Гибридный КВ усилитель мощности нового типа

Радиолюбители, использующие профессиональные радиоприемники, испытывают трудности с получением в тракте передачи необходимой для работы в эфире мощности несколько десятков или сотен ватт, т.к. выходная мощность доработанного приемника или трансиверной приставки к нему, как правило, не превышает 2-3 ватт. Наиболее целесообразно в этом случае применение гибридного усилителя мощности (РА), который позволяет получить коэффициент усиления по мощности до нескольких сотен.

Некоторые радиолюбители с недоверием относятся к гибридным РА, считая, что такие усилители не позволяют получить сигналы высокого качества. В действительности, гибридные РА обеспечивают получение сигналов высокого качества нисколько не уступающих усилителям, выполненным по классической схемотехнике. Необходимо отметить, что гибридные усилители требуют тщательной регулировки и понимания тех процессов, которые при этом происходят.

Имеются публикации гибридных РА с применением как биполярных так и полевых транзисторов, к сожалению, и те и другие имеют недостатки, на которых я коротко остановлюсь.

Главным недостатком биполярных транзисторов является необходимость установки большого начального тока 100 и более мА, для вывода транзистора на начало линейного участка характеристики. Большой начальный ток транзистора и соответственно лампы, понижает КПД усилителя и приводит к перегреву анода лампы даже при отсутствии сигнала возбуждения. Маленький начальный ток приводит к ограничению сигнала снизу и заметным нелинейным искажениям.

Недостаток полевых транзисторов - большое остаточное напряжение на стоке (8…12 В) и соответственно большое внутренне сопротивление. Ток полевого транзистора, например КП901, начинает ограничиваться на уровне около 300 мА. Так как после достижения указанного тока, увеличение амплитуды возбуждения не приводит к увеличению тока стока, наступает ограничение сигнала сверху.

В предлагаемом гибридном РА использован биполярный транзистор. Присущие этому варианту недостатки устранены с помощью специальной схемотехники, которая позволяет раздельно устанавливать начальный ток лампы и транзистора, например: ток лампы 15 мА, а транзистора 120 мА.

В усилителе работают две лампы 6П45С с транзистором КТ922Б в катоде. В отличие от известных схем, на коллектор транзистора VТ4 через развязывающий дроссель L7 и защитный диод VD11 подается напряжение от стабилизатора тока, выполненного на транзисторах VТ5 и VТ6. Через транзистор VТ4 в катоде ламп, протекает суммарный ток ламп VL1 и VL2 и стабилизатора на VТ5 и VТ6. Каждый из этих токов имеет независимую регулировку и может быть установлен на заданную величину, обеспечивая тем самым необходимый режим работы и ламп и транзистора. Ток, проходящий через лампы и транзистор VТ4, при отсутствии напряжения возбуждения – является начальным током ламп. При подаче напряжения возбуждения, ток через лампы и транзистор изменяется и пропорционален уровню возбуждения. Та часть тока, которая поступает на транзистор VТ4 от стабилизатора, всегда постоянна и не зависит от уровня возбуждения. Цепочка из двух диодов VD7, VD8 и стабилитрона VD6 защищает транзистор VТ4 от перенапряжения. Накальное напряжение для ламп подводится через дроссель L6, устраняющий вредное влияние емкости между катодом и нитью накала. Напряжение возбуждения подается в базу транзистора VТ4 через широкополосный понижающий трансформатор Т1, согласующий 50-омный вход РА с низкоомным входом транзистора. Напряжение ALC снимается с эмиттера транзистора VТ4 и регулируется с помощью потенциометра R25.

Узел на микросхеме DD1 позволяет производить переключение РА в режим передачи. Порядок управления следующий: после замыкания контакта педали на корпус, ключ на VТ1 запирает RX; через заданный временной интервал антенное реле К1 подключает антенну к РА; и, наконец, после временной задержки устанавливается режим передачи с помощью реле К2. После отпускания педали процесс идет в обратном порядке: выключается TX; переключается антенна и разрешается работа приемника.

Налаживание РА начинается с установки тока величиной 100-110 мА в стабилизаторе тока на VТ5, VТ6. Для регулировки стабилизатора необходимо отключить коллектор транзистора VТ5 от остальной схемы и соединить его через миллиамперметр и последовательно включенный с ним резистор, величиной 300 Ом, с корпусом. Ток стабилизатора устанавливается резистором R27, величина которого определяется по формуле R= 0,625 / I , где сопротивление в Омах, ток в Амперах. В нашем случае необходим резистор 6,25 Ом. Стандартного резистора такого номинала нет, поэтому следует включить параллельно два резистора 6,8 Ом и 68….82 Ом. Далее, после восстановления схемы стабилизатора тока, регулируя потенциометр R14, устанавливают начальный ток ламп величиной 15…20 мА (РА - в режиме передачи, возбуждение не подано). Если начальный ток не укладывается в заданные пределы, необходимо изменить величину резистора R11. Общий ток через транзистор VТ4 должен быть равен сумме токов через лампы и стабилизатор тока. Ток базы транзистора VТ4 невелик, и может не учитываться. Контроль тока VТ4 осуществляется по падению напряжения на резисторе R20.

Последний этап - настройка контурной системы РА. Отправной точкой при настройке является анодный ток ламп при поданном возбуждении и расстроенном анодном контуре.

Регулируя уровень возбуждения, необходимо установить анодный ток ламп, при расстроенном контуре – 620 мА. Эту операцию необходимо выполнить очень быстро, т.к. в этом случае вся подводимая мощность рассеивается на анодах ламп, и они могут выйти из строя. Теперь, регулируя антенный конденсатор и подстраивая анодный конденсатор контурной системы, до получения спада анодного тока, установить последний на уровне 550…560 мА. Спад анодного тока в резонансе, по отношению к току «раскачки» должен составлять 10%, именно такая величина спада анодного тока обеспечивает хорошую линейность и высокий КПД РА в режиме SSB. В режиме CW спад анодного тока может быть 20%, в этом случае достигается максимальная мощность РА и облегчается тепловой режим ламп. Особо надо подчеркнуть, что при настройке анодного контура сигнал возбуждения должен быть либо однотоновый, либо CW. Использование двухтонового сигнала или голоса при настройке РА, а также использование различных индикаторов напряженности поля не позволяет правильно настроить усилитель и ведет к появлению интермодуляционных искажений и как следствие – к расширению излучаемой полосы частот.

Предлагаемый усилитель, при качественно выполненной контурной системе, обеспечивает пиковую мощность в SSB режиме 385 ватт, при КПД 68% , уровень интермодуляционных искажений не превышает -30 дБ. Входное напряжение необходимое для достижения max мощности не превышает 10 В на нагрузке 50 Ом.

Несколько общих замечаний . Лампы 6П45С имеют аноды расположенные не совсем симметрично относительно сеток, что приводит к неравномерному разогреву анода и снижению рассеиваемой им мощности. Поэтому максимальную мощность РА могут обеспечить только специально отобранные лампы с равномерным разогревом анода.

В лампе 6П45С проводник, соединяющий внутри лампы анод с анодным колпачком, выполнен из тонкой медной проволоки, которая может расплавиться при работе РА с максимальной мощностью на самых высоких частотах. Поэтому, при работе на диапазонах 24 и 28 МГц, необходимо снижать выходную мощность РА на 30%.

Усилитель на лампах 6П45С требует достаточно низкого сопротивления нагрузки и соответственно большой величины анодного конденсатора переменной емкости. Так как в настоящее время такие конденсаторы весьма дефицитны, есть смысл заменить его набором конденсаторов постоянной емкости, коммутируемых переключателем диапазонов. В этом случае в качестве контурной индуктивности можно использовать шаровой вариометр, он же используется для настройки анодного контура в резонанс.

Предлагаемый вариант контурной системы имеет более узкий, чем в обычном П. контуре диапазон согласуемых сопротивлений и требует применения антенн с кабельным снижением.

И в заключение о некоторых конструктивных особенностях РА.

В шасси вырублены два отверстия диаметром 58 мм для установки ламп. Две ламповые панельки установлены на алюминиевой пластине расположенной под шасси таким образом, чтобы лампы после установки были утоплены на 18 мм. Транзистор Т5 установлен на игольчатом радиаторе 40х40 мм.

Рекомендуется проложить общую корпусную шину из тонкой меди или фольгированного текстолита шириной 15…20 мм между корпусной частью антенного разъема и ламповыми панельками. Все блокировочные конденсаторы, подключенные к лампам, а также все детали контурной системы, которые должны соединяться с корпусом, необходимо подключить к корпусной шине. Изолировать корпусную шину от шасси не требуется.

Литература:

1. Жалнераускас В. Гибридный линейный усилитель мощности. «Радио» №4 1968 г.
2. Андрющенко Б. КВ усилитель «Ретро». «Радиомир КВ и УКВ» №4 2002 г.

При повторении аналогичных "гибридных" усилителей мощности многие радиолюбители сталкиваются с такой проблемой, что усилитель мощности на двух лампах ГИ-7Б предложенный, например С. Воскобойниковым, (UA9KG) "не отдает" положенные 600 Вт. Попробуем разобраться на примерах и тех ошибках которые совершает большее количество радиолюбителей в приведенной ниже статье.

Желание изложить свои мысли по такой, в общем, не новой тематике, как гибридный усилитель мощности, появилась после ознакомления со статьей и на основе своего опыта. Эксплуатационные характеристики, приводимые автором этой статьи, к сожалению, не достижимы. В частности, выходная мощность этого каскада, в том варианте, в котором он опубликован, не превысит 360Вт. Получать такую мощность с двух ламп ГИ-7Б, мягко говоря, нерационально. Так почему же этот каскад "не отдает", обещанные автором 600 Вт? Рассмотрим, вкратце, работу этого каскада, рис. 1.

Для начала следует напомнить, что лампы ГИ-7Б, кстати, как и большинство металлокерамических СВЧ триодов - это лампы с "средней" анодно-сеточной характеристикой. Для получения тока покоя 30...40 мА на лампу, при рабочем анодном напряжении около 2 кВ, необходимо подать отрицательное смещение на сетку - 25 В или, что одно и тоже, придать положительный потенциал катоду на ту же величину. Напряжение возбуждения, поданное на базу транзистора VT1, открывает его положительной полуволной. Напряжение на коллекторе и, соответственно, на катоде лампы уменьшается, в следствии чего, ток через лампу растет.

Отрицательная полуволна закрывает транзистор, напряжение на коллекторе возрастает, ток через лампу уменьшается, т.к. увеличивается разность потенциалов участка катод-сетка. С точки зрения энергетики каскада нас интересует лишь положительная полуволна возбуждающего напряжения, ввиду того, что отрицательная полуволна при идеализации входной характеристики лампы, не вызывает анодного тока и лежит в области отсечки.

Напрашивается вывод: амплитуда ВЧ напряжения на коллекторе, а, именно она является возбуждающим напряжением для лампы, лежит между двумя граничными условиями. Снизу - это напряжение насыщения на коллекторе (или катоде) в точке покоя, около 25В.

Отсюда понятно, что амплитуда ВЧ напряжения на катоде лампы равна:

(1) U к возб. = U n к-э - U к-э нас.

Напряжение U к-э нас. в зависимости от типа транзистора составляет 0,5...2,5В. На практике его следует выбирать не менее 5В, поскольку при меньших напряжениях на коллекторе, усилительные свойства транзистора стремятся к нулю.Величина U к-э нас. есть напряжение на коллекторе (катоде) для заданноготока покоя в схеме с гальванически заземленной сеткой.

В нашем примере U n к-э - 25В. В общем случае эта величина берется по входным характеристикам лампы. Подставив эти величины в формулу (1) получим U к возб - 20 В. Далее не трудно вычислить мощность, отдаваемую каскадом. Амплитуда импульса анодного тока:

(2) I к А макс. = U к возб х S = 2 0 x 46 = 0,92 А,где:

  • S - суммарная крутизна характеристики двух ламп.

Постоянная составляющая анодного тока:

(3) I ao = I а макс х К о = 0,92 х 0,33 = 0,3А. где Ко = 0,33 - коэффициент разложения косинусоидального импульса для угла отсечки 90 град, (класс В) и с учетом тока покоя лампы.

Мощность, подводимая к анодной цепи лампы, U а = 2 кВ:

(4) Р подв = I a o xU а = 0,3 x 2000 = 600 Вт.

Полагая КПД каскада около 60%, получим мощность в нагрузке Р н = Р подв х КПД = 600 x 0,6 = 360 Вт.

Понятно, что, полученная мощность в нагрузке, вряд- ли может устроить. Как же повысить мощность? Ведь те же лампы, в классической схеме с общей сеткой, отдают в нагрузку до 1 кВт. Из анализа схемы можно понять, что основным параметром, ограничивающим мощность, является напряжение возбуждения U возб. которое, в свою очередь, связано с напряжением смещения лампы.

Ясно, что транзистор работает в очень нерациональном режиме, при коллекторном питании. Повысить это напряжение можно, уменьшив смещение на базе транзистора, но тогда ток покоя недопустимо снизитсяи каскад перейдете режим С. Вот здесь мы и подошли к основной идее. Рассмотрим несколько видоизмененный вариант схемы, рис.2.

Рис.2.

Как видно, что схема почти такая. Разве, что на сетку подается положительное (!) смещение, а по ВЧ она заземлена через блокировочные конденсаторы С бл.

Что изменилось для лампы? Ровным счетом, ничего. Ведь, чтобы получить тот-же ток покоя, разность потенциалов участка катод-сетка должна остаться той-же. Она и осталась таковой, однако, потенциалы катода и сетки относительно общего провода увеличились на величину Uсм. А вот для транзистора произошли весьма существенные изменения. Напряжение на его коллекторе увеличилось на величину Uсм. и стало:

(5) U" к-э = U к-э - U см. , где:

  • U к-э - напряжение для схемы на рис.1.

Иными словами; нам удалось поднять напряжение на коллекторе (катоде), не изменяя тока покоя лампы. Теперь можно рассмотреть более полную принципиальную схему выходного каскада, рис.3.

Рис.3.

Резистор R1 (в цепи сетки) в работе каскада не участвует и предназначен для обеспечения гальванической связи с "землей" в режиме приема. Номиналы базового делителя R3...R5 не указаны, т.к. напряжение на шине ТХ??? в различных конструкциях разное.

Ток, протекающий через делитель, для обеспечения нормальной термостабилизации рабочей точки должен быть не менее

(0,01...0,15) * I к макс.= 100 мА.

Несколько слов о выборе величины U см. Беспредельно поднимать его нельзя> поскольку при неизменном токе покоя растет и напряжение U" к-э. Эту величину можно определить из неравенства:

U см. < U n к-э доп. - U к-э, где:

  • U n к-э доп. - максимально допустимое напряжение на коллекторе (справочная величина);
  • U к-э - напряжение на коллекторе для заданного тока покоя в схеме с гальванически заземленной сеткой (из входных характеристик лампы).

Стабилитрон предохраняет транзистор от выхода из строя в момент, когда на базе транзистора присутствует! отрицательная полуволна возбуждающего напряжения. Кроме того, в режиме приема каскад закрыт и не "шумит".

Выбор напряжения стабилизации производится из условия:

U ст < = U n к-э доп.

Проведем расчет мощности видоизмененного каскада.

U" к-э = U к-э + U см = 25 + 35 = 60B < U к-э доп. + 65В;

U к возб = U" к-э - U к-э нас. = 60 - 5 = 55В;

I к а мах = U возб x S = 55 x 46 = 2,53А;

Р подв = I а мах x A o = 2,53x0,33 = 0,84А;

Р подв = КПД х Р подв = 1000 Вт;

Р а рас = Р подв - Р н = 1680 - 1000 = 680 < Р а доп = 700 Вт.

Таким образом, видим, что по сравнению с первоначальным вариантом мощность повысилась почти втрое. В этом случае практически полностью использован мощностной резерв ламп.

Следует заметить, что данный каскад работает с сеточным током. Из чего следует, что источник сеточного напряжения должен быть стабилизированным и обладать достаточной нагрузочной способностью - 200мА. Среди радиолюбителей почему-то прочно укоренилось мнение, что сеточный ток в лампе выходного каскада чуть ли не катастрофа. Это, конечно же, не так.

Мнение это утвердилось, вероятно, в те времена, когда подавляющее большинство радиолюбителей использовали лампы типа ГУ19, ГУ29, ГУ50 и т.п. Действительно, эти лампы не рассчитаны на работу с сеточным током, поскольку, при заходе сеточных напряжений в положительную область, - линейность анодно-сеточной характеристики резко нарушается. Кроме того, эти лампы развивают паспортную мощность и без сеточных токов. Другое дело металлокерамические лампы СВЧ-серии типа ГИ6Б, ГИ7Б, ГС23Б, ГС35Б и т.п. Эти лампы специально разработаны для работы с сеточным током и развивают паспортную мощность только при его наличии.

В заключении несколько слов о замере выходной мощности "гибрида". Ограничится только контролем анодного тока на пике возбуждения, а затем, с учетом КПД, рассчитать выходную мощность в ряде случаев будет не всегда верно. Вероятно, так и поступил автор упомянутой статьи.

Дело в том, что начиная с некоторого уровня напряжения возбуждения, прирост анодного тока продолжается, а ВЧ напряжение на эквиваленте нагрузки не растет, зачастую, даже падает. Объясняется это тем, что положительные полуволны вводят транзистор в состояние насыщения. Это не появление сеточного тока, как иногда можно услышать в эфире. Например, в усилителе по схеме на рис.1 сеточного тока не может быть в принципе, а тем не менее этот эффект сохраняется.

Чем больше амплитуда напряжения возбужения, тем дольше транзистор находится в состоянии насыщения, сопротивление перехода эмиттер-коллектор все больше уменьшается, ток через лампу растет, а прироста напряжения на эквиваленте нет. Поэтому, в любом случае, следует контролировать ВЧ напряжение на эквиваленте нагрузки. Мощность каскада следует устанавливать на 10...15% ниже максимально достижимой, путем соответствующего снижения возбуждающего напряжения.

Несколько слов о конструкции усилителя. Дополнительных требований к конструкции не предъявляется. Лампы размещены на металлической пластине, которая, в свою очередь, устанавливается на четырех высоковольтных конденсаторах КВИ, имеющих резьбовое крепление.

Конденсаторы расположены по четырем углам пластины. Конструктивно конденсаторы служат опорными стойками и, в то же время, являются блокировочными. Входное сопротивление выходного каскада, приблизительно, 30 Ом. Это обстоятельство, определенным образом, повышает его устойчивость, но требует принятия некоторых мер по согласованию с предыдущим каскадом передатчика или трансивера.

Параметры П-контура, анодный дроссель и прочие конструктивные особенности не приводятся, потому что автор делает акцент на способе каскодного включения усилительного каскада.

Г. Панов, (UA3AUP)

Литература:

1. С.Воскобойников "Усилитель мощности" - Радиолюбитель.

Всем здравствуйте.

Продолжу про оконечный каскад Александра Павловича Дерия.

В начале 2017 года, я опубликовал схему завершённого усилителя Александра Павловича на этом сайте, и параллельно, для обсуждения оной схемы, опубликовал её на АП и на diyaudio.ru

При обсуждении на АП было поднято много вопросов, и эти обсуждения не прошли даром.

На DIY много манер и тошниловки, типа даешь усилитель с трансформаторной задницей

или эх, жаль сейчас в больнице в очереди стою. А то сфоткался бы с рюмашкой Так и сфоткайся. Пить же не обязательно. Хотя и жаль… Вообщем модерация на этом форуме «приказала жить».

Да, грустное и гнусное тоже присутствует, и бывает, на некоторых форумах.

Это классический ИТУН со всеми вытекающими. Если в эмиттеры выходных транзисторов включить сопротивления по 0,5 … 1 Ом, (и соответствующие резисторы последовательно диодам смещения), искажения снизятся в разы. Да и термостабильность тока покоя станет гораздо лучше.

Александр Павлович сделал выводы и решил поэкспериментировать с комплиментарными парами на выходе, и на входе полевые транзисторы.

Основная идея принадлежит Александру Павловичу. и если охарактеризовать её кратко — «то не надо боятся большого выходного сопротивления»

Мы все любим цифры, и это тоже очень нужно и хорошо. Как говорится факт есть факт!

Но факт должен быть не замаскирован. Бывает такое, что с цифрами у усилителя всё в порядке, а звука нет

А последние измерения показали что усилитель линеен от 20Гц до 20кГц и даже выше. По -3Дб 75кГц!!!

Лично я, был рад тому, что можно снять из 10-ти деталей, и до неискажённого синуса в 1000гц 65 ватт в гибридной версии.

Лампы применялись 6Ж11П 6Ж43П в триоде и 6Ф4П в штатном включении..

Так же были опробованы 6П9, 6П15, 6Э5П, 6Э6П и IL861 и El861

(Хочу заметить что накал у IL861 лампы -20 вольт)

Единственное что можно считать «ложкой дёгтя» то это большое выходное сопротивление от 6Om до-20 Om от прототипа Александра Павловича, и от 30 до 50 Om у моей гибридной версии в зависимости от применяемых ламп. От выбора драйвера зависит выходное сопротивление усилителя.

Многие думают «и знают» что большое выходное сопротивление усилителя плохо сказывается на демпфировании акустики, но часть небольшого населения всё же считает что акустика двигаясь механически в обратную сторону, создаёт поле, которое тоже влияет на усилитель не меньше чем усилитель на акустику и соответственно на звук в целом!

В некоторой литературе сказано что при выходном сопротивлении 18 Om демпфирование акустики уже факт.

Но большинство с этим высказыванием не согласится, так как чем ближе к «нулю» выходное сопротивление усилителя, тем правильнее.

Есть и другое мнение — что выходное сопротивление в пределах 10-20 Om благотворно влияет на конечную картину в целом. Звук не зажат, «оторван от земли», расширение панорамы, лёгкость восприятия, нет утомления даже через несколько часов прослушивания.

Триодные и пентодные усилители тоже имеют разные выходные сопротивления, но оба имеют право на звук, и имеют свои за и против. Сколько ушей, столько и мнений.

На следующих фотографиях предоставлен прямоугольник на 1000Гц на 10кГц и на 20кГц. Нагрузка 5Om . Из них видно что усилитель в полном порядке. Это измерения чисто транзисторного усилителя собранного Александром Павловичем Дерием.

Чуйка усилителя 1.5v

Питание +- 24 вольта трансформатор — габаритная мощность всего 80 Ватт (от усилителя Радиотехника -101)

29 Ватт неискажённого синуса!

0. Дб — 20Гц — 20 Кгц

Низ по -3дб не смогли измерить, верх по -3дб -75Кгц

Выходное сопротивление 20 ом.

Забегая вперёд, ламповый гибридный усилитель при этой же схемотехники выдаёт 65 ватт при чуйки 0.75v при питании +- 38 вольт

20Гц -0.25Дб 20 кгц +1Дб 45Кгц-3Дб

Выходной каскад усилителя предоставлен на следующим рисунке.

Можно организовать как с общими эмиттерами так и с общими коллекторами. В последних версиях мы остановились на версии с общими коллекторами.

Очень удобно крепить транзисторы на радиатор без слюдяных пластин.

Ниже предоставлены две версии драйвера 1988 года и 2018 года


Полевой транзистор КП901 можно заменить на обычный составной транзистор КТ972, на качество звука это не сказывается, этот транзистор выполняет роль повторителя. Резисторы R11 и R12 можно и нужно заменить на 0,6 Ома., увеличится стабильность выходного каскада и уменьшатся искажения. К выходу желательно поставить цепочку цобеля и параллельно динамику поставить 56 Ом, при этом снизится выходное сопротивление на 10-15%.

Ток покоя транзисторов и нулевой уровень, выставляются резисторами R7 и R10 при уменьшении номиналов, токи уменьшаются, при увеличении возрастают. Ток покоя выставляется от 100 до 200 ма, всё зависит от грандиозности Ваших радиаторов. К примеру в гибридной версии я вообще установил 280 ма, и это не предел.

ВАЖНО! Обязательно надо устанавливать подобранную комплиментарную пару, если этого не сделать то режимы могут «уплыть».

При правильной сборке усилитель работает сразу

Ниже представлена гибридная версия усилителя. Питание +- 38 вольт. Анодное 200 вольт. Лампы драйвера EL861.

Ктр трансформатора 12.5/1/1 Первичная обмотка мотается проводом 0.25-0.33 3000 витков Вторичная 2Х240.

Я намотал на ОСМ 0.063. Намотка производилась следующем способом.

900 витков перв. — 120 витков втор . — 1200 витков перв. — 120 витков втор . -900 витков перв.

Вторичный провод мотается двойным проводом от 0.33 до 0.51. Каждый слой прокладывал миллиметровкой.

Трансформатор не является фазоинверсным. Роль фазоинвертора выполняет выходной каскад. Это большой плюс в этой схемотехнике. Плюсом я так же считаю что коллекторы транзисторов прикручены напрямую к радиатору без слюдяных прокладок.

Усилитель собран в фанерном корпусе 6мм. Фанера хорошо демпфирует гудения от трансформаторов, вибрация не передаётся на сетки ламп. При 65 Ватт на выходе, фон минимален. На 100 дб акустики его еле слышно если голову засунуть в динамик.

Сверху и снизу металл.

Фото и видеоотчёт предоставлю дополнительно, когда «причешу» монтаж.

С уважением, Евгений Вильгаук Челябинск

Рассказать в:

Гибридный линейный усилитель мощности

В коротковолновых, трансиверах пере­дающий тракт обычно содержит мощный оконечный усилитель на электровакуумной радиолампе и предвари­тельный усилитель на транзисторах. При этом, для согласования предварительного усилителя с оконечным, применяют резонансные цепи. Подоб­ные же цепи включают и между предварительным усилителем и последним смесителем передающею тракта.

Такое построение передающего тракта трансивера нельзя считать опти­мальным. Применение двух переключаемых резонансных контуров на входе и выходе предварительного усилителя усложняет устройство. Кроме того, включение коллектора мощного транзистора в цепь резонансного контура может привести к появлению нелинейных искажений, обусловленных большой нелинейностью емкости коллекторного перехода транзистора.

На рисунке приведена схема гибридного усилителя мощности, в выходном каскаде которого используется каскодное соединение биполярного транзисто­ра VT4, включенного по схеме с об­щим эмиттером, и лампы VL1, вклю­ченной по схеме с общей сеткой. Такое построение не только позволило хорошо согласовать низкое выходное сопротивление мощного транзистора со входом лампы, но и обеспечило исключительную линейность амплитуд­но-частотной характеристики каскада. Другим важным преимуществом явля­ется то, что в лампе оказались «заземленными» три электрода - пер­вая и вторая сетки и лучеобразующне пластины.Проходная емкость лампы стала пренебрежимо малой, вследствие чего отпала необходимость в ее нейтра­лизации.

Для повышения входного сопротив­ления оконечного каскада на его входе включен эмиттерный повторитель на транзисторе VT3. Поскольку эмиттер этого транзистора непосредственно со­единен с базой транзистора VT4, то ток покоя выходного каскада можно регу­лировать подстроечным резистором R20, включенным в цепь базы VT3. Для повышения линейности и температурной стабильности усилителя каскодный кас­кад охвачен последовательной отрица­тельной обратной связью через два па­раллельно включенных резистора R23 и R25. При токе покоя 25 мА. анодном напряжении 600 В и мощности сигнала на входе эмиттерного повторителя 8…10 мВт усилитель отдает мощность не менее 130 Вт на всех KB диапазонах. При этом постоянная составляющая анодного тока равна 330 мА. Интермо­дуляционные искажения третьего и пя­того порядка при выходной мощности 140 Вт не превышают-37 дБ.

В усилителе предусмотрена защита транзистора VT4 от пробоя при не­исправностях лампы, а также во время переходных процессов при ее разогреве. Для этого коллектор транзистора VT4 через диоды VD2, VD3 подключен к стабилитрону VD4 с напряжением стабилизации 50 В. При нормальной работе усилителя диоды VD2, VD3 за­крыты, поскольку напряжение на кол­лекторе VT4 не превышает 35 В. Если по какой-либо причине мгновенное напряжение на коллекторе пре­высит 50 В, диоды VD2. VD3 от­кроются и он окажется зашунтпрованным низким дифференциальным сопро­тивлением стабилитрона VD4.

Входное сопротивление каскодного каскада (со входа эмиттерного повто­рителя) практически активно, мало за­висит от частоты и близко к 400 Ом. Чтобы получить выходную мощность 130 Вт, достаточно иметь на входе эмиттерного повторителя ВЧ сигнал напряжением 1,8 В. Такой уровень впол­не может обеспечить смеситель на тран­зисторах (Если в трансивере послед­ний смеситель передающего тракта вы­полнен на диодах, то мощность ВЧ сигнала на выходе смесителя не превы­шает, как правило, 0,05…0,1 мВт).

Для повышения коэффициента усиле­ния на входе эмиттерного повторителя включен двухкаскадный широкополос­ный усилитель на транзисторах VT1 и VT2. Входное сопротивление усили­теля около 200 Ом, что хорошо согла­суется с выходным сопротивлением обычных диодных смесителей. Коэффициент усиления в интервале частот 1...30 МГц практически постоянен и равен 26 дБ. Для получения выход­ной мощности 130 Вт на вход предварительного усилителя достаточно по­дать сигнал мощностью 0,05 мВт, т е. усилитель можно включить непосред­ственно на выходе диодного смесителя передающего тракта KB трансивера.

Когда на входе нет РЧ сигнала, усилитель потребляет ток около 40 мА от источника напряжением +15В и 25 мА от источника +600 В. Поэтому выгодно в режиме приема усилитель «закры­вать». Для этой цели к цепям питания баз трех транзисторов VTI-VT3 под­ключены выходы инверторов DDI.1 - DD1.3. В режиме приема на их входы подают логическую 1. При этом потенциал на выходах инверторов ниже напряжения открывания кремниевых транзисторов, вследствие чего все кас­кады усилителя закрыты. В режиме пе­редачи на входы инверторов подают низкий логический уровень. Потенциал на выходах элементов DD1.1-DD1.3 становится высоким, и усилитель откры­вается.

Эквивалентное сопротивление выход­ного каскада усилителя около 900 Ом. Расчетные значения реактивных эле­ментов П-контура для согласования усилителя с антенной приведены в таблице.

Паспортное значение допустимой мощности рассеивания на аноде лампы 6П45С равно 35 Вт. В данном усили­теле при анодном токе 330 мА на аноде лампы рассеивается мощность около 70 Вт. Однако это не снижает заметно надежность лампы, поскольку мощность рассеивания достигает 70 Вт только на пиках огибающей SSB сигна­ла или во время телеграфных по­сылок. Средняя рассеиваемая мощность обычно не превышает допустимого зна­чения.

Конструктивно лампа 6П45С и эле­менты согласующего П-контура разме­щены в экранированном отсеке, выводы из которою сделаны посредством про­ходных конденсаторов КТП. Для улучшения охлаждения лампы верхняя и нижняя крышки должны быть перфорированы. Следует отметить, что лампа лучше охлаждается при её горизольтальном положении. Транзисторы VTI и VT3 размещены в непосредственной близости к панели лампы и закреплены на шасси так, чтобы обеспечивался хороший теплоотвод. Остальные элементы усилителя могут быть разме­щены на печатных платах трансивера.

Гибридный усилитель звука , который показан на схеме ниже многими меломанами считается одним из лучших аппаратов такого типа вобравший в себя все самое лучшее, что может максимально предоставить ламповый и транзисторный УМЗЧ. Его звучание похоже на двухтактный аппарат выполненный на триодах, но басы намного насыщеннее, быстрее, четче и солиднее. Средняя полоса прозрачная с ярко выраженными деталями, верхние частоты без всяких примесей, которыми грешат транзисторные приборы. Я уже давно подумывал взяться за сборку усилителя мощности с высоким классом. Перебрав различные варианты схем, коих великое множество в интернете, но большее внимание привлекла именно вот эта принципиальная схема.

В общем как основа, такое схематическое решение мне абсолютно подходило, тем не менее позднее, по ходу настройки возникла необходимость ее немного модернизировать. Схема то прекрасная, но не хватало там защитных функций. Поэтому я в первую очередь добавил защиту, обеспечивающей мягкий запуск усилителя при включении сетевого напряжения. Усовершенствовал функцию выполняющей автоматическое смещение напряжения на транзисторах MOSFET IRFP140 и IRFP9140. В изначальной авторской разработке, напряжение с выхода ламп значительно терялось в схеме смещения обладающей малым внутренним сопротивлением. Только после того, как я увеличил ее общее сопротивление порядка до нескольких сот кОм, то размах амплитуды на выходе возрос до 30v. p>

В конечном итоге гибридный усилитель обеспечивает выходную мощность до 200 Вт на каждый канал, при работе на нагрузку 4 Ом. Исходя из того, что выходной каскад аппарата работает в классе А, я заранее предусмотрел установку теплоотводов под полевые транзисторы, а для охлаждения радиаторов дополнительно еще вентилятор. По техническим и звуковым параметрам эта схема очень схожа с известным гибридным усилителем мощности Magnat RV3. Существенное отличие этого усилителя от Магната, это то, что в выходных каскадах последнего реализованы кремневые биполярные транзисторы, а в этом оконечный каскад работает на полевых транзисторах. Именно применение MOSFET-транзисторов исключило необходимость установки дополнительных каналов согласования, исключительно только конденсаторы в качестве переходных элементов.

Говоря об устройствах такого типа как лампово-транзисторный усилитель , стоит отметить, что основная цель в получении высокой мощности на выходе, не в угоду громкости в динамиках, а для воспроизведения качественного, естественного звука. Также стоить отметить еще одну конструктивную особенность устройства. Что бы обеспечить питающим напряжением ламповый модуль усилителя был использован импульсный блок питания имеющий постоянное выходное напряжение 6,3v и 270v, вследствие чего удалось максимально убрать фон низкой частоты и кардинально снизить уровень шума.

Важное замечание! Представленная здесь схема, как было сказано выше, использовалась как основа. Поэтому у каждого кто возможно планирует ее повторить, есть возможности усовершенствовать ее по своему. Еще хочу добавить, что в процессе тестирования решил полностью убрать каскад установленный между конденсаторами и полевыми транзисторами. На данный момент установлен каскад, задающий смещение на затворах. Основными элементами этого каскада являются переменные, много оборотные резисторы, а также стабилитроны, возможно нужно будет заменить постоянные стабилизаторы на регулируемые.