту интерфейс в стиле DPRAM. Потом появился Philips с моделью 82C200, в котором применялась FIFO–ориентированная модель программирования и ограниченные возможности фильтрации. Для обозначения различия между двумя моделями программирования, люди стали называть способ Intel – Full CAN, а способ Philips – Basic CAN. Сегодня большинство контроллеров CAN поддерживают обе модели программирования, поэтому нет смысла в использовании терминов Full CAN и Basic CAN – фактически, эти термины могут вызвать неразбериху и стоит воздержаться от их употребления.

В действительности, контроллер Full CAN может взаимодействовать с контроллером Basic CAN и наоборот. Проблемы с совместимостью отсутствуют.

Разрешение конфликтов на шине и приоритет сообщения

Разрешение конфликтов сообщений (процесс, в результате которого два или более контроллера CAN решают, кто будет пользоваться шиной) очень важно для определения реальной доступности полосы пропускания для передачи данных.

Любой контроллер CAN может начать передачу, когда обнаружит, что шина простаивает. Это может привести к тому, что два или более контроллеров начнут передачу сообщения (почти) одновременно. Конфликт решается следующим образом. Передающие узлы осуществляют мониторинг шины в процессе отправки сообщения. Если узел обнаруживает доминантный уровень в то время, как сам он отправляет рецессивный уровень, он незамедлительно устранится от процесса разрешения конфликта и станет приемником. Разрешение конфликтов осуществляется по всему полю арбитража, и после того, как это поле отсылается, на шине остается только один передатчик. Данный узел продолжит передачу, если ничего не случится. Остальные потенциальные передатчики попытаются передать свои сообщения позже, когда шина освободится. В процессе разрешения конфликта время не теряется.

Важным условием для благополучного разрешения конфликта является невозможность ситуации, при которой два узла могут передать одинаковое поле арбитража. Из этого правила есть одно исключение: если сообщение не содержит данных, то любой узел может передавать это сообщение.

Поскольку, CAN–шина является шиной с подсоединением устройств по типу «монтажное И» (wired–AND) и доминантный бит (Dominant bit) является логическим 0, следовательно сообщение с самым низким в численном выражении полем арбитража выиграет в разрешении конфликта.

Вопрос: Что произойдет в случае, если единственный узел шины попытается отослать сообщение?

Ответ: Узел, разумеется, выиграет в разрешении конфликта и успешно проведет передачу сообщения. Но когда наступит время распознавания… ни один узел не отправит доминантный бит области распознавания, поэтому передатчик определит ошибку распознавания, пошлет флаг ошибки, повысит значение своего счетчика ошибок передачи на 8 и начнет повторную передачу. Этот цикл повторится 16 раз, затем передатчик перейдет в статус пассивной ошибки. В соответствии со специальным правилом в алгоритме ограничения ошибок, значение счетчика ошибок передачи не будет более повышаться, если узел имеет статус пассивной ошибки и ошибка является ошибкой распознавания. Поэтому узел будет осуществлять передачу вечно, до тех пор, пока кто–нибудь не распознает сообщение.

Адресация и идентификация сообщения

Повторимся, нет ничего страшного в том, что в сообщениях CAN нет точных адресов. Каждый контроллер CAN будет получать весь траффик шины, и при помощи комбинации аппаратных фильтров и ПО, определять – «интересует» его это сообщение, или нет.

Фактически, в протоколе CAN отсутствует понятие адреса сообщения. Вместо этого содержимое сообщения определяется идентификатором, который находится где–то в сообщении. Сообщения CAN можно назвать «контентно–адрессовнными».

Определённый адрес работает так: «Это сообщение для узла X». Контентно–адресованное сообщение можно описать так: «Это сообщение содержит данные с маркировкой X». Разница между этими двумя концепциями мала, но существенна.

Содержимое поле арбитража используется, в соответствии со стандартом, для определения очередности сообщения на шине. Все контроллеры CAN будут также использовать всё (некоторые – только часть) поле арбитража в качестве ключа в процессе аппаратной фильтрации.

Стандарт не говорит, что поле арбитража непременно должно использоваться в качестве идентификатора сообщения. Тем не менее, это очень распространенный вариант использования.

Примечание о значениях идентификатора

Мы говорили, что идентификатору доступны 11 (CAN 2.0A) или 29 (CAN 2.0B) бит. Это не совсем верно. Для совместимости с определенным старым контроллером CAN (угадайте каким?), идентификаторы не должны иметь 7 старших бит установленных в логическую единицу, поэтому 11–битным идентификаторам доступны значения 0..2031, а пользователи 29–битных идентификаторов могут использовать 532676608 различных значений.

Заметьте, что все остальные контроллеры CAN принимают «неправильные» идентификаторы, поэтому в современных системах CAN идентификаторы 2032..2047 могут использоваться без ограничений.

Физические уровни CAN

Шина CAN

Шина CAN использует код без возвращения к нулю (NRZ) с вставкой битов. Существуют два разных состояния сигнала: доминантное (логический 0) и рецессивное (логическая 1). Они соответствуют определенным электрическим уровням, зависящим от используемого физического уровня (их несколько). Модули подключены к шине по схеме «монтажное И» (wired–AND): если хотя бы один узел переводит шину в доминантное состояние, то вся шина находится в этом состоянии, вне зависмости от того, сколько узлов передают рецессивное состояние.

Различные физические уровни

Физический уровень определяет электрические уровни и схему передачи сигналов по шине, полное сопротивление кабеля и т.п.

Существует несколько различных версий физических уровней: Наиболее распространенным является вариант, определенный стандартом CAN, часть ISO 11898–2, и представляющий собой двухпроводную сбалансированную сигнальную схему. Он также иногда называется high–speed CAN.

Другая часть того же стандарта ISO 11898–3 описывает другую двухпроводную сбалансированную сигнальную схему – для менее скоростной шины. Она устойчива к сбоям, поэтому передача сигналов может продолжаться даже в том случае, когда один из проводов будет перерезан, замкнут на «землю» или в состоянии Vbat. Иногда такая схема называется low–speed CAN.

SAE J2411 описывает однопроводной (плюс «земля», разумеется) физический уровень. Он используется в основном в автомобилях – например GM–LAN.

Существуют несколько проприетарных физических уровней.

В былые времена, когда драйверов CAN не существовало, использовались модификации RS485.

Различные физические уровни как правило не могут взаимодействовать между собой. Некоторые комбинации могут работать (или будет казаться, что они работают) в хороших условиях. Например, приемопередатчики high–speed и low–speed могут работать на одной шине лишь иногда.

Абсолютное большинство микросхем приемопередатчиков CAN произведено компанией Philips; в число других производителей входят Bosch, Infineon, Siliconix и Unitrode.

Наиболее распространен приемопередатчик 82C250, в котором реализован физический уровень, описываемый стандартом ISO 11898. Усовершенствованная версия – 82C251.

Распространенный приемопередатчик для «low–speed CAN» – Philips TJA1054.

Максимальная скорость передачи данных по шине

Максимальная скорость передачи данных по шине CAN, в соответствии со стандартом , равна 1 Мбит/с. Однако некоторые контроллеры CAN поддерживают скорости выше 1 Мбит/с и могут быть использованы в специализированных приложениях.

Low–speed CAN (ISO 11898–3, см. выше) работает на скоростях до 125 кбит/с.

Однопроводная шина CAN в стандартном режиме может передавать данные со скоростью порядка 50 кбит/с, а в специальном высокоскоростном режиме, например для программирования ЭБУ (ECU), около 100 кбит/с.

Минимальная скорость передачи данных по шине

Имейте в виду, что некоторые приемопередатчики не позволят вам выбрать скорость ниже определенного значения. Например, при использовании 82C250 или 82C251 вы можете без проблем установить скорость 10 кбит/с, но если вы используете TJA1050, то не сможете установить скорость ниже 50 кбит/с. Сверяйтесь со спецификацией.

Максимальная длина кабеля

При скорости передачи данных 1 Мбит/с, максимальная длина используемого кабеля может составлять порядка 40 метров. Это связано с требованием схемы разрешения конфликтов, согласно которому фронт волны сигнала должен иметь возможность дойти до самого дальнего узла и вернуться назад прежде чем бит будет считан. Иными словами, длина кабеля ограничена скоростью света. Предложения по увеличению скорости света рассматривались, но были отвергнуты в связи с межгалактическими проблемами.

Другие максимальные длины кабеля (значения приблизительные):

100 метров при 500 кбит/с;

200 метров при 250 кбит/с;

500 метров при 125 кбит/с;
6 километров при 10 кбит/с.

Если для обеспечения гальванической изоляции используются оптопары, максимальная длина шины соответственно сокращается. Совет: используйте быстрые оптопары, и смотрите на задержку сигнала в устройстве, а не на максимальную скорость передачи данных в спецификации.

Оконечное прерывание шины

Шина CAN стандарта ISO 11898 должна заканчиваться терминатором. Это достигается путем установки резистора сопротивлением 120 Ом на каждом конце шины. Терминирование служит двум целям:

1. Убрать отражения сигнала на конце шины.

2. Убедиться, что получает корректные уровни постоянного тока (DC).

Шина CAN стандарта ISO 11898 обязательно должна терминироваться вне зависимости от её скорости. Я повторю: шина CAN стандарта ISO 11898 обязательно должна терминироваться вне зависимости от её скорости. Для лабораторной работы может хватить и одного терминатора. Если ваша шина CAN работает даже при отсутствии терминаторов – вы просто счастливчик.

Заметьте, что другие физические уровни , такие как low–speed CAN, однопроводная шина CAN и другие, могут требовать, а могут и не требовать наличия оконечного терминатора шины. Но ваша высокоскоростная шина CAN стандарта ISO 11898 всегда будет требовать наличия хотя бы одного терминатора.

Кабель

Стандарт ISO 11898 предписывает, что волновое сопротивление кабеля номинально должно равнятся 120 Ом, однако допускается интервал значений сопротивления Ом.

Немногие, из присутствующих сегодня на рынке, кабели удовлетворяют этим требованиям. Есть большая вероятность, что интервал значений сопротивления будет расширен в будущем.

ISO 11898 описывает витую пару, экранированную или неэкранированную. Идёт работа над стандартом однопроводного кабеля SAE J2411.

  • DIY или Сделай сам ,
  • Электроника для начинающих
  • Сегодня я хочу познакомить вас с интересной микроконтроллерной платформой CANNY . Это обзорная статья в которой вы узнаете о технологии, а в последующих статьях я расскажу вам о работе с сообщениями CAN, интеграции CANNY c Arduino Mega Server и о тех возможностях, которые предоставляет эта связка.

    Почему CANNY? От названия шины CAN, которая широко используется на транспорте и, в частности, во всех современных автомобилях в качестве бортовой сети. Итак, что же можно сделать, имея специализированный контроллер, подключённый к CAN шине вашего автомобиля?

    Шина CAN

    Образно говоря, шина CAN это нервная система вашего автомобиля. По ней передаётся вся информация о состоянии блоков и систем, а также управляющие команды, которые во многом определяют поведение автомобиля. Зажигание фар, открывание и закрывание дверей, управление проигрыванием музыки в салоне машины, срабатывание сигнализации и т. д. - всё это работает и управляется по этой шине.

    Физически, шина CAN представляет собой два перевитых провода и очень проста в монтаже и подключении. Несмотря на свою простоту, она, благодаря своей дифференциальной природе, хорошо защищена от различных наводок и помех. Высокая надежность и большая допустимая длина сети, до 1000 метров, помогла CAN завоевать широкую популярность у производителей различного, не только автомобильного оборудования.

    Контроллеры CANNY

    Это целое семейство специализированных контроллеров, имеющих встроенную «родную» поддержку работы с шиной CAN. Это касается как «железной» части, так и поддержки на уровне «софта».

    Флагманом линейки является контроллер CANNY 7, наиболее мощный и имеющий максимум возможностей. Большое количество памяти, мощные выходы, позволяющие напрямую управлять реле автомобиля, интеллектуальная система защиты от коротких замыканий, защита от бросков тока и напряжения в бортовой сети автомобиля - всё это делает этот контроллер отличным решением для воплощения любых ваших идей и проектов.

    Кроме CANNY 7 в линейке контроллеров присутствует ещё несколько моделей, мы будем проводить свои эксперименты с более простой встраиваемой моделью CANNY 5 Nano. Она также поддерживает работу с CAN шиной, но при этом похожа на уже знакомую нам Arduino Nano.

    Визуальное программирование

    Развитая поддержка шины CAN это не единственная особенность этих контроллеров, кроме этого CANNY имеют свою собственную среду программирования, CannyLab, но не «обычную», а визуальную, где весь процесс написания программ сводится к манипулированию готовыми структурными блоками, заданию их параметров и соединению входов и выходов этих блоков в определённой последовательности, в соответствии с алгоритмом решаемой задачи.

    Ни одной строчки кода!

    Хорошо это или плохо? На мой взгляд, это дело привычки. Мне, как человеку привыкшему к «традиционному» программированию, было непривычно манипулировать блоками, вместо написания строк кода. С другой стороны, существует множество приверженцев именно такого подхода к составлению алгоритмов и считается, что для инженеров и «не программистов» это наиболее простой и доступный метод программирования микроконтроллеров.

    Мне, как минимум, было «прикольно» составлять программы таким образом и через некоторое время мне это стало даже нравиться. Возможно, что если продолжить этим заниматься, то через некоторое время уже написание кода покажется неудобным.

    CannyLab является бесплатной средой разработки и вы можете свободно скачать её с сайта разработчиков, она также не требует специальной процедуры инсталляции - достаточно распаковать файл с архивом - и вы можете начинать работу.

    Подключение

    Подключение CANNY 5 Nano к компьютеру мало чем отличается от подключения контроллеров Arduino. При наличии в системе драйвера Silicon Labs CP210x, либо после его установки из скаченного дистрибутива CannyLab, Windows создаёт виртуальный COM порт и CANNY готов к работе. В моём случае понадобилось ещё перезагрузить компьютер, но возможно это особенность моей системы.

    Практические примеры

    Давайте на простых примерах разберём, как в CannyLab выполнять действия, привычные нам в Arduino IDE. Начнём с традиционного мигания светодиодом.

    В контроллере CANNY 5 на выводе С4 (Channel 4) присутствует тестовый светодиод (аналог светодиода, находящегося на 13 выводе в Arduino). И его тоже можно использовать для индикации и экспериментов, чем мы и воспользуемся.

    Что же нужно, чтобы помигать светодиодом в контроллере CANNY? Нужно сделать всего две вещи - сконфигурировать пин четвертого канала как выход и подать на этот выход сигнал с ШИМ генератора. Все эти действия мы уже не раз проделывали в Arduino IDE, посмотрим как это выглядит в CannyLab.

    Итак, конфигурируем пин четвертого канала как выход

    Настраиваем генератор ШИМ. Задаём период 500 миллисекунд, заполнение - 250 миллисекунд (то есть 50 %) и 1 (true) на входе генератора «Старт» и… всё! Больше ничего делать не нужно - программа готова, осталось только залить её в контроллер.

    Режим симуляции

    Тут нужно сказать пару слов о процессе симуляции на компьютере работы контроллера и заливке разработанной программы в память «железного» контроллера.

    Среда разработки CannyLab позволяет запускать и отлаживать программу, не записывая её в память контроллера. В режиме симуляции вы можете видеть результат работы программы прямо в реальном времени и даже вмешиваться в её работу.

    Заливка в контроллер

    Для работы контроллеров CANNY, перед заливкой программы (в терминологии разработчиков «диаграммы») нужно сначала залить операционную систему «Устройство/Системное ПО/Записать». Это нужно сделать только один раз, для этого нужно выбрать соответствующий вашему контроллеру файл с расширением .ccx .

    После того, как программа написана и отлажена, её можно загрузить в ваш контроллер. Это делается просто - в меню выбираете пункт «Устройство/Диаграмма/Записать» и через несколько секунд программа оказывается записанной в контроллер.

    Аналоговые входы

    Для того, чтобы лучше понять принцип программирования контроллеров CANNY в среде разработке CannyLab, давайте ещё разберём пример работы с аналоговым входом в этой системе.

    Мы будем отслеживать уровень напряжения на 10 пине контроллера и если он находится в диапазоне 2,5 В ± 20%, будем зажигать встроенный в плату светодиод.

    Как и в предыдущем примере, конфигурируем 4-й пин как выход для того, чтобы иметь возможность управлять работой светодиода.

    Включаем АЦП на 10-м канале.

    Блок «Логическое И» довершает работу и со своего выхода управляет работой светодиода на плате.

    Вот и всё. То, что мы привычно делали на Arduino, мы легко сделали в CannyLab. Осталось только освоиться в этой среде программирования и вы сможете легко и непринуждённо создавать свои проекты на этой платформе.

    Эти простые примеры составления программ даны для того, чтобы вы могли понять принцип визуального программирования микроконтроллеров CANNY. В дальнейшей работе вам поможет отличная справочная документация и поддержка разработчиков на сайте и форуме системы.

    Интерфейс CAN был разработан в конце 80-х годов фирмой Bosch для связи электронных устройств, применяемых в автомобилях.

    Общее описание CAN. Сеть предназначена для коммуникации так называемых узлов, которые могут быть приемниками или передатчиками. Каждый узел состоит из двух составляющих: CAN-контроллера и приемопередатчика (трансивера). Контроллер реализует протокол обмена по сети CAN, а трансивер обеспечивает взаимодействие с сетью (передачу и прием сигналов).

    На практике, согласно стандарту шина CAN обычно представляет собой витую пару, по которой передаются сигналы дифференциальным методом.

    На рис. приведена структура CAN-сети. Обычно в качестве контроллера используется микроконтроллер, имеющий CAN-модуль, который имеет выход передатчика TxD последовательного кода и вход приемника RxD кода. Трансивер преобразует логические сигналы, то есть логические 0 и 1, в дифференциальное напряжение, поступающее на два провода шины, обозначенные CAN_H и CAN_L.

    Согласно стандарту линия должна иметь волновое сопротивление в пределах 108-132 Ом. Для уменьшения отражений сигналов на каждом конце шины должны быть подключены согласующие резисторы RС сопротивлением 120 Ом. Для повышения надежности передачи и повышения помехоустойчивости иногда используют третий провод – общий, обозначаемый как GND. Питающее напряжение UCC (или UDD) по стандарту равно +5 В относительно GND.

    Для абстрагирования от физической среды передачи спецификация CAN определяет два логических состояния (то есть логические 0 и 1) как рецессивное (recessive) и доминантное (dominant). При этом предполагается, что при передаче одним узлом сети рецессивного бита, а другим доминантного, принят будет доминантный бит.

    В рецессивном состоянии (то есть логическая 1 на входе TxD трансивера) дифференциальное напряжение UDIFF =UCANH – UCANL меньше минимального порога (0,5 В на входе приемника или 0,05 В на выходе передатчика).

    В доминантном состоянии (то есть логический 0 на входе TxD трансивера) дифференциальное напряжение UDIFF больше минимального порога (0,9 В на входе приемника или 1,5 В на выходе передатчика).

    Сообщения в CAN. Интерфейс использует короткие сообщения: максимальный размер – 94 бита. Содержимое данных в CAN-сообщении как бы неявно определяет адрес источника этого сообщения и адреса приемников, кому эта информация необходима.

    Например. один CAN-узел выдает на шину сообщение «Температура масла двигателя 80». Все другие узлы принимают это сообщение, но используют эту информацию только те узлы, кому она необходима.

    Сообщения, передаваемые по CAN-шине, именуются кадрами или фреймами. В зависимости от инициатора передачи и ее цели существуют 4 типа кадров:

    1) кадр данных, используется для передачи данных;

    2) кадр запроса данных, используется для дистанционного запроса данных от удаленного узла;

    3) кадр ошибки, когда обнаруживаются ошибки на шине;

    4) кадр перегрузки, передается для задержки передачи пакетов кадр данных и кадр запроса, например, при неготовности приемника.

    Вид стандартного формата сообщения кадр данных приведен на рис. Он состоит из семи различных битовых полей:

      Поле начала кадра состоит из одного доминантного бита, который служит также для синхронизации генераторов приемников и передатчика.

      Поле арбитража содержит 11-битный идентификатор ID и бит RTR – (запрос передачи данных). Для кадра данных этот бит должен иметь доминантный уровень.

      Управляющее поле состоит из шести битов. Два самых старших бита в настоящее время не используются. Четырехбитный код длины данных указывает число байтов в поле данных.

      Поле данных содержит от нуля до восьми байтов данных.

      Поле контрольной суммы включает в себя контрольную сумму сообщения (15 бит) и бит-разделитель рецессивного уровня.

      Поле подтверждения состоит из двух битов. Старший бит с именем Slot выставляет передающий узел рецессивного уровня. В случае, когда передача прошла успешно, приемный узел сигнализирует об этом установкой этого бита в доминантный уровень. Второй бит в этом поле является битом-разделителем рецессивного уровня.

      Поле конца кадра состоит из семи битов рецессивного уровня.

    После конца кадра (EOF) следует поле промежутка, состоящее из трех битов рецессивного уровня. После этого промежутка шина считается свободной.

    ENG 192Kb Control Area Network Rus CAN 2.0 A Rus CAN 2.0 В CAN протоколы высокого уровня Шины для бортовых автомобильных систем

    CAN (Control Area Network) - последовательная магистраль, обеспечивающая увязку в сеть "интеллектуальных" устройств ввода/вывода, датчиков и исполнительных устройств некоторого механизма или даже предприятия. Характеризуется протоколом, обеспечивающим возможность нахождения на магистрали нескольких ведущих устройств, обеспечивающим передачу данных в реальном масштабе времени и коррекцию ошибок, высокой помехоустойчивостью. Система CAN обеспечена большим количеством микросхем, обеспечивающих работу подключенных к магистрали устройств, разработку которых начинала фирма BOSH для использования в автомобилях, и в настоящее время широко используемых в автоматизации промышленности. Цеколёвка разема приведена на рисунке.

    • Предназначен для организации высоконадежных недорогих каналов связи в распределенных системах управления. Интерфейс широко применяется в промышленности, энергетике и на транспорте. Позволяет строить как дешевые мультиплексные каналы, так и высокоскоростные сети.
    • Скорость передачи задается программно и может быть до 1 Мбит/с. Пользователь выбирает скорость, исходя из расстояний, числа абонентов и емкости линий передачи.
    Расстояние, м 25 50 100 250 500 1000 2500 5000
    Скорость, Кбит/с 1000 800 500 250 125 50 20 10
    • Максимальное число абонентов, подключенных к данному интерфейсу фактически определяется нагрузочной способностью примененных приемопередатчиков. Например, при использовании трансивера фирмы PHILIPS PCA82C250 она равна 110.
    • Протокол CAN использует оригинальную систему адресации сообщений. Каждое сообщение снабжается идентификатором, который определяет назначение передаваемых данных, но не адрес приемника. Любой приемник может реагировать как на один идентификатор, так и на несколько. На один идентификатор могут реагировать несколько приемников.
    • Протокол CAN обладает развитой системой обнаружения и сигнализации ошибок. Для этих целей используется поразрядный контроль, прямое заполнение битового потока, проверка пакета сообщения CRC-полиномом, контроль формы пакета сообщений, подтверждение правильного приема пакета данных. Хемминговый интервал d=6. Общая вероятность необнаруженной ошибки 4.7x10 -11 .
    • Система арбитража протокола CAN исключает потерю информации и времени при "столкновениях" на шине.
    • Интерфейс с применением протокола CAN легко адаптируется к физической среде передачи информации. Это может быть дифференциальный сигнал, оптоволокно, просто открытый коллектор и т.п. Несложно делается гальваническая развязка.
    • Элементная база, поддерживающая CAN, широко выпускается в индустриальном исполнении.

    CAN (Controller Area Network - "область, охваченная сетью контроллеров") представляет собой комплекс стандартов для построения распределенных промышленных сетей, который использует последовательную передачу данных в реальном времени с очень высокой степенью надежности и защищенности. Центральное место в CAN занимает протокол канального уровня модели OSI. Первоначально CAN был разработан для автомобильной промышленности, но в настоящее время быстро внедряется в область промышленной автоматизации. Это хорошо продуманный, современный и многообещающий сетевой протокол. Начало развития CAN было положено компанией Bosch в 1983 г., первые микросхемы CANконтроллеров были выпущены фирмами Intel и Philipsв 1987 году, в настоящее время контроллеры и трансиверы CANвыпускаются многими фирмами, в том числе Analog Devices, Inc., Atmel Corp. Cast, Dallas Semiconductor, Freescale, Infineon, Inicore Inc., Intel, Linear Technology, Maxim Integrated Products, Melexis, Microchip, National Semiconductor, NXP, OKI, Renesas Technology Corp., STMicroelectronics, Yamar Electronics, Texas Instruments.

    В России интерес к CAN за последние годы сильно возрос, однако контроллерного оборудования для CAN в России крайне мало, в десятки или сотни раз меньше, чем для Modbus или Profibus. Среди протоколов прикладного уровня для работы с CAN наибольшее распространение в России получили CANopen и DeviceNet.

    В настоящее время CAN поддерживается 11-ю стандартами ISO, в том числе [ISO - Diagnostics ].

    CAN охватывает два style="color:red"> уровня модели OSI: физический и канальный (табл. 2.7). Стандарт не предусматривает никакого протокола прикладного (7-го) уровня модели OSI. Поэтому для его воплощения в жизнь различные фирмы разработали несколько таких протоколов: CANopen (организации CiA), SDS (фирмы Honeywell Micro Switch Division), CAN Kingdom (фирмы Kvaser), DeviceNet (фирмы Allen-Bradley, ставший Европейским стандартом в 2002 г.) и ряд других [Грибанов - Третьяков ].

    CAN характеризуется следующими основными свойствами:

    • каждому сообщению (а не устройству) устанавливается свой приоритет ;
    • гарантированная величина паузы между двумя актами обмена;
    • гибкость конфигурирования и возможность модернизации системы;
    • широковещательный прием сообщений с синхронизацией времени;
    • непротиворечивость данных на уровне всей системы;
    • допустимость нескольких ведущих устройств в сети ("многомастерная сеть");
    • способность к обнаружению ошибок и сигнализации об их наличии;
    • автоматический повтор передачи сообщений, доставленных с ошибкой, сразу, как только сеть станет свободной;
    • автоматическое различение сбоев и отказов с возможностью автоматического отключения отказавших модулей.

    К недостаткам можно отнести сравнительно высокую стоимость CAN-устройств, отсутствие единого протокола прикладного уровня, а также чрезмерную сложность и запутанность протоколов канального и прикладного уровня, изложенных в стандартах организации CAN in Automation (CiA).

    2.6.1. Физический уровень

    Где - длительность переднего фронта передатчика. Основные требования к линии передачи и ее характеристикам близки к RS-485, однако в передатчиках CAN есть режим управления длительностью фронтов импульсов. Управление выполняется путем заряда емкостей затворов выходных транзисторов от источников тока, при этом величина тока задается внешним резистором. Увеличение длительности фронта позволяет снизить требования к согласованию линии на низких частотах, увеличить длину отводов и ослабить излучение электромагнитных помех.

    Выводы "земли" всех передатчиков сети должны быть соединены (если интерфейсы гальванически не изолированы). При этом разность потенциалов между выводами заземлений не должна превышать 2 В. Гальваническая изоляция рекомендуется при длине линии более 200 м, но не является обязательным требованием стандарта.

    Для электрического соединения устройств с CAN интерфейсом стандарт предусматривает два варианта. Первый вариант состоит в применении Т-образных разветвителей, которые состоят из трех 9-штырьковых разъемов D-sub, расположенных в одном корпусе, одноименные контакты которых соединены между собой. Разветвители имеют один разъем со штырьками и два - с гнездами.

    Второй вариант требует наличия в каждом CAN-устройстве двух разъемов. Для включения устройства в сеть кабель разрезают и на его концах устанавливают ответные части разъемов. Устройство включается буквально в разрыв линии передачи. Такой подход позволяет наращивать количество устройств и изменять топологию сети путем добавления в разрыв кабеля новых устройств и кабеля с разъемами на концах. Один из разъемов должен быть со штырьками, второй - с гнездами. Подключение устройств к шине без разъемов не допускается. Согласующий резистор должен располагаться внутри разъема, который подключается к концу кабеля. Для присоединения модулей к CAN-шине должен использоваться 9-штырьковый разъем типа D- Sub. На модуле устанавливается разъем с гнездами, на соединяющем кабеле - со штырьками. Цоколевка разъемов показана в табл. 2.8 .

    Применение разъемов со штырьками или гнездами определяется следующим правилом: при "горячей" замене модулей питание должно оставаться только на разъемах с гнездами; это позволяет избежать случайного короткого замыкания.

    Отметим, что в основанном на CAN стандарте CANopen предусмотрено гораздо большее разнообразие вариантов разъемов, в том числе для плоского кабеля, RJ-10, RJ45, разъемный винтовой клеммник, и еще около десяти вариантов специальной конструкции [Cabling ]. Допускается применение и других разъемов.

    Это свойство CAN обеспечивает возможность получения доступа к линии, сравнивая посылаемые в линию логические уровни с тем уровнем, который фактически устанавливается в ней: если передатчик посылает в линию рецессивное состояние, а в ней при этом остается доминантное, значит линия занята. Доступ получает тот узел сети, который может предоставить ей доминантный уровень сигнала. Узлы с рецессивным уровнем покидают линию и ждут следующего случая. Этот метод доступа справедлив и при использовании оптоволоконного канала или беспроводной сети - в этих случаях наличие света или электромагнитной волны всегда будет доминировать над их отсутствием.

    Вывод на рис. 2.20 позволяет установить пороговое напряжение для входа и уровень синфазного напряжения в линии, когда она находится в рецессивном состоянии. Обычно = 2,5 В. Чтобы установить уровень синфазного напряжения на линии, терминальные сопротивления делят на два по 60 Ом, соединяют их последовательно, а к точке соединения подключают вывод . При симметричной форме импульсов и относительно рецессивного состояния уменьшается уровень излучаемых помех, поскольку приращения токов в каждом из проводов витой пары при переключении логических уровней (см. рис. 2.21) оказываются равными по величине, но обратными по знаку и поэтому компенсируют друг-друга.

    Вывод имеет несколько назначений. Если на нем установлено состояние логической единицы, трансивер переходит в спящий режим, при котором он потребляет очень малый ток от источника питания, а на выходе устанавливается высокоомное (рецессивное) состояние. "Разбудить" его можно сигналом, поступающим в приемник из линии передачи. Подключение этого вывода к "земле" через сопротивление позволяет установить нужную длительность фронтов импульсов передатчика. Некоторые трансиверы имеют два режима: резервный и спящий, которые отличаются уровнем потребляемого тока и способом перевода в активный режим. Режим пониженного энергопотребления предусмотрен стандартом для экономии заряда аккумуляторных батарей в припаркованном автомобиле.

    Рис. 2.21. Пояснение понятий рецессивного и доминантного состояния

    Если сигнал является доминирующим слишком долго (более 1 мс), генератор импульса таймаута (на рис. 2.20 обозначен прямоугольником с импульсом) временно отключает передатчик, поскольку в противном случае модуль может быть навсегда блокирован средствами канального уровня как отказавший.

    Стандартом предусмотрена возможность подключения к CAN сети любого количества устройств, однако практически оно ограничивается нагрузочной способностью передатчиков (100...200) или задержкой в повторителях.

    В CAN-трансивере имеется генератор синхроимпульсов с частотой 16 МГц ±0,1%. Ширина одного бита программно устанавливается величиной от 8 до 25 импульсов синхрогенератора, обычно 8 импульсов при скорости передачи 1 Мбит/с и 16 импульсов при 20 кбит/с. Синхронизация всех узлов сети происходит в течение первого такта синхронизации. Процедура обработки битов в приемнике обеспечивает программируемую задержку импульсов синхронизации, необходимую для компенсации времени задержки прохождения сигнала в линии связи и сдвига фазы вследствие дрейфа частоты тактового генератора.

    Различают два типа синхронизации: жесткую синхронизацию с помощью стартового бита в начале сообщения и ресинхронизацию во время передачи сообщения. С помощью ресинхронизации можно подстроить интервал времени от начала синхронизации до момента, в который измеряется логический уровень принимаемого импульса данных. Интервал подстройки может быть изменен на 1...4 такта.

    Для определения логического состояния шины уровни принимаемых сигналов измеряются на расстоянии 6-ти тактов синхрогенератора от переднего фронта импульса (бита) при скорости 1 Мбит/с и на расстоянии 14-ти тактов при скорости 20 кбит/с [CAN ] (для сравнения укажем, что в стандартных UART отсчеты берутся посередине импульса). Количество отсчетов может быть 1 или 3 (устанавливается программно). CAN использует синхронную передачу битов. Это повышает пропускную способность канала связи, но требует усложненного процесса синхронизации.

    Канальный уровень CAN, рассмотренный выше, практически невозможно использовать в SCADA-пакетах, поскольку он оперирует битами, фреймами, полями. Для написания же прикладных программ нужно использовать понятия: переменная, массив, событие, клиент, сервер, имя устройства и т. п.

    Рассмотрим наиболее распространенный стандарт прикладного уровня CANopen [CANopen ]. Для упрощения применения стандарта вводятся несколько специфических для CANopen понятий. Все функциональные возможности прикладного уровня делятся между так называемыми сервисами (элементами услуг). Программные приложения взаимодействуют между собой путем вызова соответствующих сервисов прикладного уровня. Сервисы обмениваются данными с равными им (одноранговыми) сервисами через CAN-сеть с помощью определенного протокола. Этот протокол описывается в спецификации протокола сервиса.

    Вводится понятие сервисного примитива , который представляет собой средство (языковую конструкцию), с помощью которого программное приложение взаимодействует с прикладным уровнем. В CANopen существует четыре различных примитива:

    • запрос приложения к прикладному уровню, публикуемый приложением для вызова сервиса;
    • индикация , публикуемая прикладным уровнем для приложения, чтобы сообщить о внутренних событиях, обнаруженных прикладным уровнем или чтобы показать, что сервис запрошен;
    • ответ , публикуемый приложением для прикладного уровня, чтобы ответить на ранее полученную индикацию;
    • подтверждение , публикуемое прикладным уровнем для приложения, чтобы отчитаться о результатах ранее изданного запроса.