Массивы (arrays) _ это упорядоченные наборы элементов одного типа. Элементами массива могут служить объекты простых и ссылочных типов, в том Числе и ссылки на другие массивы. Массивы сами по себе являются объектами и

наследуют класс Object. Объявление

int ia = new int;

Определяет массив с именем ia, который изначально указывает на набор из трех Элементов типа int.

В объявлении массива его размерность не указывается. Количество элементов массива задается при его создании посредством оператора new. Длина массива фиксируется в момент создания и в дальнейшем изменению не поддается. Впрочем, переменной типа массива (в нашем примере – ia) в любой момент может быть поставлен в соответствие новый массив с другой размерностью.

Доступ к элементам массива осуществляется по значениям их номеров-индексов.

Первый элемент массива имеет индекс, равный нулю (0), а последний – length – 1. Обращение к элементу массива выполняется посредством задания имени массива и значения индекса, заключенного в квадратные скобки, [ и ]. в предыдущем примере первым элементом массива ia будет ia, а последним – ia. При каждом обращении к элементу массива по индексу исполняющая система Java проверяет, находится ли значение индекса в допустимых пределах, и генерирует исключение типа ArraylndexOutOfBoundsException, если результат проверки ложен. 6 Выражение индекса должно относиться к типу int – только этим и ограничивается максимальное количество элементов массива.

Длину массива легко определить с помощью поля length объекта массива (которое неявно снабжено признаками publiс и final). Ниже приведен дополненный код прежнего примера, в котором предусмотрено выполнение Цикла, обеспечивающего вывод на экран содержимого каждого элемента массива ia:

for (int i = о; i < ia.length; i++)

system.out.println(i + ": " + ia[i]);

Массив нулевой длины (т.е. такой, в котором нет элементов) принято называть пустым. Обратите внимание, что ссылка на массив, равная значению null, и ссылка на пустой массив – это совершенно разные вещи. Пустой массив это реальный массив, в котором попросту отсутствуют элементы. Пустой массив представляет собой удобную альтернативу значению null при возврате из метода. Если метод способен возвращать null, прикладной код, в котором выполняется обращение к методу, должен сравнить возвращенное значение с null прежде, чем перейти к выполнению оставшихся операций. Если же метод возвращает массив (возможно, пустой), никакие дополнительные проверки не нужны – разумеется, помимо тех, которые касаются длины массива и должны выполняться в любом случае.

Допускается и иная форма объявления массива, в которой квадратные скобки задаются после идентификатора массива, а не после наименования его типа:

int ia = new int;

Прежний синтаксис, однако, считается более предпочтительным, поскольку описание типа в таком случае выглядит более компактным.

Модификаторы в объявлениях массивов

Правила употребления в объявлениях массивов тех или иных модификаторов обычны и зависят только от того, к какой категории относится массив – к полям или Локальным переменным. Существует единственная особенность, которую важно помнить, – модификаторы применяются к массиву как таковому, но не к его отдельным элементам. Если в объявлении массива указан признак final, это значит только то, что ссылка на массив не может быть изменена после его создания, но никак не запрещает возможность изменения содержимого отдельных элементов массива. Язык не позволяет задавать каких бы то ни было модификаторов (скажем, final или уоlatilе) для элементов массива.

Многомерные массивы

В Java поддерживается возможность объявления многомерных массивов (multidimensional arrays) (т.е. массивов, элементами которых служат другие массивы), Код, предусматривающий объявление двумерной матрицы и вывод на экран содержимого ее элементов, может выглядеть, например, так:

float mat = new float;

setupMatrix(mat);

for (int у = о; у < mat.length; у++) {

for (int х = о; х < mat[y].length; х++)

system.out.print(mat[y][x] + " ");

system.out.println();

При создании массива должна быть указана, по меньшей мере, его первая, "самая левая", размерность. Другие размерности разрешается не задавать – в этом случае их придется определить позже. Указание в операторе new единовременно всех размерностей – это самый лаконичный способ создания массива, позволяющий избежать необходимости использования дополнительных операторов new. Выражение объявления и создания массива mat, приведенное выше, равнозначно следующему фрагменту кода:

float mat = new float;

for (int у = о; у < mat.length; у++)

mat[y] = new float;

Такая форма объявления обладает тем преимуществом, что позволяет наряду с получением массивов с одинаковыми размерностями (скажем, 4 х 4) строить и массивы массивов различных размерностей, необходимых для хранения тех или иных последовательностей данных.

Инициализация массивов

При создании массива каждый его элемент получает значение, предусмотренное по умолчанию и зависящее от типа массива: нуль (0) – для числовых типов, ‘\u0000′ _ для char, false – для boolean и null – для ссылочных типов. Объявляя массив ссылочного типа, мы на самом деле определяем массив переменных этого типа. Рассмотрим следующий фрагмент кода:

Attr attrs = new Attr;

for (int i = о; i < attrs.length; i++)

attrs[i] = new Attr(names[i], values[i]);

После выполнения первого выражения, содержащего оператор new, переменная attrs получит ссылку на массив из 12 переменных, которые инициализированы значением null, Объекты Attr как таковые будут созданы только в процессе про хождения цикла.

Массив может инициализироваться (одновременно с объявлением) посредством конструкции в фигурных скобках, в которой перечислены исходные Значения его элементов:

String dangers = { "Львы", "Тигры", "Медведи" };

Следующий фрагмент кода даст тот же результат:

String dangers = new String; dangers = "Львы";

dangers = "Тигры";

dangers = "Медведи";

Первая форма, предусматривающая задание списка инициализаторов в фигурных скобках, не требует явного использования оператора new – он вызывается косвенно исполняющей системой. Длина массива в этом случае определяется Количеством значений-инициализаторов. Допускается и возможность явного задания оператора new, но размерность все равно следует опускать она, как и раньше, определяется исполняющей системой:

String dangers = new String { "Львы", "Тигры", "Медведи" };

Подобную форму объявления и инициализации массива разрешается применять в любом месте кода, например в выражении вызова метода:

printStringsCnew String { "раз", "два", "три" });

Массив без названия, который создается таким образом, называют анонимным (anonymous).

Массивы массивов могут инициализироваться посредством вложенных последовательностей исходных значений. Ниже приведен пример объявления массива, содержащего несколько первых строк так называемого треугольника Паскаля, где каждая строка описана собственным массивом значений.

int pascalsTriangle = {

{ 1, 4, 6, 4, 1 },

Индексы многомерных массивов следуют в порядке от внешнего к внутренним. Так, например, pascalsTriangle.length;j++) System.out.println(num[i][j]); }

В качестве альтернативы:

For (int a: num) { for (int i: a) { System.out.println(i); } }

Type variableName = new Type; Type variableName = {comma-delimited values}; Type variableName = new Type; Type variableName = {comma-delimited values};

также действителен, но я предпочитаю скобки после типа, потому что легче видеть, что тип переменной на самом деле является массивом.

Ниже показано объявление массива, но массив не инициализирован:

Int myIntArray = new int;

Ниже показано объявление, а также инициализация массива:

Int myIntArray = {1,2,3};

Теперь следующее также показывает объявление, а также инициализацию массива:

Int myIntArray = new int{1,2,3};

Но этот третий показывает свойство анонимного создания массива-объекта, которое указывается ссылочной переменной "myIntArray", поэтому, если мы пишем только "new int {1,2,3};" то это может быть анонимный массив-объект.

Если мы просто напишем:

Int myIntArray;

это не объявление массива, но следующий оператор делает следующее выражение завершенным:

MyIntArray=new int;

Я считаю полезным, если вы понимаете каждую часть:

Type name = new Type;

Type - это тип переменной, называемой именем ("имя" называется идентификатором). Литеральный "Тип" - это базовый тип, а скобки означают, что это тип массива этой базы. Типы массивов в свою очередь являются собственными, что позволяет создавать многомерные массивы типа Type (тип массива Type ). Ключевое слово new говорит о распределении памяти для нового массива. Число между скобкой говорит о том, насколько большой будет новый массив и сколько памяти будет выделено. Например, если Java знает, что базовый тип Type занимает 32 байта, и вам нужен массив размером 5, ему необходимо внутренне выделить 32 * 5 = 160 байт.

Вы также можете создавать массивы с уже имеющимися значениями, такими как

Int name = {1, 2, 3, 4, 5};

который не только создает пустое пространство, но и заполняет его этими значениями. Java может сказать, что примитивы являются целыми числами и что их 5, поэтому размер массива может быть определен неявно.

Кроме того, если вы хотите что-то более динамичное, есть интерфейс List. Это не будет работать, но более гибко:

List listOfString = new ArrayList(); listOfString.add("foo"); listOfString.add("bar"); String value = listOfString.get(0); assertEquals(value, "foo");

Существует два основных способа создания массива:

Этот, для пустого массива:

Int array = new int[n]; // "n" being the number of spaces to allocate in the array

И этот, для инициализированного массива:

Int array = {1,2,3,4 ...};

Вы также можете создавать многомерные массивы, например:

Int array2d = new int[x][y]; // "x" and "y" specify the dimensions int array2d = { {1,2,3 ...}, {4,5,6 ...} ...};

Возьмите примитивный тип int , например. Существует несколько способов объявления и массив int:

Int i = new int; int i = new int {value1, value2, value3, etc}; int i = {value1, value2, value3, etc};

где во всех этих случаях вы можете использовать int i вместо int i .

С отражением вы можете использовать (Type) Array.newInstance(Type.class, capacity);

Обратите внимание, что в параметрах метода... отображается variable arguments . По сути, любое количество параметров в порядке. Это проще объяснить с помощью кода:

Public static void varargs(int fixed1, String fixed2, int... varargs) {...} ... varargs(0, "", 100); // fixed1 = 0, fixed2 = "", varargs = {100} varargs(0, "", 100, 200); // fixed1 = 0, fixed2 = "", varargs = {100, 200};

Внутри метода varargs рассматривается как нормальный int . Type... может использоваться только в параметрах метода, поэтому int... i = new int {} не будет компилироваться.

Обратите внимание, что при передаче int методу (или любому другому Type) вы не можете использовать третий способ. В заявлении int i = *{a, b, c, d, etc}* компилятор предполагает, что {...} означает int . Но это потому, что вы объявляете переменную. При передаче массива методу декларация должна быть либо new Type , либо new Type {...} .

Многомерные массивы

Многомерные массивы гораздо сложнее справиться. По существу, 2D-массив представляет собой массив массивов. int означает массив int s. Ключ состоит в том, что если int объявлен как int[x][y] , максимальный индекс равен i . По существу, прямоугольник int равен:

Объявление массива ссылок на объекты:

Class Animal {} class Horse extends Animal { public static void main(String args) { /* * Array of Animal can hold Animal and Horse (all subtypes of Animal allowed) */ Animal a1 = new Animal; a1 = new Animal(); a1 = new Horse(); /* * Array of Animal can hold Animal and Horse and all subtype of Horse */ Animal a2 = new Horse; a2 = new Animal(); a2 = new Horse(); /* * Array of Horse can hold only Horse and its subtype (if any) and not allowed supertype of Horse nor other subtype of Animal. */ Horse h1 = new Horse; h1 = new Animal(); // Not allowed h1 = new Horse(); /* * This can not be declared. */ Horse h2 = new Animal; // Not allowed } }

Массив - это последовательный список элементов

Int item = value; int one_dimensional_array = { value, value, value, .., value }; int two_dimensional_array = { { value, value, value, .. value }, { value, value, value, .. value }, .. .. .. .. { value, value, value, .. value } };

Если это объект, то это же понятие

Object item = new Object(); Object one_dimensional_array = { new Object(), new Object(), .. new Object() }; Object two_dimensional_array = { { new Object(), new Object(), .. new Object() }, { new Object(), new Object(), .. new Object() }, .. .. .. { new Object(), new Object(), .. new Object() } };

В случае объектов вам нужно либо назначить его null для инициализации с помощью new Type(..) , классы, такие как String и Integer , являются особыми случаями, которые будут обрабатываться как следующие

String a = { "hello", "world" }; // is equivalent to String a = { new String({"h","e","l","l","o"}), new String({"w","o","r","l","d"}) }; Integer b = { 1234, 5678 }; // is equivalent to Integer b = { new Integer(1234), new Integer(5678) };

В общем случае вы можете создавать массивы, которые M мерные

Int .. array = // ^ M times brackets {{..{ // ^ M times { bracket // this is array.. // ^ M times }}..} // ^ M times } bracket ;

Стоит отметить, что создание размерного массива M является дорогостоящим с точки зрения Space. Поскольку при создании массива M с N во всех измерениях общий размер массива больше, чем N^M , так как каждый массив имеет ссылку, а в M-размерности есть (M -1) -мерный массив ссылок. Общий размер выглядит следующим образом

Массив - это структура данных, в которой хранятся величины одинакового типа. Доступ к отдельному элементу массива осуществляется с помощью целого индекса. Например, если а - массив целых чисел, то значение выражения а [ i ] равно i-му целому числу в массиве. Массив объявляется следующим образом: сначала указывается тип массива, т.е тип элементов, содержащихся в массиве, за которым ставится пара пустых квадратных скобок, а затем - имя переменной. Например, вот как объявляется массив, состоящий из целых чисел: int a; Однако этот оператор лишь объявляет переменную а, не инициализируя ее настоящим массивом. Чтобы создать массив, нужно применить оператор new . int a = new int [ 100 ] ; Этот оператор создает массив, состоящий из 100 целых чисел. Элементы этого массива нумеруются от 0 до 99 (а не от 1 до 100). После создания массив можно заполнять, например, с помощью цикла. int а = new int [ 100 ] ; for (int i = 0 ; i < 100 ; i++ ) a[ i] = i; //Заполняет массив числами от 0 до 99 Если вы попытаетесь обратиться к элементу а (или любому другому элементу, индекс которого выходит за пределы диапазона от 0 до 99), создав массив, состоящий из 100 элементов, программа прекратит работу, поскольку возникнет исключительная ситуация, связанная с выходом индекса массива за пределы допустимого диапазона. Чтобы подсчитать количество элементов в массиве, используйте метод имя Массива.length . Например, for (int i = 0 ; i < a. length; i++ , System. out. println (a[ i] ) ) ; После создания массива изменить его размер невозможно (хотя можно, конечно, изменять отдельные его элементы). Если в ходе выполнения программы необходимо часто изменять размер массива, лучше использовать другую структуру данных, называемую списком массивов (array list). Массив можно объявить двумя способами: int a; или int a ; Большинство программистов на языке Java предпочитают первый стиль, поскольку в нем четче отделяется тип массива int (целочисленный массив) от имени переменной.

Инициализаторы массивов и безымянные массивы

В языке Java есть средство для одновременного создания массива и его инициализации. Вот пример такой синтаксической конструкции: int smallPrimes = { 2 , 3 , 5 , 7 , 11 , 13 } ; Отметим, что в этом случае не нужно применять оператор new . Кроме того, можно даже инициализировать безымянный массив: new int { 16 , 19 , 23 , 29 , 31 , 37 } Это выражение выделяет память для нового массива и заполняет его числами, указанными в фигурных скобках. При этом подсчитывается их количество и, соответственно, определяется размер массива. Эту синтаксическую конструкцию удобно применять для повторной инициализации массива без образования новой переменной. Например, выражение smallPrimes = new int { 17 , 19 , 23 , 29 , 31 , 37 } ; представляет собой укороченную запись выражения int anonymous = { 17 , 19 , 23 , 29 , 31 , 37 } ; smallPrimes = anonymous; Можно создать массив нулевого размера. Такой массив может оказаться полезным при написании метода, вычисляющего некий массив, который оказывается пустым. Массив нулевой длины объявляется следующим образом: new тип Элементов Заметим, что такой массив не эквивалентен объекту null .

Копирование массивов arrays

Один массив можно скопировать в другой, но при этом обе переменные будут ссылаться на один и тот же массив. int luckyNumbers = smallPrimes; luckyNumbers[ 5 ] = 12 ; //Теперь элемент smallPrimesтакже равен 12 Результат показан на рис. 3.1. Если необходимо скопировать все элементы одного массива в другой, следует использовать метод arraycopy из класса System . Его вызов выглядит следующим образом: System. arraycopy (from, fromlndex, to, tolndex, count) ; Массив to должен иметь достаточный размер, чтобы в нем поместились все копируемые элементы. Рис.3.1. Копирование массива Например, показанные ниже операторы, результаты работы которых изображены на рис. 3.2, создают два массива, а затем копируют последние четыре элемента первого массива во второй. Копирование начинается со второй позиции в исходном массиве, а копируемые элементы помещаются в целевой массив, начиная с третьей позиции. int smallPrimes = { 2 , 3 , 5 , 7 , 11 , 13 } ; int luckyNumbers = { 1001 , 1002 , 1003 , 1004 , 1005 , 1006 , 1007 } ; System. аrrаусору(smallPrimes, 2 , luckyNumbers, 3 , 4 ) ; for (int i = 0 ; i < luckyNumbers. length; i++ ) System. out. println (i + ": " + luckyNumbers[ i] ) ; Выполнение этих операторов приводит к следующему результату. 0 : 1001 1 : 1002 2 : 1003 3 : 5 4 : 7 5 : 11 6 : 13 Рис. 3.2. Копирование элементов массива Массив в языке Java значительно отличается от массива в языке C++. Однако он практически совпадает с указателем на динамический массив. Это значит, что оператор int a = new int [ 100 ] ; //Java эквивалентен оператору int * = new int [ 100 ] ; //C++, а не int a[ 100 ] ; //C++ В языке Java оператор пo умолчанию проверяет диапазон изменения индексов. Кроме того, в языке Java нет арифметики указателей - нельзя увеличить указатель а, чтобы обратиться к следующему элементу массива. Ссылка на перво

Массив — это множество однотипных объектов, которые имеют общее название. К каждому элементу массива возможен доступ по его индексу. Рассмотрим реальный пример. Пусть у нас есть некоторый склад, который называется a и пусть в нем есть некоторое количество ящиков, каждый из которых последовательно пронумерован. В каждом ящике лежит некоторый объект, который по своему типу совпадает с объектами в других ящиках. Пример данного склада является классическим массивом, где название склада — это название массива, ящики — это элементы массива, номера ящиков — это индексы элементов, а содержимое ящиков — это значения наших переменных. Представим, что внутри ящиков лежат лимоны, и в каждом ящике лежит определенное количество лимонов. Тогда, значения наших переменных будут показывать количество лимонов. Рассмотрим такой склад, состоящий из трех ящиков, пусть в первом ящике лежит 3, во втором 7, в третьем 273. Тогда, массив, описывающий данный склад можно изобразить следующим образом:

Индекс 0 1 2
Значение 3 7 273

Индексация в массиве всегда начинается с 0. Рассмотрим некоторые операции, которые можно производить с массивом:

Создание массива

Тип имяПеременной;
int a;//целочисленный массив
char b;//массив символов
String c;

Выделение памяти:

A = new int;//выделяем память под 10 элементов
b = new char;//выделяем память под 20 элементов
c = new String;//выделяем память под 30 элементов

Таким образом инициализация массива выглядит следующим образом:

Int a = new int;//инициализация массива целых чисел из 10 элементов
char b = new char;//инициализация массива символов из 20 элементов
String c = new String;//инициализация массива строк из 30 элементов

Всем элементам массива после такой инициализации присваивается значение по умолчанию.
Существует возможность сразу задать значения элементов массива, создадим массив, который будет показывать количество лимонов в ящике, как в примере выше:

Int a = new int{ 3, 7, 273 };

Работа с массивом

Считывание массива:

Import java.util.Scanner;
public class test {
public static void main(String args) {
int a;//массив целых чисел
int n;//количество элементов в массиве
Scanner in = new Scanner(System.in);
n = in.nextInt();
a = new int[n];
for(int i = 0; i Изменение значений массива:


for(int i = 0; i Вывод массива:

Int a;//массив целых чисел, который был как - то обработан
for(int i = 0; i Произвольный доступ к элементу массива по индексу:

System.out.println(a);//Выводим первый элемент массива
a = 1;//Присваиваем второму элементу массива 1
int temp = a;//Сохраняем значение третьего элемента массива в переменную temp

Вот так вот выглядят основные операции с массивами. Очень часто на различных уроках по информатике просят вынести эти этапы работы с массивом в отдельные функции, но про это мы поговорим позднее. Таким образом, с помощью считывания массива, мы можем ввести некоторые значение с консоли, с помощью изменения значений, мы можем например, увеличить все значения на единицу или умножить на два, а с помощью вывода мы можем вывести текущие значения массива. Если нам требуется работать только с конкретными элементами массива, то тут мы можем воспользоваться произвольным доступом по индексу, где индекс - это любое положительное целое число, которое меньше длины массива. Текущую длину массива можно получить с помощью свойства length, оно уже применялось при выводе массива.
Тут я опущу диалог про то, что массивы являются ссылками и работа с ними отличается от работы с обычными базовыми типами.

Двумерные массивы

Не всегда бывает удобно нумеровать ящики на складе с 0 до определенного числа, иногда хочется привести склад в более упорядоченный вид, например ввести ряды. Теперь каждый ящик имеет свой номер ряда и свой порядковый номер в этом ряду. Пусть на нашем складе есть девять ящиков, которые имеют содержат 1, 2 и так далее 9 апельсинов. Ящики на складе располагаются в три ряда по три ящика, тогда ситуацию на складе можно представить так.

Массив - это конечная последовательность упорядоченных элементов одного типа, доступ к каждому элементу в которой осуществляется по его индексу.

Размер или длина массива - это общее количество элементов в массиве. Размер массива задаётся при создании массива и не может быть изменён в дальнейшем, т. е. нельзя убрать элементы из массива или добавить их туда, но можно в существующие элементы присвоить новые значения.

Индекс начального элемента - 0, следующего за ним - 1 и т. д. Индекс последнего элемента в массиве - на единицу меньше, чем размер массива.

В Java массивы являются объектами. Это значит, что имя, которое даётся каждому массиву, лишь указывает на адрес какого-то фрагмента данных в памяти. Кроме адреса в этой переменной ничего не хранится. Индекс массива, фактически, указывает на то, насколько надо отступить от начального элемента массива в памяти, чтоб добраться до нужного элемента.

Чтобы создать массив надо объявить для него подходящее имя, а затем с этим именем связать нужный фрагмент памяти, где и будут друг за другом храниться значения элементов массива.Возможные следующие варианты объявления массива: тип имя; тип имя;

Где тип - это тип элементов массива, а имя - уникальный (незанятый другими переменными или объектами в этой части программы) идентификатор, начинающийся с буквы.

Примеры: int a; double ar1; double ar2;

В примере мы объявили имена для трёх массивов. С первом именем a сможет быть далее связан массив из элементов типа int, а с именами ar1 и ar2 далее смогут быть связаны массивы из вещественных чисел (типа double). Пока мы не создали массивы, а только подготовили имена для них.

Теперь создать (или как ещё говорят инициализировать) массивы можно следующим образом: a = new int; // массив из 10 элементов типа int int n = 5; ar1 = new double[n]; // Массив из 5 элементов double ar2 = {3.14, 2.71, 0, -2.5, 99.123}; // Массив из 6 элементов типа double То есть при создании массива мы можем указать его размер, либо сразу перечислить через запятую все желаемые элементы в фигурных скобках (при этом размер будет вычислен автоматически на основе той последовательности элементов, которая будет указана). Обратите внимание, что в данном случае после закрывающей фигурной скобки ставится точка с запятой, чего не бывает когда это скобка закрывает какой-то блок.

Если массив был создан с помощью оператора new , то каждый его элемент получает значение по умолчанию. Каким оно будет определяется на основании типа данных (0 для int, 0.0 для double и т. д.).

Объявить имя для массива и создать сам массив можно было на одной строке по следующей схеме: тип имя = new тип[размер]; тип имя = {эл0, эл1, …, элN}; Примеры: int mas1 = {10,20,30}; int mas2 = new int;

Чтобы обратиться к какому-то из элементов массива для того, чтобы прочитать или изменить его значение, нужно указать имя массива и за ним индекс элемента в квадратных скобках. Элемент массива с конкретным индексом ведёт себя также, как переменная. Например, чтобы вывести последний элемент массива mas1 мы должны написать в программе:

System.out.println("Последний элемент массива " + mas1);

А вот так мы можем положить в массив mas2 тот же набор значений, что хранится в mas1:

Mas2 = 10; mas2 = 20; mas2 = 30;Уже из этого примера видно, что для того, чтоб обратиться ко всем элементам массива, нам приходится повторять однотипные действия. Как вы помните для многократного повторения операций используются циклы. Соответственно, мы могли бы заполнить массив нужными элементами с помощью цикла: for(int i=0; iПонятно, что если бы массив у нас был не из 3, а из 100 элементов, до без цикла мы бы просто не справились.

Длину любого созданного массива не обязательно запоминать, потому что имеется свойство, которое его хранит. Обратиться к этому свойству можно дописав.length к имени массива. Например:

Int razmer = mas1.length; Это свойство нельзя изменять (т. е. ему нельзя ничего присваивать), можно только читать. Используя это свойство можно писать программный код для обработки массива даже не зная его конкретного размера.

Например, так можно вывести на экран элементы любого массива с именем ar2:

For(int i = 0; i <= ar2.length - 1; i++) { System.out.print(ar2[i] + " "); } Для краткости удобнее менять нестрогое неравенство на строгое, тогда не нужно будет вычитать единицу из размера массива. Давайте заполним массив целыми числами от 0 до 9 и выведем его на экран: for(int i = 0; i < ar1.length; i++) {ar1[i] = Math.floor(Math.random() * 10); System.out.print(ar1[i] + " "); }

Обратите внимание, на каждом шаге цикла мы сначала отправляли случайное значение в элемент массива с i-ым индексом, а потом этот же элемент выводили на экран. Но два процесса (наполнения и вывода) можно было проделать и в разных циклах. Например:

For(int i = 0; i < ar1.length; i++) { ar1[i] = Math.floor(Math.random() * 9); } for(int i = 0; i < ar1.length; i++) { System.out.print(ar1[i] + " "); } В данном случае более рационален первый способ (один проход по массиву вместо двух), но не всегда возможно выполнить требуемые действия в одном цикле.

Для обработки массивов всегда используются циклы типа «n раз» (for) потому, что нам заранее известно сколько раз должен повториться цикл (столько же раз, сколько элементов в массиве).

Задачи

    Создайте массив из всех чётных чисел от 2 до 20 и выведите элементы массива на экран сначала в строку, отделяя один элемент от другого пробелом, а затем в столбик (отделяя один элемент от другого началом новой строки). Перед созданием массива подумайте, какого он будет размера.

    2 4 6 … 18 20
    2
    4
    6

    20

    Создайте массив из всех нечётных чисел от 1 до 99, выведите его на экран в строку, а затем этот же массив выведите на экран тоже в строку, но в обратном порядке (99 97 95 93 … 7 5 3 1).

    Создайте массив из 15 случайных целых чисел из отрезка . Выведите массив на экран. Подсчитайте сколько в массиве чётных элементов и выведете это количество на экран на отдельной строке.

    Создайте массив из 8 случайных целых чисел из отрезка . Выведите массив на экран в строку. Замените каждый элемент с нечётным индексом на ноль. Снова выведете массив на экран на отдельной строке.

    Создайте 2 массива из 5 случайных целых чисел из отрезка каждый, выведите массивы на экран в двух отдельных строках. Посчитайте среднее арифметическое элементов каждого массива и сообщите, для какого из массивов это значение оказалось больше (либо сообщите, что их средние арифметические равны).

    Создайте массив из 4 случайных целых чисел из отрезка , выведите его на экран в строку. Определить и вывести на экран сообщение о том, является ли массив строго возрастающей последовательностью.

    Создайте массив из 20-ти первых чисел Фибоначчи и выведите его на экран. Напоминаем, что первый и второй члены последовательности равны единицам, а каждый следующий - сумме двух предыдущих.

    Создайте массив из 12 случайных целых чисел из отрезка [-15;15]. Определите какой элемент является в этом массиве максимальным и сообщите индекс его последнего вхождения в массив.

    Создайте два массива из 10 целых случайных чисел из отрезка и третий массив из 10 действительных чисел. Каждый элемент с i-ым индексом третьего массива должен равняться отношению элемента из первого массива с i-ым индексом к элементу из второго массива с i-ым индексом. Вывести все три массива на экран (каждый на отдельной строке), затем вывести количество целых элементов в третьем массиве.

    Создайте массив из 11 случайных целых чисел из отрезка [-1;1], выведите массив на экран в строку. Определите какой элемент встречается в массиве чаще всего и выведите об этом сообщение на экран. Если два каких-то элемента встречаются одинаковое количество раз, то не выводите ничего.

    Пользователь должен указать с клавиатуры чётное положительное число, а программа должна создать массив указанного размера из случайных целых чисел из [-5;5] и вывести его на экран в строку. После этого программа должна определить и сообщить пользователю о том, сумма модулей какой половины массива больше: левой или правой, либо сообщить, что эти суммы модулей равны. Если пользователь введёт неподходящее число, то программа должна требовать повторного ввода до тех пор, пока не будет указано корректное значение.

    Программа должна создать массив из 12 случайных целых чисел из отрезка [-10;10] таким образом, чтобы отрицательных и положительных элементов там было поровну и не было нулей. При этом порядок следования элементов должен быть случаен (т. е. не подходит вариант, когда в массиве постоянно выпадает сначала 6 положительных, а потом 6 отрицательных чисел или же когда элементы постоянно чередуются через один и пр.). Вывести полученный массив на экран.

    Пользователь вводит с клавиатуры натуральное число большее 3, которое сохраняется в переменную n. Если пользователь ввёл не подходящее число, то программа должна просить пользователя повторить ввод. Создать массив из n случайных целых чисел из отрезка и вывести его на экран. Создать второй массив только из чётных элементов первого массива, если они там есть, и вывести его на экран.

Сортировка массива

Сортировкой называется такой процесс перестановки элементов массива, когда все его элементы выстраиваются по возрастанию или по убыванию.Сортировать можно не только числовые массивы, но и, например, массивы строк (по тому же принципу, как расставляют книги на библиотечных полках). Вообще сортировать можно элементы любого множества, где задано отношение порядка.Существуют универсальные алгоритмы, которые выполняют сортировку вне зависимости от того, каким было исходное состояние массива. Но кроме них существуют специальные алгоритмы, которые, например, очень быстро могут отсортировать почти упорядоченный массив, но плохо справляются с сильно перемешанным массивом (или вообще не справляются). Специальные алгоритмы нужны там, где важна скорость и решается конкретная задача, их подробное изучение выходит за рамки нашего курса.

Сортировка выбором

Рассмотрим пример сортировки по возрастанию. То есть на начальной позиции в массиве должен стоять минимальный элемент, на следующей - больший или равный и т. д., на последнем месте должен стоять наибольший элемент.Суть алгоритма такова. Во всём отыскиваем минимальный элемент, меняем его местами с начальным. Затем в оставшейся части массива (т. е. среди всех элементов кроме начального) снова отыскиваем минимальный элемент, меняем его местами уже со вторым элементом в массиве. И так далее.

Иллюстрация:

For (int i = 0; i

Сортировка методом пузырька

Суть алгоритма такова. Если пройдёмся по любому массиву установив правильный порядок в каждой паре соседних элементов, то после того прохода на последнем месте массива гарантированно будет стоять нужный элемент (самый большой для сортировки по возрастанию или самый маленький для сортировки по убыванию). Если ещё раз пройтись по массиву с такими же преобразованиями, то и на предпоследнем месте гарантированно окажется нужный элемент. И так далее.Пример:

2 9 1 4 3 5 2 → порядок правильный, не будет перестановки

2 9 1 4 3 5 2 → 2 1 9 4 3 5 2

2 1 9 4 3 5 2 → 2 1 4 9 3 5 2

2 1 4 9 3 5 2 → 2 1 4 3 9 5 2

2 1 4 3 9 5 2 → 2 1 4 3 5 9 2

2 1 4 3 5 9 2 → 2 1 4 3 5 2 9

Код: /* Внешний цикл постоянно сужает фрагмент массива, * который будет рассматриваться, ведь после каждого прохода * внутреннего цикла на последнем месте фрагмента будет * оказываться нужный элемент (его не надо рассматривать снова). */ for (int i = a.length - 1; i >= 2; i--) { /* В переменной sorted мы будем хранить признак того, * отсортирован ли массив. Перед каждым проходом внутреннего * цкла будем предполагать, что отсортирован, но если совершим * хоть одну перестановку, то значит ещё не конца отсортирован. * Этот приём, упрощающий сортировку, называется критерием Айверсона. */ boolean sorted = true; /* Во внутреннем цикле мы проходимся по фрагменту массива, который * определяется внешним циклом. В этом фрагменте мы устанавливаем * правильный порядок между соседними элементами, так попарно * обрабатывая весь фрагмент. */ for (int j = 0; j a) { int temp = a[j]; a[j] = a; a = temp; sorted = false; } } /* Если массив отсортирован (т.е. не было ни одной перестановки * во внутреннем цикле, значит можно прекращать работу внешнего * цикла. */ if(sorted) { break; } }

Многомерные массивы

Массив может состоять не только из элементов какого-то встроенного типа (int, double и пр.), но и, в том числе, из объектов какого-то существующего класса и даже из других массивов.

Массив который в качестве своих элементов содержит другие массивы называется многомерным массивом.Чаще всего используются двумерные массивы. Такие массивы можно легко представить в виде матрицы. Каждая строка которой является обычным одномерным массивом, а объединение всех строк - двумерным массивом в каждом элементе которого хранится ссылка на какую-то строку матрицы.Трёхмерный массив можно представить себе как набор матриц, каждую из которых мы записали на библиотечной карточке. Тогда чтобы добраться до конкретного числа сначала нужно указать номер карточки (первый индекс трёхмерного массива), потому указать номер строки (второй индекс массива) и только затем номер элемент в строке (третий индекс).

Соответственно, для того, чтобы обратиться к элементу n-мерного массива нужно указать n индексов.

Объявляются массивы так: int d1; //Обычный, одномерный int d2; //Двумерный double d3; //Трёхмерный int d5; //Пятимерный При создании массива можно указать явно размер каждого его уровня: d2 = int; // Матрица из 3 строк и 4 столбцов Но можно указать только размер первого уровня: int dd2 = int; /* Матрица из 5 строк. Сколько элементов будет в каждой строке пока не известно. */ В последнем случае, можно создать двумерный массив, который не будет являться матрицей из-за того, что в каждой его строке будет разное количество элементов. Например: for(int i=0; i<5; i++) { dd2[i] = new int; } В результате получим такой вот массив: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Мы могли создать массив явно указав его элементы. Например так: int ddd2 = {{1,2}, {1,2,3,4,5}, {1,2,3}};

При этом можно обратиться к элементу с индексом 4 во второй строке ddd2 , но если мы обратимся к элементу ddd2 или ddd2 - произойдёт ошибка, поскольку таких элементов просто нет. Притом ошибка это будет происходить уже во время исполнения программы (т. е. компилятор её не увидит).

Обычно всё же используются двумерные массивы с равным количеством элементов в каждой строке.Для обработки двумерных массивов используются два вложенных друг в друга цикла с разными счётчиками.Пример (заполняем двумерный массив случайными числами от 0 до 9 и выводим его на жкран в виде матрицы): int da = new int; for(int i=0; i

Задачи

    Создать двумерный массив из 8 строк по 5 столбцов в каждой из случайных целых чисел из отрезка . Вывести массив на экран.

    Создать двумерный массив из 5 строк по 8 столбцов в каждой из случайных целых чисел из отрезка [-99;99]. Вывести массив на экран. После на отдельной строке вывести на экран значение максимального элемента этого массива (его индекс не имеет значения).

    Cоздать двумерный массив из 7 строк по 4 столбца в каждой из случайных целых чисел из отрезка [-5;5]. Вывести массив на экран. Определить и вывести на экран индекс строки с наибольшим по модулю произведением элементов. Если таких строк несколько, то вывести индекс первой встретившейся из них.

    Создать двумерный массив из 6 строк по 7 столбцов в каждой из случайных целых чисел из отрезка . Вывести массив на экран. Преобразовать массив таким образом, чтобы на первом месте в каждой строке стоял её наибольший элемент. При этом изменять состав массива нельзя, а можно только переставлять элементы в рамках одной строки. Порядок остальных элементов строки не важен (т.е. можно соврешить только одну перестановку, а можно отсортировать по убыванию каждую строку). Вывести преобразованный массив на экран.

    Для проверки остаточных знаний учеников после летних каникул, учитель младших классов решил начинать каждый урок с того, чтобы задавать каждому ученику пример из таблицы умножения, но в классе 15 человек, а примеры среди них не должны повторяться. В помощь учителю напишите программу, которая будет выводить на экран 15 случайных примеров из таблицы умножения (от 2*2 до 9*9, потому что задания по умножению на 1 и на 10 - слишком просты). При этом среди 15 примеров не должно быть повторяющихся (примеры 2*3 и 3*2 и им подобные пары считать повторяющимися).

2010, Алексей Николаевич Костин. Кафедра ТИДМ математического факультета МПГУ.