Микропроцессор — это интегральная схема, сформированная на маленьком кристалле кремния. Кремний применяется в микросхемах в силу того, что он обладает полупроводниковыми свойствами: его электрическая проводимость больше, чем у диэлектриков, но меньше, чем у металлов. Кремний можно сделать как изолятором, препятствующим движению электрических зарядов, так и проводником — тогда электрические заряды будут свободно проходить через него. Проводимостью полупроводника можно управлять путем введения примесей.

Микропроцессор содержит миллионы транзисторов, соединенных между собой тончайшими проводниками из алюминия или меди и используемых для обработки данных. В результате микропроцессор выполняет множество функций.

Производство микропроцессоров: триста операций от старта до финиша

Изготовление микропроцессора — это сложнейший процесс, включающий более 300 этапов. Микропроцессоры формируются на поверхности тонких круговых пластин кремния — подложках, в результате определенной последовательности различных процессов обработки с использованием химических препаратов, газов и ультрафиолетового излучения.

Подложки обычно имеют диаметр 200 миллиметров, или 8 дюймов. Однако корпорация Intel планирует переход на пластины диаметром 300 мм, или 12 дюймов. Пластины изготавливают из кремния — основного компонента, например, обычного песка на пляже, — который очищают, плавят и выращивают из него длинные цилиндрические кристаллы. Затем кристаллы разрезают на тонкие пластины и полируют их до тех пор, пока их поверхности не станут зеркально гладкими и свободными от дефектов.

В процессе изготовления микросхем на пластины-заготовки наносят в виде тщательно рассчитанных рисунков тончайшие слои материалов. На одной пластине помещается до нескольких сотен микропроцессоров, для изготовления которых требуется совершить более 300 операций. Весь процесс производства процессоров можно разделить на несколько этапов: выращивание диоксида кремния и создание проводящих областей, тестирование, изготовление корпуса и доставка.

Выращивание диоксида кремния и создание проводящих областей

Процесс производства микропроцессора начинается с "выращивания" на поверхности отполированной пластины изоляционного слоя диоксида кремния. Осуществляется этот этап в электрической печи при очень высокой температуре. Толщина оксидного слоя зависит от температуры и времени, которое пластина проводит в печи.

Затем следует фотолитография — процесс, в ходе которого на поверхности пластины формируется рисунок-схема. Сначала на пластину наносят временный слой светочувствительного материала — фотослой, на который с помощью ультрафиолетового излучения проецируют изображение прозрачных участков шаблона, или фотомаски. Маски изготавливают при проектировании процессора и используют для формирования рисунков схем в каждом слое процессора. Под воздействием излучения засвеченные участки фотослоя становятся растворимыми, и их удаляют с помощью растворителя, открывая находящийся под ними диоксид кремния.

Открытый диоксид кремния удаляют с помощью процесса, который называется "травлением". Затем убирают оставшийся фотослой, в результате чего на полупроводниковой пластине остается рисунок из диоксида кремния. В результате ряда дополнительных операций фотолитографии и травления на пластину наносят также поликристаллический кремний, обладающий свойствами проводника. В ходе следующей операции, называемой "легированием", открытые участки кремниевой пластины бомбардируют ионами различных химических элементов, которые формируют в кремнии отрицательные и положительные заряды, изменяющие электрическую проводимость этих участков.

Наложение новых слоев с последующим травлением схемы осуществляется несколько раз, при этом для межслойных соединений в слоях оставляются "окна", которые заполняют металлом, формируя электрические соединения между слоями. В своем 0.13-микронном технологическом процессе — самом современном на сегодняшний день — корпорация Intel применила медные проводники. В 0.18-микронном производственном процессе и процессах предыдущих поколений Intel применяла алюминий. И медь, и алюминий — отличные проводники электричества.

Каждый слой процессора имеет свой собственный рисунок, в совокупности все эти слои образуют трехмерную электронную схему. Нанесение слоев повторяют 20 — 25 раз в течение нескольких недель. В результате на поверхности пластины образуются "небоскребы" из нанесенных слоев.

Тестирование

Чтобы выдержать воздействия, которым подвергаются подложки в процессе нанесения слоев, кремниевые пластины изначально должны быть достаточно толстыми. Поэтому прежде чем разрезать пластину на отдельные микропроцессоры, ее толщину с помощью специальных процессов уменьшают на 33% и удаляют загрязнения с обратной стороны. Затем на обратную сторону "похудевшей" пластины наносят слой специального материала, который улучшает последующее крепление кристалла к корпусу. Кроме того, этот слой обеспечивает электрический контакт между задней поверхностью интегральной схемы и корпусом после сборки.

После этого пластины тестируют, чтобы проверить качество выполнения всех операций обработки. Чтобы определить, правильно ли работают процессоры, проверяют их отдельные компоненты. Если обнаруживаются неисправности, данные о них анализируют, чтобы понять, на каком этапе обработки возник сбой.

Затем к каждому процессору подключают электрические зонды и подают питание. Процессоры тестируются компьютером, который определяет, удовлетворяют ли характеристики изготовленных процессоров заданным требованиям.

Изготовление корпуса

После тестирования пластины отправляются в сборочное производство Intel, где их разрезают на маленькие прямоугольники, каждый из которых содержит интегральную схему. Для разделения пластины используют специальную прецизионную пилу. Неработающие кристаллы отбраковываются.

Затем каждый кристалл помещают в индивидуальный корпус. Корпус защищает кристалл от внешних воздействий и обеспечивает его электрическое соединение с платой, на которую он будет впоследствии установлен. Крошечные шарики припоя, расположенные в определенных точках кристалла, припаивают к электрическим выводам корпуса. Теперь электрические сигналы могут поступать с платы на кристалл и обратно.

После установки кристалла в корпус процессор снова тестируют, чтобы определить, работоспособен ли он. Неисправные процессоры отбраковывают, а исправные подвергают нагрузочным испытаниям: воздействию различных температурных и влажностных режимов, а также электростатических разрядов. После каждого нагрузочного испытания процессор тестируют для определения его функционального состояния. Затем процессоры сортируют в зависимости от их поведения при различных тактовых частотах и напряжениях питания.

Доставка

Процессоры, прошедшие тестирование, поступают на выходной контроль, задача которого — подтвердить, что результаты всех предыдущих тестов были корректными, а параметры интегральной схемы соответствуют установленным стандартам или даже превосходят их. Все процессоры, прошедшие выходной контроль, маркируют и упаковывают для доставки заказчикам.

Как делают микросхемы

тобы понять, в чем заключается основное различие между этими двумя технологиями, необходимо сделать краткий экскурс в саму технологию производства современных процессоров или интегральных микросхем.

Как известно из школьного курса физики, в современной электронике основными компонентами интегральных микросхем являются полупроводники p-типа и n-типа (в зависимости от типа проводимости). Полупроводник — это вещество, по проводимости превосходящее диэлектрики, но уступающее металлам. Основой полупроводников обоих типов может служить кремний (Si), который в чистом виде (так называемый собственный полупроводник) плохо проводит электрический ток, однако добавление (внедрение) в кремний определенной примеси позволяет радикально изменить его проводящие свойства. Существует два типа примеси: донорная и акцепторная. Донорная примесь приводит к образованию полупроводников n-типа c электронным типом проводимости, а акцепторная — к образованию полупроводников p-типа с дырочным типом проводимости. Контакты p- и n-полупроводников позволяют формировать транзисторы — основные структурные элементы современных микросхем. Такие транзисторы, называемые КМОП-транзисторами, могут находиться в двух основных состояниях: открытом, когда они проводят электрический ток, и запертом — при этом они электрический ток не проводят. Поскольку КМОП-транзисторы являются основными элементами современных микросхем, поговорим о них подробнее.

Как устроен КМОП-транзистор

Простейший КМОП-транзистор n-типа имеет три электрода: исток, затвор и сток. Сам транзистор выполнен в полупроводнике p-типа с дырочной проводимостью, а в областях стока и истока формируются полупроводники n-типов с электронной проводимостью. Естественно, что за счет диффузии дырок из p-области в n-область и обратной диффузии электронов из n-области в p-область на границах переходов p- и n-областей формируются обедненные слои (слои, в которых отсутствуют основные носители зарядов). В обычном состоянии, то есть когда к затвору не прикладывается напряжение, транзистор находится в «запертом» состоянии, то есть не способен проводить ток от истока к стоку. Ситуация не меняется, даже если приложить напряжение между стоком и истоком (при этом мы не принимаем во внимание токи утечки, вызванные движением под воздействием формируемых электрических полей неосновных носителей заряда, то есть дырок для n-области и электронов для p-области).

Однако если к затвору приложить положительный потенциал (рис. 1), то ситуация в корне изменится. Под воздействием электрического поля затвора дырки выталкиваются в глубь p-полупроводника, а электроны, наоборот, втягиваются в область под затвором, образуя обогащенный электронами канал между истоком и стоком. Если приложить к затвору положительное напряжение, эти электроны начинают двигаться от истока к стоку. При этом транзистор проводит ток — говорят, что транзистор «открывается». Если напряжение с затвора снимается, электроны перестают втягиваться в область между истоком и стоком, проводящий канал разрушается и транзистор перестает пропускать ток, то есть «запирается». Таким образом, меняя напряжение на затворе, можно открывать или запирать транзистор, аналогично тому, как можно включать или выключать обычный тумблер, управляя прохождением тока по цепи. Именно поэтому транзисторы иногда называют электронными переключателями. Однако, в отличие от обычных механических переключателей, КМОП-транзисторы практически безынерционны и способны переходить из открытого в запертое состояние триллионы раз в секунду! Именно этой характеристикой, то есть способностью мгновенного переключения, и определяется в конечном счете быстродействие процессора, который состоит из десятков миллионов таких простейших транзисторов.

Итак, современная интегральная микросхема состоит из десятков миллионов простейших КМОП-транзисторов. Остановимся более подробно на процессе изготовления микросхем, первый этап которого — получение кремниевых подложек.

Шаг 1. Выращивание болванок

Создание таких подложек начинается с выращивания цилиндрического по форме монокристалла кремния. В дальнейшем из таких монокристаллических заготовок (болванок) нарезают круглые пластины (wafers), толщина которых составляет приблизительно 1/40 дюйма, а диаметр — 200 мм (8 дюймов) или 300 мм (12 дюймов). Это и есть кремниевые подложки, служащие для производства микросхем.

При формировании пластин из монокристаллов кремния учитывается то обстоятельство, что для идеальных кристаллических структур физические свойства в значительной степени зависят от выбранного направления (свойство анизотропии). К примеру, сопротивление кремниевой подложки будет различным в продольном и поперечном направлениях. Аналогично, в зависимости от ориентации кристаллической решетки, кристалл кремния будет по-разному реагировать на какие-либо внешние воздействия, связанные с его дальнейшей обработкой (например, травление, напыление и т.д.). Поэтому пластина должна быть вырезана из монокристалла таким образом, чтобы ориентация кристаллической решетки относительно поверхности была строго выдержана в определенном направлении.

Как уже отмечалось, диаметр заготовки монокристалла кремния составляет либо 200, либо 300 мм. Причем диаметр 300 мм — это относительно новая технология, о которой мы расскажем ниже. Понятно, что на пластине такого диаметра может разместиться далеко не одна микросхема, даже если речь идет о процессоре Intel Pentium 4. Действительно, на одной подобной пластине-подложке формируется несколько десятков микросхем (процессоров), но для простоты мы рассмотрим лишь процессы, происходящие на небольшом участке одного будущего микропроцессора.

Шаг 2. Нанесение защитной пленки диэлектрика (SiO2)

После формирования кремниевой подложки наступает этап создания сложнейшей полупроводниковой структуры.

Для этого в кремний нужно внедрить так называемые донорную и акцепторную примеси. Однако возникает вопрос — как осуществить внедрение примесей по точно заданному рисунку-шаблону? Для того чтобы это стало возможным, те области, куда не требуется внедрять примеси, защищают специальной пленкой из диоксида кремния, оставляя оголенными только те участки, которые подвергаются дальнейшей обработке (рис. 2). Процесс формирования такой защитной пленки нужного рисунка состоит из нескольких этапов.

На первом этапе вся пластина кремния целиком покрывается тонкой пленкой диоксида кремния (SiO2), который является очень хорошим изолятором и выполняет функцию защитной пленки при дальнейшей обработке кристалла кремния. Пластины помещают в камеру, где при высокой температуре (от 900 до 1100 °С) и давлении происходит диффузия кислорода в поверхностные слои пластины, приводящая к окислению кремния и к образованию поверхностной пленки диоксида кремния. Для того чтобы пленка диоксида кремния имела точно заданную толщину и не содержала дефектов, необходимо строго поддерживать постоянную температуру во всех точках пластины в процессе окисления. Если же пленкой из диоксида кремния должна быть покрыта не вся пластина, то предварительно на кремниевую подложку наносится маска Si3N4, предотвращающая нежелательное окисление.

Шаг 3. Нанесение фоторезистива

После того как кремниевая подложка покроется защитной пленкой диоксида кремния, необходимо удалить эту пленку с тех мест, которые будут подвергаться дальнейшей обработке. Удаление пленки осуществляется посредством травления, а для защиты остальных областей от травления на поверхность пластины наносится слой так называемого фоторезиста. Термином «фоторезисты» обозначают светочувствительные и устойчивые к воздействию агрессивных факторов составы. Применяемые составы должны обладать, с одной стороны, определенными фотографическими свойствами (под воздействием ультрафиолетового света становиться растворимыми и вымываться в процессе травления), а с другой — резистивными, позволяющими выдерживать травление в кислотах и щелочах, нагрев и т.д. Основное назначение фоторезистов — создание защитного рельефа нужной конфигурации.

Процесс нанесения фоторезиста и его дальнейшее облучение ультрафиолетом по заданному рисунку называется фотолитографией и включает следующие основные операции: формирование слоя фоторезиста (обработка подложки, нанесение, сушка), формирование защитного рельефа (экспонирование, проявление, сушка) и передача изображения на подложку (травление, напыление и т.д.).

Перед нанесением слоя фоторезиста (рис. 3) на подложку последняя подвергается предварительной обработке, в результате чего улучшается ее сцепление со слоем фоторезиста. Для нанесения равномерного слоя фоторезиста используется метод центрифугирования. Подложка помещается на вращающийся диск (центрифуга), и под воздействием центробежных сил фоторезист распределяется по поверхности подложки практически равномерным слоем. (Говоря о практически равномерном слое, учитывают то обстоятельство, что под действием центробежных сил толщина образующейся пленки увеличивается от центра к краям, однако такой способ нанесения фоторезиста позволяет выдержать колебания толщины слоя в пределах ±10%.)

Шаг 4. Литография

После нанесения и сушки слоя фоторезиста наступает этап формирования необходимого защитного рельефа. Рельеф образуется в результате того, что под действием ультрафиолетового излучения, попадающего на определенные участки слоя фоторезиста, последний изменяет свойства растворимости, например освещенные участки перестают растворяться в растворителе, которые удаляют участки слоя, не подвергшиеся освещению, или наоборот — освещенные участки растворяются. По способу образования рельефа фоторезисты делят на негативные и позитивные. Негативные фоторезисты под действием ультрафиолетового излучения образуют защитные участки рельефа. Позитивные фоторезисты, напротив, под воздействием ультрафиолетового излучения приобретают свойства текучести и вымываются растворителем. Соответственно защитный слой образуется в тех участках, которые не подвергаются ультрафиолетовому облучению.

Для засветки нужных участков слоя фоторезиста используется специальный шаблон-маска. Чаще всего для этой цели применяются пластинки из оптического стекла с полученными фотографическим или иным способом непрозрачными элементами. Фактически такой шаблон содержит рисунок одного из слоев будущей микросхемы (всего таких слоев может насчитываться несколько сотен). Поскольку этот шаблон является эталоном, он должен быть выполнен с большой точностью. К тому же с учетом того, что по одному фотошаблону будет сделано очень много фотопластин, он должен быть прочным и устойчивым к повреждениям. Отсюда понятно, что фотошаблон — весьма дорогая вещь: в зависимости от сложности микросхемы он может стоить десятки тысяч долларов.

Ультрафиолетовое излучение, проходя сквозь такой шаблон (рис. 4), засвечивает только нужные участки поверхности слоя фоторезиста. После облучения фоторезист подвергается проявлению, в результате которого удаляются ненужные участки слоя. При этом открывается соответствующая часть слоя диоксида кремния.

Несмотря на кажущуюся простоту фотолитографического процесса, именно этот этап производства микросхем является наиболее сложным. Дело в том, что в соответствии с предсказанием Мура количество транзисторов на одной микросхеме возрастает экспоненциально (удваивается каждые два года). Подобное возрастание числа транзисторов возможно только благодаря уменьшению их размеров, но именно уменьшение и «упирается» в процесс литографии. Для того чтобы сделать транзисторы меньше, необходимо уменьшить геометрические размеры линий, наносимых на слой фоторезиста. Но всему есть предел — сфокусировать лазерный луч в точку оказывается не так-то просто. Дело в том, что в соответствии с законами волновой оптики минимальный размер пятна, в который фокусируется лазерный луч (на самом деле это не просто пятно, а дифракционная картина), определяется кроме прочих факторов и длиной световой волны. Развитие литографической технологии со времени ее изобретения в начале 70-х шло в направлении сокращения длины световой волны. Именно это позволяло уменьшать размеры элементов интегральной схемы. С середины 80-х в фотолитографии стало использоваться ультрафиолетовое излучение, получаемое с помощью лазера. Идея проста: длина волны ультрафиолетового излучения меньше, чем длина волны света видимого диапазона, следовательно, возможно получить и более тонкие линии на поверхности фоторезиста. До недавнего времени для литографии использовалось глубокое ультрафиолетовое излучение (Deep Ultra Violet, DUV) с длиной волны 248 нм. Однако когда фотолитография перешагнула границу 200 нм, возникли серьезные проблемы, впервые поставившие под сомнение возможность дальнейшего использования этой технологии. Например, при длине волны меньше 200 мкм слишком много света поглощается светочувствительным слоем, поэтому усложняется и замедляется процесс передачи шаблона схемы на процессор. Подобные проблемы побуждают исследователей и производителей искать альтернативу традиционной литографической технологии.

Новая технология литографии, получившая название ЕUV-литографии (Extreme UltraViolet — сверхжесткое ультрафиолетовое излучение), основана на использовании ультрафиолетового излучения с длиной волны 13 нм.

Переход с DUV- на EUV-литографию обеспечивает более чем 10-кратное уменьшение длины волны и переход в диапазон, где она сопоставима с размерами всего нескольких десятков атомов.

Применяемая сейчас литографическая технология позволяет наносить шаблон с минимальной шириной проводников 100 нм, в то время как EUV-литография делает возможной печать линий гораздо меньшей ширины — до 30 нм. Управлять ультракоротким излучением не так просто, как кажется. Поскольку EUV-излучение хорошо поглощается стеклом, то новая технология предполагает использование серии из четырех специальных выпуклых зеркал, которые уменьшают и фокусируют изображение, полученное после применения маски (рис. 5 , , ). Каждое такое зеркало содержит 80 отдельных металлических слоев толщиной примерно в 12 атомов.

Шаг 5. Травление

После засвечивания слоя фоторезиста наступает этап травления (etching) с целью удаления пленки диоксида кремния (рис. 8).

Часто процесс травления ассоциируется с кислотными ваннами. Такой способ травления в кислоте хорошо знаком радиолюбителям, которые самостоятельно делали печатные платы. Для этого на фольгированный текстолит лаком, выполняющим функцию защитного слоя, наносят рисунок дорожек будущей платы, а затем опускают пластину в ванну с азотной кислотой. Ненужные участки фольги стравливаются, обнажая чистый текстолит. Этот способ имеет ряд недостатков, главный из которых — невозможность точно контролировать процесс удаления слоя, так как слишком много факторов влияют на процесс травления: концентрация кислоты, температура, конвекция и т.д. Кроме того, кислота взаимодействует с материалом по всем направлениям и постепенно проникает под край маски из фоторезиста, то есть разрушает сбоку прикрытые фоторезистом слои. Поэтому при производстве процессоров используется сухой метод травления, называемый также плазменным. Такой метод позволяет точно контролировать процесс травления, а разрушение вытравливаемого слоя происходит строго в вертикальном направлении.

При использовании сухого травления для удаления с поверхности пластины диоксида кремния применяется ионизированный газ (плазма), который вступает в реакцию с поверхностью диоксида кремния, в результате чего образуются летучие побочные продукты.

После процедуры травления, то есть когда оголены нужные области чистого кремния, удаляется оставшаяся часть фотослоя. Таким образом, на кремниевой подложке остается рисунок, выполненный диоксидом кремния.

Шаг 6. Диффузия (ионная имплантация)

Напомним, что предыдущий процесс формирования необходимого рисунка на кремниевой подложке требовался для того, чтобы создать в нужных местах полупроводниковые структуры путем внедрения донорной или акцепторной примеси. Процесс внедрения примесей осуществляется посредством диффузии (рис. 9) — равномерного внедрения атомов примеси в кристаллическую решетку кремния. Для получения полупроводника n-типа обычно используют сурьму, мышьяк или фосфор. Для получения полупроводника p-типа в качестве примеси используют бор, галлий или алюминий.

Для процесса диффузии легирующей примеси применяется ионная имплантация. Процесс имплантации заключается в том, что ионы нужной примеси «выстреливаются» из высоковольтного ускорителя и, обладая достаточной энергией, проникают в поверхностные слои кремния.

Итак, по окончании этапа ионной имплантации необходимый слой полупроводниковой структуры создан. Однако в микропроцессорах таких слоев может насчитываться несколько. Для создания очередного слоя на полученном рисунке схемы выращивается дополнительный тонкий слой диоксида кремния. После этого наносятся слой поликристаллического кремния и еще один слой фоторезиста. Ультрафиолетовое излучение пропускается сквозь вторую маску и высвечивает соответствующий рисунок на фотослое. Затем опять следуют этапы растворения фотослоя, травления и ионной имплантации.

Шаг 7. Напыление и осаждение

Наложение новых слоев осуществляется несколько раз, при этом для межслойных соединений в слоях оставляются «окна», которые заполняются атомами металла; в результате на кристалле создаются металлические полоски — проводящие области. Таким образом в современных процессорах устанавливаются связи между слоями, формирующими сложную трехмерную схему. Процесс выращивания и обработки всех слоев длится несколько недель, а сам производственный цикл состоит из более чем 300 стадий. В результате на кремниевой пластине формируются сотни идентичных процессоров.

Чтобы выдержать воздействия, которым подвергаются пластины в процессе нанесения слоев, кремниевые подложки изначально делаются достаточно толстыми. Поэтому, прежде чем разрезать пластину на отдельные процессоры, ее толщину уменьшают на 33% и удаляют загрязнения с обратной стороны. Затем на тыльную сторону подложки наносят слой специального материала, улучшающего крепление кристалла к корпусу будущего процессора.

Шаг 8. Заключительный этап

По окончании цикла формирования все процессоры тщательно тестируются. Затем из пластины-подложки с помощью специального устройства вырезаются конкретные, уже прошедшие проверку кристаллы (рис. 10).

Каждый микропроцессор встраивается в защитный корпус, который также обеспечивает электрическое соединение кристалла микропроцессора с внешними устройствами. Тип корпуса зависит от типа и предполагаемого применения микропроцессора.

После запечатывания в корпус каждый микропроцессор повторно тестируется. Неисправные процессоры отбраковывают, а исправные подвергают нагрузочным испытаниям. Затем процессоры сортируют в зависимости от их поведения при различных тактовых частотах и напряжениях питания.

Перспективные технологии

Технологический процесс производства микросхем (в частности, процессоров) рассмотрен нами весьма упрощенно. Но даже такое поверхностное изложение позволяет понять технологические трудности, с которыми приходится сталкиваться при уменьшении размеров транзисторов.

Однако, прежде чем рассматривать новые перспективные технологии, ответим на поставленный в самом начале статьи вопрос: что же такое проектная норма технологического процесса и чем, собственно, отличается проектная норма 130 нм от нормы 180 нм? 130 нм или 180 нм — это характерное минимальное расстояние между двумя соседними элементами в одном слое микросхемы, то есть своеобразный шаг сетки, к которой осуществляется привязка элементов микросхемы. При этом совершенно очевидно, что, чем меньше этот характерный размер, тем больше транзисторов можно разместить на одной и той же площади микросхемы.

В настоящее время в производстве процессоров Intel используется 0,13-микронный технологический процесс. По этой технологии изготавливают процессор Intel Pentium 4 с ядром Northwood, процессор Intel Pentium III с ядром Tualatin и процессор Intel Celeron. В случае применения такого технологического процесса полезная ширина канала транзистора составляет 60 нм, а толщина оксидного слоя затвора не превышает 1,5 нм. Всего же в процессоре Intel Pentium 4 размещается 55 млн. транзисторов.

Наряду с увеличением плотности размещения транзисторов в кристалле процессора, 0,13-микронная технология, пришедшая на смену 0,18-микронной, имеет и другие нововведения. Во-первых, здесь используются медные соединения между отдельными транзисторами (в 0,18-микронной технологии соединения были алюминиевыми). Во-вторых, 0,13-микронная технология обеспечивает более низкое энергопотребление. Для мобильной техники, например, это означает, что энергопотребление микропроцессоров становится меньше, а время работы от аккумуляторной батареи — больше.

Ну и последнее нововведение, которое было воплощено при переходе на 0,13-микронный технологический процесс — это использование кремниевых пластин (wafer) диаметром 300 мм. Напомним, что до этого большинство процессоров и микросхем изготовлялись на основе 200-миллиметровых пластин.

Увеличение диаметра пластин позволяет снизить себестоимость каждого процессора и увеличить выход продукции надлежащего качества. Действительно, площадь пластины диаметром 300 мм в 2,25 раза больше площади пластины диаметром 200 мм, соответственно и количество процессоров, получаемых из одной пластины диаметром 300 мм, в два с лишним раза больше.

В 2003 году ожидается внедрение нового технологического процесса с еще меньшей проектной нормой, а именно 90-нанометрового. Новый технологический процесс, по которому корпорация Intel будет производить большую часть своей продукции, в том числе процессоры, наборы микросхем и коммуникационное оборудование, был разработан на опытном заводе D1C корпорации Intel по обработке 300-миллиметровых пластин в г.Хиллсборо (шт.Орегон).

23 октября 2002 года корпорация Intel объявила об открытии нового производства стоимостью 2 млрд. долл. в Рио-Ранчо (шт.Нью-Мексико). На новом заводе, получившем название F11X, будет применяться современная технология, по которой будут производиться процессоры на 300-мм подложках с использованием технологического процесса с проектной нормой 0,13 микрон. В 2003 году завод будет переведен на технологический процесс с проектной нормой 90 нм.

Кроме того, корпорация Intel уже заявила о возобновлении строительства еще одного производственного объекта на Fab 24 в Лейкслипе (Ирландия), который предназначен для изготовления полупроводниковых компонентов на 300-миллиметровых кремниевых подложках с 90-нанометровой проектной нормой. Новое предприятие общей площадью более 1 млн. кв. футов с особо чистыми помещениями площадью 160 тыс. кв. футов предполагается ввести в строй в первой половине 2004 года, и на нем будет работать более тысячи сотрудников. Стоимость объекта составляет около 2 млрд. долл.

В 90-нанометровом процессе применяется целый ряд передовых технологий. Это и самые маленькие в мире серийно изготавливаемые КМОП-транзисторы с длиной затвора 50 нм (рис. 11), что обеспечивает рост производительности при одновременном снижении энергопотребления, и самый тонкий оксидный слой затвора среди всех когда-либо производившихся транзисторов — всего 1,2 нм (рис. 12), или менее 5 атомарных слоев, и первая в отрасли реализация высокоэффективной технологии напряженного кремния.

Из перечисленных характеристик в комментариях нуждается, пожалуй, лишь понятие «напряженного кремния» (рис. 13). В таком кремнии расстояние между атомами больше, чем в обычном полупроводнике. Это, в свою очередь, обеспечивает более свободное протекание тока, аналогично тому, как на дороге с более широкими полосами движения свободнее и быстрее движется транспорт.

В результате всех нововведений на 10-20% улучшаются рабочие характеристики транзисторов, при увеличении затрат на производство всего на 2%.

Кроме того, в 90-нанометровом технологическом процессе используется семь слоев в микросхеме (рис. 14), что на один слой больше, чем в 130-нанометровом технологическом процессе, а также медные соединения.

Все эти особенности в сочетании с 300-миллиметровыми кремниевыми подложками обеспечивают корпорации Intel выигрыш в производительности, объемах производства и себестоимости. В выигрыше оказываются и потребители, поскольку новый технологический процесс Intel позволяет продолжить развитие отрасли в соответствии с законом Мура, вновь и вновь повышая производительность процессоров.

Современные микропроцессоры - одни из сложнейших устройств, изготавливаемых человеком. Производство полупроводникового кристалла намного более ресурсоемко, чем, скажем, возведение многоэтажного дома или организация крупнейшего выставочного мероприятия. Однако благодаря массовому выпуску CPU в денежном эквиваленте мы этого не замечаем, да и редко кто задумывается обо всей грандиозности элементов, занимающих столь видное место внутри системного блока. Мы решили изучить детали производства процессоров и поведать о них в данном материале. Благо в Сети сегодня достаточно информации на эту тему, а специализированная подборка презентаций и слайдов корпорации Intel позволяет выполнить поставленную задачу максимально наглядно. Предприятия других гигантов полупроводниковой индустрии работают по тому же принципу, поэтому с уверенностью можно сказать, что все современные микросхемы проходят идентичный путь создания.

Первое, о чем стоит упомянуть, - строительный материал для процессоров. Кремний (англ. silicon) - второй после кислорода наиболее распространенный элемент на планете. Он является природным полупроводником и используется как основной материал для производства чипов всевозможных микросхем. Больше всего кремния содержится в обычном песке (особенно кварце) в виде диоксида кремния (SiO2).

Впрочем, кремний - не единственный материал. Самый близкий его родственник и заменитель - германий, однако в процессе совершенствования производства ученые выявляют хорошие полупроводниковые свойства у соединений других элементов и готовятся опробовать их на практике или уже это делают.

1 Кремний проходит многоступенчатый процесс очистки: сырье для микросхем не может содержать больше примесей, чем один чужеродный атом на миллиард.

2 Кремний расплавляют в специальной емкости и, опустив внутрь постоянно охлаждаемый вращающийся стержень, «наматывают» на него благодаря силам поверхностного натяжения вещество.

3 В итоге получаются продольные заготовки (монокристаллы) круглого сечения, каждая массой около 100 кг.

4 Заготовку нарезают на отдельные кремниевые диски - пластины, на которых будут расположены сотни микропроцессоров. Для этих целей используются станки с алмазными режущими дисками или проволочно-абразивные установки.

5 Подложки полируют до зеркального блеска, чтобы устранить все дефекты на поверхности. Следующий шаг - нанесение тончайшего фотополимерного слоя.

6 Обработанная подложка подвергается воздействию жесткого ультрафиолетового излучения. В фотополимерном слое происходит химическая реакция: свет, проходя через многочисленные трафареты, повторяет рисунки слоев CPU.

7 Реальный размер наносимого изображения в несколько раз меньше собственно трафарета.

8 Участки, «протравленные» излучением, вымываются. На кремниевой подложке получается рисунок, который затем подвергается закреплению.

9 Следующий этап изготовления одного слоя - ионизация, в процессе которой свободные от полимера участки кремния бомбардируются ионами.

10 В местах их попадания изменяются свойства электрической проводимости.

11 Оставшийся полимер удаляют, и транзистор почти готов. В изолирующих слоях делаются отверстия, которые благодаря химической реакции заполняются атомами меди, используемыми в качестве контактов.

12 Соединение транзисторов представляет собой многоуровневую разводку. Если взглянуть в микроскоп, на кристалле можно заметить множество металлических проводников и помещенных между ними атомов кремния или его современных заменителей.

13 Часть готовой подложки проходит первый тест на функциональность. На этом этапе на каждый из выбранных транзисторов подается ток, и автоматизированная система проверяет параметры работы полупроводника.

14 Подложка с помощью тончайших режущих кругов разрезается на отдельные части.

15 Годные кристаллы, полученные в результате данной операции, используются в производстве процессоров, а бракованные отправляются в отходы.

16 Отдельный кристалл, из которого будет сделан процессор, помещают между основанием (подложкой) CPU и теплорас-пределительной крышкой и «упаковывают».

17 В ходе окончательного тестирования готовые процессоры проверяются на соответствие требуемым параметрам и лишь затем сортируются. На основании полученных данных в них прошивается микрокод, позволяющий системе должным образом определить CPU.

18 Готовые устройства упаковываются и направляются на рынок.

Интересные факты о процессорах и их производстве

«Силиконовая долина» (Silicon Valley, США, Калифорния)

Получила свое название благодаря основному строительному элементу, использующемуся в производстве микрочипов.

«Почему пластины для производства процессоров круглые?» - наверняка спросите вы.

Для производства кремниевых кристаллов применяется технология, позволяющая получать только цилиндрические заготовки, которые затем режутся на части. До сих пор еще никому не удавалось изготовить квадратную пластину, лишенную дефектов.

Почему микрочипы квадратные?

Именно такая литография позволяет использовать площадь пластины с максимальной эффективностью.

Зачем процессорам столько ножек/контактов?

Помимо сигнальных линий каждый процессор для работы нуждается в стабильном питании. При энергопотреблении порядка 100-120 Вт и низком напряжении через контакты может протекать ток силой до 100 А. Значительная часть контактов CPU выделена именно под систему питания и дублируется.

Утилизация отходов производства

Раньше дефектные пластины, их остатки и бракованные микрочипы шли в отходы. На сегодняшний день ведутся разработки, позволяющие использовать их в качестве основы для производства солнечных батарей.

«Костюм кролика».

Такое название получил комбинезон белого цвета, который обязаны носить все рабочие производственных помещений. Делается это для поддержания максимальной чистоты и защиты от случайного попадания частиц пыли на производственные установки. «Костюм кролика» впервые был использован на фабриках по производству процессоров в 1973 году и с тех пор стал общепринятым стандартом.

99,9999%

Для производства процессоров пригоден только кремний высочайшей степени чистоты. Заготовки очищают спецхимией.

300 мм

Таков диаметр современных кремниевых пластин для производства процессоров.

1000 раз

Именно настолько чище воздух в помещениях фабрик для производства чипов, чем в операционной.

20 слоев

Процессорный кристалл очень тонкий (меньше миллиметра), но в нем умещаются более 20 слоев сложнейших структурных объединений транзисторов, которые выглядят как многоуровневые хайвеи.

2500

Именно столько кристаллов процессора Intel Atom (имеют наименьшую площадь среди cовременных CPU) размещаются на одной 300-миллиметровой пластине.

10 000 000 000 000 000 000

Сто квинтиллионов транзисторов в виде структурных элементов микрочипов отгружаются с фабрик каждый год. Это приблизительно в 100 раз больше, чем оценочное количество муравьев на планете.

A

Стоимость производства одного транзистора в процессоре сегодня равна цене печати одной буквы в газете.

В процессе подготовки статьи использовались материалы с официального веб-сайта корпорации Intel, www.intel.ua

ГДЕ производят процессоры Intel


Как я уже писал в предыдущем посту, на данный момент у компании Intel есть 4 завода, способных массово производить процессоры по технологии 32нм: D1D и D1C в штате Орегон, Fab 32 в штате Аризона и Fab 11X в Нью-Мексико.
Посмотрим как они устроены

Высота каждой фабрики Intel по производству процес-
соров на 300-мм кремниевых пластинах составляет 21
метр, а площадь достигает 100 тысяч квадратных мет-
ров. В здании завода можно выделить 4 основных уро
вня:

Уровень системы вентиляции

Микропроцессор состоит из миллионов транзисторов
- самая маленькая пылинка, оказавшаяся на кремние-
вой пластине, способна уничтожить тысячи транзисто-
ров. Поэтому важнейшим условием производства мик-
ропроцессоров является стерильная чистота помеще-
ний. Уровень системы вентиляции расположен на вер-
хнем этаже — здесь находятся специальные системы,
которые осуществляют 100% очистку воздуха, контро-
лируют температуру и влажность в производственных
помещениях. Так называемые «Чистые комнаты» де-
лятся на классы (в зависимости от количества пылинок
на единицу объема) и самая-самая (класс 1) примерно
в 1000 раз чище хирургической операционной. Для
устранения вибраций чистые комнаты располагаются
на собственном виброзащитном фундаменте.

Уровень «чистых комнат»

Этаж занимает площадь нескольких футбольных полей
- именно здесь изготавливают микропроцессоры. Спе-
циальная автоматизированная система осуществляет
перемещение пластин от одной производственной
станции к другой. Очищенный воздух подается через
систему вентиляции, расположенную в потолке, и уда-
ляется через специальные отверстия, расположенные
в полу.

Помимо повышенных требований к стерильности поме-
щений, «чистым» должен быть и работающий там пер-
сонал — только на этом уровне специалисты работают
в стерильных костюмах, которые защищают (благодаря
встроенной системе фильтрации, работающей от ба-
тареи) кремниевые пластины от микрочастиц текстиль-
ной пыли, волос и частиц кожи.

Нижний уровень

Предназначен для систем поддерживающих работу фа-
брики (насосы, трансформаторы, силовые шкафы и т.п.)
Большие трубы (каналы) передают различные техни-
ческие газы, жидкости и отработанный воздух. Спец-
одежда сотрудников данного уровня включает каску, за-
щитные очки, перчатки и специальную обувь.

Инженерный уровень


Для постройки фабрики такого уровня требуется около 3 лет и порядка 5 миллиардов - именно эту сумму должен будет «отбить» завод в последующие 4 года (к тому времени как появятся новые технологический процесс и архитектура, необходимая для этого производительность - порядка 100 рабочих кремниевых пластин в час). Для постройки завода потребуется:
— более 19 000 тонн стали
— более 112 000 кубических метров бетона
— более 900 километров кабеля

КАК производят микропроцессоры


Технически современный микропроцессор выполнен в виде одной сверхбольшой интегральной схемы, состоящей из нескольких миллиардов элементов — это одна из самых сложных конструкций, созданных человеком. Ключевыми элементами любого микропроцессора являются дискретные переключатели - транзисторы. Блокируя и пропуская электрический ток (включение-выключение), они дают возможность логическим схемам компьютера работать в двух состояниях, то есть в двоичной системе. Размеры транзисторов измеряются в нанометрах. Один нанометр (нм) - это одна миллиардная часть метра.

Вкратце процесс изготовления процессора выглядит так: из расплавленного кремния на специальном оборудовании выращивают монокристалл цилиндрической формы. Получившийся слиток охлаждают и режут на «блины», поверхность которых тщательно выравнивают и полируют до зеркального блеска. Затем в «чистых комнатах» полупроводниковых заводов на кремниевых пластинах методами фотолитографии и травления создаются интегральные схемы. После повторной очистки пластин, специалисты лаборатории под микроскопом производят выборочное тестирование процессоров - если все «ОК», то готовые пластины разрезают на отдельные процессоры, которые позже заключают в корпуса.

Давайте рассмотрим весь процесс более подробно.

Первоначально берется SiO2 в виде песка, который в дуговых печах (при температуре около 1800°C) восстанавливают коксом:
SiO2 + 2C = Si + 2CO

Такой кремний носит название «технический» и имеет чистоту 98-99.9%. Для производства процессоров требуется гораздо более чистое сырье, называемое «электронным кремнием» — в таком должно быть не более одного чужеродного атома на миллиард атомов кремния. Для очистки до такого уровня, кремний буквально «рождается заново». Путем хлорирования технического кремния получают тетрахлорид кремния (SiCl4), который в дальнейшем преобразуется в трихлорсилан (SiHCl3):
3SiCl4 + 2H2 + Si ↔ 4SiHCl3

Данные реакции с использованием рецикла образующихся побочных кремнийсодержащих веществ снижают себестоимость и устраняют экологические проблемы:
2SiHCl3 ↔ SiH2Cl2 + SiCl4
2SiH2Cl2 ↔ SiH3Cl + SiHCl3
2SiH3Cl ↔ SiH4 + SiH2Cl2
SiH4 ↔ Si + 2H2

Получившийся в результате водород можно много где использовать, но самое главное то, что был получен «электронный» кремний, чистый-пречистый (99,9999999%). Чуть позже в расплав такого кремния опускается затравка («точка роста»), которая постепенно вытягивается из тигля. В результате образуется так называемая «буля» — монокристалл высотой со взрослого человека. Вес соответствующий — на производстве такая буля весит порядка 100 кг.

Слиток шкурят «нулёвкой»:) и режут алмазной пилой. На выходе - пластины (кодовое название «вафля») толщиной около 1 мм и диаметром 300 мм (~12 дюймов; именно такие используются для техпроцесса в 32нм с технологией HKMG, High-K/Metal Gate).

Теперь самое интересное -- в отшлифованные кремниевые пластины необходимо перенести структуру будущего процессора, то есть внедрить в определенные участки кремниевой пластины примеси, которые в итоге и образуют транзисторы. Как это сделать?

Проблема решается с помощью технологии фотолитографии — процесса избирательного травления поверхностного слоя с использованием защитного фотошаблона. Технология построена по принципу «свет-шаблон-фоторезист» и проходит следующим образом:
— На кремниевую подложку наносят слой материала, из которого нужно сформировать рисунок. На него наносится фоторезист — слой полимерного светочувствительного материала, меняющего свои физико-химические свойства при облучении светом.
— Производится экспонирование (освещение фотослоя в течение точно установленного промежутка времени) через фотошаблон
— Удаление отработанного фоторезиста.
Нужная структура рисуется на фотошаблоне — как правило, это пластинка из оптического стекла, на которую фотографическим способом нанесены непрозрачные области. Каждый такой шаблон содержит один из слоев будущего процессора, поэтому он должен быть очень точным и практичным.

Пластина облучается потоком ионов (положительно или отрицательно заряженных атомов), которые в заданных местах проникают под поверхность пластины и изменяют проводящие свойства кремния (зеленые участки — это внедренные чужеродные атомы).

В фотографии свет проходил через негативную пленку, падал на поверхность фотобумаги и менял ее химические свойства. В фотолитографии принцип схожий: свет пропускается через фотошаблон на фоторезист, и в тех местах, где он прошел через маску, отдельные участки фоторезиста меняют свойства. Через маски пропускается световое излучение, которое фокусируется на подложке. Для точной фокусировки необходима специальная система линз или зеркал, способная не просто уменьшить, изображение, вырезанное на маске, до размеров чипа, но и точно спроецировать его на заготовке. Напечатанные пластины, как правило, в четыре раза меньше, чем сами маски.

Весь отработанный фоторезист (изменивший свою растворимость под действием облучения) удаляется специальным химическим раствором - вместе с ним растворяется и часть подложки под засвеченным фоторезистом. Часть подложки, которая была закрыта от света маской, не растворится. Она образует проводник или будущий активный элемент - результатом такого подхода становятся различные картины замыканий на каждом слое микропроцессора.

Собственно говоря, все предыдущие шаги были нужны для того, чтобы создать в необходимых местах полупроводниковые структуры путем внедрения донорной (n-типа) или акцепторной (p-типа) примеси. Допустим, нам нужно сделать в кремнии область концентрации носителей p-типа, то есть зону дырочной проводимости. Для этого пластину обрабатывают с помощью устройства, которое называется имплантер — ионы бора с огромной энергией выстреливаются из высоковольтного ускорителя и равномерно распределяются в незащищенных зонах, образованных при фотолитографии.

Там, где диэлектрик был убран, ионы проникают в слой незащищенного кремния - в противном случае они «застревают» в диэлектрике. После очередного процесса травления убираются остатки диэлектрика, а на пластине остаются зоны, в которых локально есть бор. Понятно, что у современных процессоров может быть несколько таких слоев — в таком случае на получившемся рисунке снова выращивается слой диэлектрика и далее все идет по протоптанной дорожке — еще один слой фоторезиста, процесс фотолитографии (уже по новой маске), травление, имплантация…

Логические элементы, которые образовались в процессе фотолитографии, должны быть соединены друг с другом. Для этого пластины помещают в раствор сульфата меди, в котором под действием электрического тока атомы металла «оседают» в оставшихся «проходах» — в результате этого гальванического процесса образуются проводящие области, создающие соединения между отдельными частями процессорной «логики». Излишки проводящего покрытия убираются полировкой.

Ура - самое сложное позади. Осталось хитрым способом соединить «остатки» транзисторов — принцип и последовательность всех этих соединений (шин) и называется процессорной архитектурой. Для каждого процессора эти соединения различны - хоть схемы и кажутся абсолютно плоскими, в некоторых случаях может использоваться до 30 уровней таких «проводов».

Когда обработка пластин завершена, пластины передаются из производства в монтажно-испытательный цех. Там кристаллы проходят первые испытания, и те, которые проходят тест (а это подавляющее большинство), вырезаются из подложки специальным устройством.

На следующем этапе процессор упаковывается в подложку (на рисунке - процессор Intel Core i5, состоящий из CPU и чипа HD-графики).

Подложка, кристалл и теплораспределительная крышка соединяются вместе - именно этот продукт мы будем иметь ввиду, говоря слово «процессор». Зеленая подложка создает электрический и механический интерфейс (для электрического соединения кремниевой микросхемы с корпусом используется золото), благодаря которому станет возможным установка процессора в сокет материнской платы - по сути, это просто площадка, на которой разведены контакты от маленького чипа. Теплораспределительная крышка является термоинтерфейсом, охлаждающим процессор во время работы - именно к этой крышке будут примыкать система охлаждения, будь то радиатор кулера или здоровый водоблок.

Теперь представьте себе, что компания анонсирует, например, 20 новых процессоров. Все они различны между собой - количество ядер, объемы кэша, поддерживаемые технологии… В каждой модели процессора используется определенное количество транзисторов (исчисляемое миллионами и даже миллиардами), свой принцип соединения элементов… И все это надо спроектировать и создать/автоматизировать - шаблоны, линзы, литографии, сотни параметров для каждого процесса, тестирование… И все это должно работать круглосуточно, сразу на нескольких фабриках… В результате чего должны появляться устройства, не имеющие права на ошибку в работе… А стоимость этих технологических шедевров должна быть в рамках приличия…

Здравствуйте, дорогие читатели. Сегодня мы Вам покажем, из чего состоит процессор изнутри. Многие пользователи, конечно, имели опыт с установкой процессора на материнскую плату, но не многие знают о том, как он выглядит изнутри. Мы постараемся объяснить Вам на достаточно простом языке, что бы было понятно, но в то же время не опуская подробностей. Прежде, чем начать рассказывать о составных частях процессора, Вы можете ознакомится с очень любопытным российским прототипом Эльбрус .

Многие пользователи считают, что процессор выглядит именно так, как показано на рисунке.

Однако это вся конструкция в сборе, которая состоит из более мелких и жизненно важных частей. Давайте посмотрим, из чего состоит процессор изнутри. В состав процессора входит:

На рисунке выше под номером 1 изображена защитная крышка, которая обеспечивает механическую защиту от попадания пыли и других мелких частиц. Крышка изготовлена из материала, который имеет высокий коэффициент теплопроводности, что позволяет забирать лишнее тепло с кристалла, тем самым обеспечивая нормальный температурный диапазон работы процессора.

Под номером 2 изображен «мозг» процессор и компьютера в целом — это кристалл. Именно он считается самым «умным» элементом процессора, который выполняет все возложенные на него задачи. Вы можете увидеть,что на кристалл нанесена тонким слоем микросхема, которая обеспечивает заданное функционирование процессора. Наиболее часто кристаллы процессора делают из кремния: это обуславливается тем, что этот элемент имеет достаточно сложные молекулярные связи, которые используются при формировании внутренних токов, что обеспечивает созданию многопоточной обработки информации.

Под номером 3 показана текстолитовая платформа, к которой крепятся все остальные делали: кристалл и крышка. Эта платформа так же играет роль хорошего проводника, который обеспечивает хороший электрический контакт с кристаллом. На обратной стороне платформы с целью повышения электропроводности находится много точек, изготовленных из драгоценного метала (иногда используют даже золото).

Вот как выглядят электопроводящие точки на примере процессора Intel.

Форма контактов зависит от того, какой сокет стоит на материнской плате. Бывет и так, что вмето точек на обратной стороне платформы Вы можете увидеть штырьки, которые выполняют ту же роль. Как правило, для процессоров семейства Intel штырьки находятся в самой материнской плате. В этом случае на подложке (она же платформа) будут располагаться точки. Для семейства процессоров AMD штырьки находяться непосредственно на самой подложке. Выглядят такие процессоры следующим образом.

Теперь рассмотрим сам способ крепления всех деталей. Для того, что бы крышка прочно удерживалась на подложке, ее «садят» при помощи специального клея-герметика, который устойчивый у большим температурам. Это позволяет конструкции находится в постоянной связке, не нарушая ее целостности.

Для того, что бы кристалл не перегревался, на него наносят специальную прокладку 1, поверх которой, в свою очередь, наносится термопаста 2, обеспечивающая эффективный теплоотвод на крышку. Крышка так же «смазывается» с внутренней стороны термопастой.

Давайте теперь посмотрим, как выглядит двухъядерный процессор. Ядро представляет собой отдельный функционально независимый кристалл, который параллельно устанавливается на подложку. Выглядит это так.

Таким образом 2 установленных рядом ядра увеличивают сумарную мощность процессора. Однако, если Вы увидите 2 кристалла, стоящих рядом, это не всегда будет означать, что у Вас двухъядерный процессор. На некоторых сокетах устанавливаются 2 кристалла, один из которых отвечает за арифметико-логическую часть, а другой — за обработку графики (некий встроенный графический процессор). Это выручает в тех случаях, когда у Вас встроенная видеокарта, мощности которой не хватает справится, например, с какой-нибудь игрой. В тих случаях львиную долю вычислений берет на себя графическая часть центрального процессора. Вот так выглядит процессор с графическим ядром.

Вот так вот, друзья, мы с Вами и разобрались, из чего состоит процессор. Теперь стало ясно, что все устройства, входящие в состав процессора, играют важную и незаменимую роль для качественной работы. Не забывайте комментировать статьи нашего сайта, подписывайтесь на нашу рассылку и узнавайте много интересного. Ваше мнение Важно для нас!



Мы можем оповещать вас о новых статьях,
чтобы вы всегда были в курсе самого интересного.

 
Авторы статьи: Гвинджилия Григорий и Пащенко Сергей