Известно, что произвольный сигнал , для которого выполняется условие может быть представлен ортогональной системой функций :

, (18)

коэффициенты определяются из соотношения

,

где - квадрат нормы или энергия базисной функции . Ряд (18) называется обобщенным рядом Фурье. При этом произведения вида , входящие в ряд (18), представляют собой спектральную плотность сигнала , а коэффициенты - спектр сигнала. Суть спектрального анализа сигнала состоит в определении коэффициентов . Зная эти коэффициенты возможен синтез (аппроксимация) сигналов при фиксированном числе ряда:

.

Обобщенный ряд Фурье при заданной системе базисных функций и числе слагаемых он обеспечивает наилучший синтез по критерию минимума среднеквадратической ошибки , под которой понимается величина

.

Известные преобразования (Адамара, Карунена-Лоэва, Фурье) «плохо» представляют нестационарный сигнал в коэффициентах разложения. Покажем это на следующем примере. Пусть дана нестационарная функция

и ее преобразование Фурье (рис. 9).

Анализ рис. 9 показывает, что нестационарность временного сигнала представляется большим числом высокочастотных коэффициентов отличных от нуля. При этом возникают следующие проблемы:

Сложно провести анализ временного сигнала по его Фурье образу;

Приемлемая аппроксимация временного сигнала возможна при учете большого числа высокочастотных коэффициентов;

Плохое визуальное качество реальных изображений восстановленных по низкочастотным коэффициентам; и т.п.

Существующие проблемы обусловили необходимость разработки математического аппарата преобразования нестационарных сигналов. Одним из возможных путей анализа таких сигналов стало вейвлет-преобразование (ВП).

Рис. 9. Преобразование Фурье синусоидального сигнала с небольшими ступеньками при переходе через нуль

ВП одномерного сигнала – это его представление в виде обобщенного ряда Фурье или интеграла Фурье по системе базисных функций локализованных как в пространственной, так и в частотной областях. Примером такой базисной функции может служить вейвлет Хаара, который определяется выражением

(20)

Графически вейвлет Хаара представляется следующим образом:

Рис. 10. Базисная функция вейвлета Хаара

Рассмотрим процесс разложения сигнала в системе базисных функций Хаара. Первая базисная функция, в отличие от всех последующих, представляет собой прямую линию. В случае нормированного базиса , свертка первой базисной функции с исходным сигналом будет определять его среднее значение. Пусть дан дискретный сигнал длиной отсчетов. Нормированная базисная функция на интервале описывается выражением . Тогда свертка данной функции с сигналом приводит к выражению

Если выполнить синтез сигнала по коэффициенту с помощью синтезирующей функции , получим постоянную составляющую, соответствующую среднему значению сигнала. Для того чтобы иметь возможность более детально описать сигнал, вычислим второй коэффициент с помощью базисной функции, представленной выражением (20):

Анализ данного выражения показывает, что коэффициент характеризует разности средних значений половинок сигнала . Если теперь выполнить синтез по двум коэффициентам с синтезирующей базисной функцией для второго коэффициента

получим следующую аппроксимацию:

Дальнейшая операция анализа, т.е вычисления коэффициентов и синтеза аналогична рассмотренной, с той разницей, что все действия повторяются для половинок сигнала, затем для четверти, и т.д. На самой последней итерации анализ осуществляется для пар случайных величин (рис 11).

Рис. 11. Преобразование пар случайных величин

В результате исходный сигнал точно описывается коэффициентами вейвлет-преобразования Хаара. Вейвлет-коэффициенты сигнала (19) показаны на рис. 10.

Из приведенного рисунка видно, что нестационарности сигнала (резкие перепады) локализуются в малом числе вейвлет-коэффициентов. Это приводит к возможности лучшего восстановления нестационарного сигнала по неполным данным.

Рис. 12. Вейвлет-коэффициенты одного периода функции (19)

При вычислении вейвлет-коэффициентов базисные функции покрывали анализируемый сигнал следующим образом (рис. 12). Из рис. 12 видно, что система базисных функций Хаара в дискретном пространстве должна задаваться двумя параметрами: сдвига и частоты (масштаба):

,

где - масштаб базисной функции; - сдвиг. В дискретном случае параметр масштаба , где - любое целое положительное число, параметр сдвига . Таким образом, все множество базисных функций можно записать как

.

Прямое и обратное дискретные ВП вычисляются по формулам

,

.

Следует отметить, что если число отсчетов , то максимальное значение равно . Наибольшее значение для текущего равно .

Для непрерывных сигналов будут справедливы следующие интегральные выражения:

,

.

Таким образом, задавая вейвлет-функции, можно выполнять разложение сигнала по вейвлет-базису непрерывных или дискретных сигналов.

Рис. 13. Распределение базисных функций Хаара при анализе сигнала

Функция может образовывать вейвлет-базис, если она удовлетворяет следующим условиям:

1. Ограниченность нормы:

.

2. Вейвлет-функция должна быть ограничена и по времени и по частоте:

и , при .

Контрпример: дельта-функция и гармоническая функция не удовлетворяют данному условию.

3. Нулевое среднее:

Если обобщить данное условие, то можно получить формулу , которая определяет степень гладкости функции . Считается, что чем выше степень гладкости базисной функции, тем лучше ее аппроксимационные свойства.

В качестве примера приведем следующие известные вейвлет-функции:

, .

Для ВП, также как и для ДПФ существует алгоритм быстрого преобразования. Рассмотрим снова ВП Хаара. Из рис. 13 видно, что функции с малым масштабным коэффициентом используют те же отсчеты сигнала для вычисления коэффициентов, что и функции с большим масштабным коэффициентом. При этом операция суммирования одних и тех же отсчетов повторяется неоднократно. Следовательно, для уменьшения объема вычислений целесообразно вычислять ВП с самого малого масштабного коэффициента. В результате получаем вейвлет-коэффициенты, представляющие собой средние значения и разности . Для коэффициентов повторяем данную процедуру. При этом усреднение коэффициентов будет соответствовать усреднению четырех отсчетов сигнала, но при этом расходуется одна операция умножения и одна операция сложения. Процесс разложения повторяется до тех пор, пока не будут вычислены все коэффициенты спектра .

Запишем алгоритм быстрого вейвлет-преобразования Хаара в матричном виде. Пусть дан вектор размером 8 элементов. Матрица преобразования Хаара запишется в виде

12.3 Алгоритм дискретного вейвлет-преобразования

С целью построения алгоритма дискретного вейвлет-преобразования введем некоторые линейные преобразования. Прежде всего, обозначим для всех сумму чисел по модулю s следующим образом: , а также положим, что есть некоторый вектор, в котором s четно. Тогда вводимые преобразования положим имеющим вид:

,

для всех . Очевидно, данные выражения являют собой аналоги высокочастотного и низкочастотного фильтров (12.1), (12.2) с учетом периодического дополнения данных при помощи суммирования по модулю. Ясно, что преобразования , осуществляют разделение исходного вектора длиной s на два вектора половинной длины.

Итак, алгоритм вейвлет-преобразования сводится к реализации итеративной процедуры - и -преобразований, применяемых к вектору . Результатом таких преобразований служат векторы , коэффициентов аппроксимации и детализации.

Иначе говоря, рекурсивно данный алгоритм выглядит следующим образом:

, (12.12)
. (12.13)

Отметим, введенные обозначения для коэффициентов разложения являются весьма схожими с обозначениями коэффициентов , тогда как рекурсии (12.12), (12.13) - с каскадным алгоритмом. Дело в том, что построение алгоритма дискретного преобразования полностью основывается на теории дискретного преобразования в базисе вейвлет-функций (см. предыдущий параграф). Основным отличием здесь является то обстоятельство, что в статистических приложениях коэффициенты лишь приближенно соответствуют коэффициентам разложения .

Отметим, рекурсии (12.12), (12.13) могут см успехом применяться к расчету коэффициентов аппроксимации и детализации также для случаев : дело в том, что дополненные последовательности являются периодическими, причем

,

.

Алгоритм обратного дискетного преобразования сводится к реализации выражения (12.11) также при условии периодизации данных. Алгоритм начинается с восстановления векторов

,

и продолжается до восстановления вектора , пока не станет . Рекурсивное выражение для восстановления данных в этом случае имеет вид:

12.4 Статистический дискретный вейвлет-анализ

Разбиение данных

Итак, расчет вейвлет-оценок основывается на дискретном вейвлет-преобразовании, описанном выше. Как было показано, такой анализ подразумевает работу с данными, длина которых равна , где К - некоторое целое. Однако на практике длина исследуемых данных весьма часто оказывается не равной степени числа 2, в связи с чем возникает необходимость натяжения таких данных на эквидистантную сетку с числом узлов . Сказанное при этом является справедливым как для задач оценивания плотности распределения, так и для задач регрессионного сглаживания данных.

Процедуры деления данных на интервалы для оценивания плотности и регрессионного анализа введены в параграфах 10.2, 10.8 соответственно. В данном месте обсуждается эффект, вносимый подобным разбиением на качество синтезируемых оценок. Примеры, используемые для обсуждения эффекта, взяты из гл. 10, рис. 10.1 - 10.11.

Для взятых в качестве примера данных длиной исследован эффект деления на интервалы, состоящие из точек. Интегральные среднеквадратичные ошибки построения оценок приведены в таблице 12.1.

Таблица 12.1

Интегральные среднеквадратические ошибки

для интервалов разбиения различной длины

m

S8 жесткий

S8 мягкий

H жесткий

H мягкий

Как видно из таблицы, интегральная СКО достигает своего минимума при . График данной ошибки показан на рис. 12.1.

Несмотря на тот факт, что для подобных оценок можно определить оптимальный размер интервала, следует быть весьма осторожным в его статистической интерпретации. Дело в том, что разбиение данных на интервалы есть своего рода предварительное сглаживание, которое в теории достаточно часто в расчет не принимается. Очевидно, с ростом числа интервалов разбиения теряется большая часть вычислительной эффективности быстрого алгоритма. Точки, показывающие значения СКО на рис. 12.1 представляют собой компромисс между скоростью вычисления оценки и качеством предварительного сглаживания.

Приближенное построение вейвлет-оценок

Алгоритм реализации дискретного вейвлет-преобразования для целей построения статистических оценок (12.6) - (12.8) выглядит следующим образом:

Интегральная СКО, построенная для симмлета S8

Сделаем в данном месте несколько замечаний по поводу приведенного алгоритма. Во-первых, определение дискретного преобразования подразумевает использование данных, периодически дополняемых на каждом шаге алгоритма. Иначе говоря, данные представляют собой результат диадического суммирования, в котором исходные данные дополняются периодически на Z таким образом, что для .

Во-вторых, как было подчеркнуто ранее, верхний уровень разложения в приводимом алгоритме не участвует: на практике полагается , причем процедуры пороговой обработки применяют к коэффициентам разложения всех уровней за исключением уровня K , содержащего лишь коэффициенты аппроксимации. Однако если предполагается исключение коэффициентов разложения уровней, старших , как это сделано в примере с линейной вейвлет-оценкой, определение (12.6) дополняется условием:

.

Подобно (12.3) действия 1 - 3 алгоритма могут быть представлены в матричной форме. С этой целью вектор исследуемых данных обозначим через . Тогда прямое преобразование примет вид:

, (12.17)

в котором представляет собой оператор размерностью . Легко показать, что данный оператор является ортогональным, поскольку содержит произведения конечного числа ортогональных матриц-операторов, соответствующих различным шагам алгоритма Малла .

Пусть оператор обозначает процедуру трешолдинга вектора :

тогда как оператор обратного преобразования - , или в силу ортогональности . Следовательно, результат последовательного приложения действий 1 - 3, выражаемый вектором , может быть получен следующим образом:

В том случае, если решаемой задачей является построение линейной вейвлет-оценки и в качестве уровня принимается уровень , трешолдинг сводится к преобразованию идентичности, обеспечивающему в итоге . Дело в том, что сохранение коэффициентов разложения на каждом из уровней в данном случае позволяет итоговой оценке лишь повторить исходные данные.

Далее, алгоритм, представленный действиями 1 - 3, является общим правилом построения вейвлет-оценок. Отметим, данный алгоритм является более быстрым по сравнению с БПФ, поскольку требует выполнения лишь операций. Вообще говоря, алгоритм позволяет скорее строить аппроксимацию данных, нежели их оценку. Исключением здесь является разложение данных в базис Хаара. К сожалению, данный факт не обсуждается в литературе.

Остановимся на данном вопросе несколько подробнее. Рассмотрим с этой целью линейную оценку, положив для любых и k . Предположим также, что исходные данные удовлетворяют требованию:

. (12.18)

Известно, что рекурсии (12.9), (12.10) позволяют рассчитать оценки коэффициентов , тогда как выражения рекурсии (12.12), (12.13) - примерно те же коэффициенты в предположении, что исходные данные для рекурсии абсолютно те же. Однако в том случае, если требование (12.18) выполняется, исходные данные для (12.12), (12.13) в действии 3 алгоритма становятся отличными от аналогичных им данных обратной рекурсии (12.9), (12.10) на некоторый множитель . Следовательно, линейность алгоритма влечет за собой необходимость введения в прямое преобразование поправку:

,

.

Более того, поправке подвергается основное выражение для прямого преобразования:

, (12.19)

причем оператор приобретает вид:

Объединяя выражения (12.17) и (12.19), можно записать, что теперь