Простейшим и часто используемым видом локальной интерполяции является линейная интерполяция . Она состоит в том, что заданные точки (x i , y i ) при (i = 0. 1, ..., n ) соединяются прямолинейными отрезками, и функция f (x ) приближается ломаной с вершинами в данных точках.

Уравнения каждого отрезка ломаной в общем случае разные. Поскольку имеется n интервалов (x i - 1, x i ), то для каждого из них в качестве уравнения интерполяционного многочлена используется уравнение прямой, проходящей через две точки. В частности, для i-го интервала можно написать уравнение прямой, проходящей через точки(x i -1, y i -1 ) и (x i , y i ), в виде

y=a i x+b i , x i-1 xx i

a i =

Следовательно, при использовании линейной интерполяции сначала нужно определить интервал, в который попадает значение аргумента х, а затем подставить его в формулу (*) и найти приближенное значение функции в этой точке

Рисунок 3-3- График зависимости линейной интерполяции .

  1. Решение профессиональной задачи

Ведем экспериментальные данные

ORIGIN:=0 Начало массива данных - считаем с нуля

i :=1..6 Число элементов в массиве

Экспериментальные данные организованы в два вектора

Выполним интерполяцию встроенными функциями MathCad

Линейная интерполяция

Lf(x i):=linterp(x,y,x)

Интерполяция кубическим спайном

CS:= cspline(x,y)

Строим кубический сплайн по экспериментальным данным

Lf(x i):=linterp(x,y,x i)

Интерполяция В- сплайном

Задаем порядок интерполяции. В векторе u должно быть на (n-1) меньше элементов, чем в векторе x , причем первый элемент должен быть меньше или равен первому элементу x , а последний - больше или равен последнему элементу x.

BS:=bspline(x,y,u,n)

Cтроим В- сплайн по экспериментальным данным

BSf(x i):=(BS, x,y,x i)

Строим график всех функций аппроксимации на одной координатной плоскости.

Рисунок 4.1-График всех функций аппроксимации на одной координатной плоскости.

Заключение

В вычислительной математике существенную роль играет интерполяция функций, т.е. построение по заданной функции другой (как правило, более простой), значения которой совпадают со значениями заданной функции в некотором числе точек. Причем интерполяция имеет как практическое, так и теоретическое значение. На практике часто возникает задача о восстановлении непрерывной функции по ее табличным значениям, например, полученным в ходе некоторого эксперимента. Для вычисления многих функций, оказывается, эффективно приблизить их полиномами или дробно-рациональными функциями. Теория интерполирования используется при построении и исследовании квадратурных формул для численного интегрирования, для получения методов решения дифференциальных и интегральных уравнений. Основным недостатком полиномиальной интерполяции является то, что она неустойчива на одной из самых удобных и часто используемых сеток - сетке с равноудаленными узлами. Если позволяет задача, эту проблему можно решить за счет выбора сетки с Чебышевскими узлами. Если же мы не можем свободно выбирать узлы интерполяции или нам просто нужен алгоритм, не слишком требовательный к выбору узлов, то рациональная интерполяция может оказаться подходящей альтернативой полиномиальной интерполяции.

К достоинствам сплайн-интерполяции следует отнести высокую скорость обработки вычислительного алгоритма, поскольку сплайн - это кусочно-полиномиальная функция и при интерполяции одновременно обрабатываются данные по небольшому количеству точек измерений, принадлежащих к фрагменту, который рассматривается в данный момент. Интерполированная поверхность описывает пространственную изменчивость различного масштаба и в то же время является гладкой. Последнее обстоятельство делает возможным прямой анализ геометрии и топологии поверхности с использованием аналитических процедур

Это глава из книги Билла Джелена .

Задача: некоторые инженерные проблемы проектирования требуют использования таблиц для вычисления значений параметров. Поскольку таблицы являются дискретными, дизайнер использует линейную интерполяцию для получения промежуточного значения параметра. Таблица (рис. 1) включает высоту над землей (управляющий параметр) и скорость ветра (рассчитываемый параметр). Например, если надо найти скорость ветра, соответствующую высоте 47 метров, то следует применить формулу: 130 + (180 – 130) * 7 / (50 – 40) = 165 м/сек.

Скачать заметку в формате или , примеры в формате

Как быть, если существует два управляющих параметра? Можно ли выполнить вычисления с помощью одной формулы? В таблице (рис. 2) показаны значения давления ветра для различных высот и величин пролета конструкций. Требуется вычислить давление ветра на высоте 25 метров и величине пролета 300 метров.

Решение: проблему решаем путем расширения метода, используемого для случая с одним управляющим параметром. Выполните следующие действия.

Начните с таблицы, изображенной на рис. 2. Добавьте исходные ячейки для высоты и пролета в J1 и J2 соответственно (рис. 3).

Рис. 3. Формулы в ячейках J3:J17 объясняют работу мегаформулы

Для удобства использования формул определите имена (рис. 4).

Проследите за работой формулы последовательно переходя от ячейки J3 к ячейке J17.

Путем обратной последовательной подстановки соберите мегаформулу. Скопируйте текст формулы из ячейки J17 в J19. Замените в формуле ссылку на J15 на значение в ячейке J15: J7+(J8-J7)*J11/J13. И так далее. Получится формула, состоящая из 984 символов, которую невозможно воспринять в таком виде. Вы можете посмотреть на нее в приложенном Excel-файле. Не уверен, что такого рода мегаформулы полезны в использовании.

Резюме: линейная интерполяция используется для получения промежуточного значения параметра, если табличные значения заданы только для границ диапазонов; предложен метод расчета по двум управляющим параметрам.

Инструкция

Зачастую при проведении эмпирических исследований приходится сталкиваться с набором значений полученных методом случайной выборки. Из этого ряда значений требуется построить график функции, в которую с максимальной точностью впишутся и другие полученные значения. Этот метод, а точнее решение этой задачи есть аппроксимация кривой, т.е. замена одних объектов или явлений другими, близкими по исходному параметру. Интерполяция, в свою очередь же является разновидностью аппроксимации. Интерполяцией кривой называют процесс, при котором кривая выстроенной функции проходит через имеющиеся точки данных.

Имеется очень близкая к интерполяции задача, суть которой будет заключаться в аппроксимации исходной сложной функции иной, гораздо более простой функцией. Если же отдельная функция очень для вычислений, то можно попытаться вычислить её значение в нескольких точках, а по полученным построить (интерполировать) более простую функцию. Однако упрощенной функции не позволит получить столь же точные и достоверные данные, какие бы давала исходная функция.

Интерполяция через алгебраический двучлен, или линейная интерполяция
В общем виде: происходит интерполирование некоторой заданной функции f(х), принимающей значение в точках x0 и x1 отрезка алгебраическим двучленом P1(x) = ax + b. Если же задается более чем два значения функции, то искомая линейная функция заменяется линейно-кусочной функцией, каждая часть функции заключается между двумя заданными значениями функции в этих точках на интерполируемом отрезке.

Интерполирование методом конечных разностей
Данный метод один из простейших и широко распространенных методов осуществления интерполяции. Его суть в замене дифференциальных коэффициентов уравнения на разностные коэффициенты. Это действие позволит перейти к решению дифференциального уравнения путем его разностного аналога, иначе говоря, построить его конечно-разностную схему

Построение сплайн–функции
Сплайном в математическом моделировании называют кусочно-заданную функцию, которая с функциями, имеющими более простую на каждом элементе разбиения своей области определения. Сплайн от одной переменной строится путем разбиения области определения на конечное число отрезков, причем, на каждом из которых сплайн будет совпадать с некоторым алгебраическим полиномом. Максимальная степень использованного является сплайна.
Сплайн-функции для задания и описания поверхностей в различных системах компьютерного моделирования.

Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.

Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию. Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты , какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.

Следует также упомянуть и совершенно другую разновидность математической интерполяции, известную под названием «интерполяция операторов». К классическим работам по интерполяции операторов относятся теорема Рисса-Торина (Riesz-Thorin theorem) и теорема Марцинкевича (Marcinkiewicz theorem), являющиеся основой для множества других работ.

Определения

Рассмотрим систему несовпадающих точек () из некоторой области . Пусть значения функции известны только в этих точках:

Задача интерполяции состоит в поиске такой функции из заданного класса функций, что

Пример

1. Пусть мы имеем табличную функцию, наподобие описанной ниже, которая для нескольких значений определяет соответствующие значения :

0 0
1 0,8415
2 0,9093
3 0,1411
4 −0,7568
5 −0,9589
6 −0,2794

Интерполяция помогает нам узнать какое значение может иметь такая функция в точке, отличной от указанных (например, при x = 2,5).

К настоящему времени существует множество различных способов интерполяции. Выбор наиболее подходящего алгоритма зависит от ответов на вопросы: как точен выбираемый метод, каковы затраты на его использование, насколько гладкой является интерполяционная функция, какого количества точек данных она требует и т. п.

2. Найти промежуточное значение (способом линейной интерполяции).

6000 15.5
6378 ?
8000 19.2

Способы интерполяции

Интерполяция методом ближайшего соседа

Простейшим способом интерполяции является интерполяция методом ближайшего соседа .

Интерполяция многочленами

На практике чаще всего применяют интерполяцию многочленами . Это связано прежде всего с тем, что многочлены легко вычислять, легко аналитически находить их производные и множество многочленов плотно в пространстве непрерывных функций (теорема Вейерштрасса).

  • ИМН-1 и ИМН-2
  • Многочлен Лагранжа (интерполяционный многочлен)
  • По схеме Эйткена

Обратное интерполирование (вычисление x при заданном y)

  • Обратное интерполирование по формуле Ньютона

Интерполяция функции нескольких переменных

Другие способы интерполяции

  • Тригонометрическая интерполяция

Смежные концепции

  • Экстраполяция - методы нахождения точек за пределами заданного интервала (продление кривой)
  • Аппроксимация - методы построения приближённых кривых

См. также

  • Сглаживание данных эксперимента

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Интерполяция" в других словарях:

    1) способ определять по ряду данных величин какого либо математического выражения промежуточные его величины; так напр., по дальности полета ядра при угле возвышения оси пушечного канала в 1°, 2°, 3°, 4° и т. д. можно определить помощью… … Словарь иностранных слов русского языка

    Вставка, интерполирование, включение, отыскание Словарь русских синонимов. интерполяция см. вставка Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2 … Словарь синонимов

    интерполяция - Вычисление промежуточных значений между двумя известными точками. Например: linear линейная интерполяция exponential экспоненциальная интерполяция Процесс вывода цветного изображения, когда пикселы, относящиеся к области между двумя цветными… … Справочник технического переводчика

    - (interpolation) Оценка значения неизвестной величины, находящейся между двумя точками ряда известных величин. Например, зная показатели населения страны, полученные при проведения переписи населения, проводившейся с интервалом в 10 лет, можно… … Словарь бизнес-терминов

    С латинского собственно «подделка». Так называются ошибочные поправки или позднейшие вставки в рукописях, сделанные переписчиками или читателями. Особенно часто этот термин употребляется в критике рукописей античных писателей. В этих рукописях… … Литературная энциклопедия

    Нахождение промежуточных значений некоторой закономерности (функции) по ряду известных ее значений. По английски: Interpolation См. также: Преобразования данных Финансовый словарь Финам … Финансовый словарь

    интерполяция - и, ж. interpolation f. < лат. interpolatio изменение; переделка, искажение. 1. Вставка позднейшего происхождения в каком л. тексте, не принадлежащая оригиналу. БАС 1. В древних рукописях много интерполяций, внесенных переписчиками. Уш. 1934. 2 … Исторический словарь галлицизмов русского языка

    ИНТЕРПОЛЯЦИЯ - (interpolatio), пополнение эмпйрич. ряда значений какой либо величины недостающими промежуточными значениями ее. Интерполирование может быть произведено тремя способами: математич., графич. и логическим. В основе их лежит общая им гипотеза о том … Большая медицинская энциклопедия

    - (от латинского interpolatio изменение, переделка), отыскание промежуточных значений величины по некоторым известным ее значениям. Например, отыскание значений функции y = f(x) в точках x, лежащих между точками x0 и xn, x0 … Современная энциклопедия

    - (от лат. interpolatio изменение переделка), в математике и статистике отыскание промежуточных значений величины по некоторым известным ее значениям. Напр., отыскание значений функции f(x) в точках x, лежащих между точками xo x1 ... xn, по… … Большой Энциклопедический словарь

Интерполяция. Введение. Общая постановка задачи

При решении различных практических задач результаты исследований оформляются в виде таблиц, отображающих зависимость одной или нескольких измеряемых величин от одного определяющего параметра (аргумента). Такого рода таблицы представлены обычно в виде двух или более строк (столбцов) и используются для формирования математических моделей.

Таблично заданные в математических моделях функции обычно записываются в таблицы вида:

Y1 (X)

Y(Х0 )

Y(Х1 )

Y(Хn )

Ym (X)

Y(Х0 )

Y(Х1 )

Y(Хn )

Ограниченность информации, представленной такими таблицами, в ряде случаев требует получить значения функций Y j (X) (j=1,2,…,m) в точкахХ , не совпадающих с узловыми точками таблицыХ i (i=0,1,2,…,n) . В таких случаях необходимо определить некоторое аналитическое выражениеφ j (Х) для вычисления приближенных значений исследуемой функцииY j (X) в произвольно задаваемых точкахХ . Функцияφ j (Х) используемая для определения приближенных значений функцииY j (X) называется аппроксимирующей функцией (от латинскогоapproximo - приближаюсь). Близость аппроксимирующей функцииφ j (Х) к аппроксимируемой функцииY j (X) обеспечивается выбором соответствующего алгоритма аппроксимации.

Все дальнейшие рассмотрения и выводы мы будем делать для таблиц, содержащих исходные данные одной исследуемой функции (т. е. для таблиц с m=1 ).

1. Методы интерполяции

1.1 Постановка задачи интерполяции

Наиболее часто для определения функции φ(Х) используется постановка, называемая постановкой задачи интерполяции.

В этой классической постановке задачи интерполяции требуется определить приближенную аналитическую функциюφ(Х) , значения которой в узловых точкахХ i совпадают со значениями Y(Х i ) исходной таблицы, т.е. условий

ϕ (X i )= Y i (i = 0,1,2,...,n )

Построенная таким образом аппроксимирующая функция φ(Х) позволяет получить достаточно близкое приближение к интерполируемой функцииY(X) в пределах интервала значений аргумента [Х 0 ; Х n ], определяемого таблицей. При задании значений аргументаХ ,не принадлежащих этому интервалу, задача интерполяции преобразуется в задачуэкстраполяции . В этих случаях точность

значений, получаемых при вычислении значений функции φ(Х), зависит от расстояния значения аргументаХ отХ 0 , еслиХ <Х 0 , или отХ n , еслиХ >Х n .

При математическом моделировании интерполирующая функция может быть использована для вычисления приближенных значений исследуемой функции в промежуточных точках подынтервалов [Х i ; Х i+1 ]. Такая процедура называетсяуплотнением таблицы .

Алгоритм интерполяции определяется способом вычисления значений функции φ(Х). Наиболее простым и очевидным вариантом реализации интерполирующей функции является замена исследуемой функцииY(Х) на интервале [Х i ; Х i+1 ] отрезком прямой, соединяющим точкиY i , Y i+1 . Этот метод называется методом линейной интерполяции.

1.2 Линейная интерполяция

При линейной интерполяции значение функции в точке Х , находящейся между узламиХ i иХ i+1 , определяется по формуле прямой, соединяющей две соседние точки таблицы

Y(X) = Y(Xi )+

Y(Xi + 1 )− Y(Xi )

(X − Xi ) (i= 0,1,2, ...,n),

X i+ 1− X i

На рис. 1 приведен пример таблицы, полученной в результате измерений некоторой величины Y(X) . Строки, исходной таблицы выделены заливкой. Справа от таблицы построена точечная диаграмма, соответствующая этой таблице. Уплотнение таблицы выполнено благодаря вычислению по формуле

(3) значений аппроксимируемой функции в точках Х , соответствующих серединам подынтервалов (i=0, 1, 2, … , n ).

Рис.1. Уплотненная таблица функции Y(X) и соответствующая ей диаграмма

При рассмотрении графика на рис. 1 видно, что точки, полученные в результате уплотнения таблицы по методу линейной интерполяции, лежат на отрезках прямых, соединяющих точки исходной таблицы. Точность линейной

интерполяции, существенно зависит от характера интерполируемой функции и от расстояния между узлами таблицы X i, , X i+1 .

Очевидно, что если функция плавная, то, даже при сравнительно большом расстоянии между узлами, график, построенный путем соединения точек отрезками прямых, позволяет достаточно точно оценить характер функции Y(Х). Если же функция изменяется достаточно быстро, а расстояния между узлами большие, то линейная интерполирующая функция не позволяет получить достаточно точное приближение к реальной функции.

Линейная интерполирующая функция может быть использована для общего предварительного анализа и оценки корректности результатов интерполяции, получаемых затем другими более точными методами. Особенно актуальной такая оценка становится в тех случаях, когда вычисления выполняются вручную.

1.3 Интерполяция каноническим полиномом

Метод интерполяции функции каноническим полиномом основывается на построении интерполирующей функции как полинома в виде [ 1 ]

ϕ (x) = Pn (x) = c0 + c1 x+ c2 x2 + ... + cn xn

Коэффициенты с i полинома (4) являются свободными параметрами интерполяции, которые определяются из условий Лагранжа:

Pn (xi )= Yi , (i= 0 , 1 , ... , n)

Используя (4) и (5) запишем систему уравнений

C x+ c x2

C xn = Y

C x+ c x2

C xn

C x2

C xn = Y

Вектор решения с i (i = 0, 1, 2, …, n ) системы линейных алгебраических уравнений (6) существует и может быть найден, если среди узловх i нет совпадающих. Определитель системы (6) называется определителем Вандермонда1 и имеет аналитическое выражение [ 2 ].

1 Определителем Вандермонданазывается определитель

Он равен нулю тогда и только тогда, когда xi = xj для некоторых. (Материал из Википедии - свободной энциклопедии)

Для определения значений коэффициентов с i (i = 0, 1, 2, … , n)

уравнений (5) можно записать в векторно-матричной форме

A* C= Y,

где А, матрица коэффициентов, определяемых таблицей степеней вектора аргументовX= (x i 0 , x i , x i 2 , … , x i n ) T (i = 0, 1, 2, … , n)

x0 2

x0 n

xn 2

xn n

С - вектор-столбец коэффициентовс i (i = 0, 1, 2, … , n), аY - вектор-столбец значенийY i (i = 0, 1, 2, … , n) интерполируемой функции в узлах интерполяции.

Решение этой системы линейных алгебраических уравнений может быть получено одним из методов, описанных в [ 3 ]. Например, по формуле

С = A− 1 Y,

где А -1 - матрица обратная матрицеА . Для получения обратной матрицы А -1 можно воспользоваться функциейМОБР() , входящей в набор стандартных функций программы Microsoft Excel.

После того, как будут определены значения коэффициентов с i , используя функцию (4), могут быть вычислены значения интерполируемой функции для любого значения аргументах .

Запишем матрицу А для таблицы, приведенной на рис.1, без учёта строк уплотняющих таблицу.

Рис.2 Матрица системы уравнений для вычисления коэффициентов канонического полинома

Используя функцию МОБР() , получим матрицу А -1 обратную матрицеА (рис. 3). После чего, по формуле (9) получим вектор коэффициентовС={c 0 , c 1 , c 2 , …, c n } T , приведенный на рис. 4.

Для вычисления значений канонического полинома в ячейку столбца Y канонич , соответствующую значениюх 0 , введем преобразованную к следующему виду формулу, соответствующую нулевой строке системы (6)

=((((c 5

* х 0 +c 4 )*х 0 +c 3 )*х 0 +c 2 )*х 0 +c 1 )*х 0 +c 0

C0 +x *(c1 + x *(c2 + x*(c3 + x*(c4 + x* c5 ))))

Вместо записи " c i " в формуле, вводимой в ячейку таблицы Excel, должна стоять абсолютная ссылка на соответствующую ячейку, содержащую этот коэффициент (см. рис. 4). Вместо "х 0 " - относительная ссылка на ячейку столбцаХ (см. рис. 5).

Y канонич (0) значения, совпадающего со значением в ячейкеY лин (0) . При протягивании формулы, записанной в ячейкуY канонич (0), должны также совпасть и значенияY канонич (i) , соответствующие узловым точкам исходной

таблицы (см. рис.5).

Рис. 5. Диаграммы, построенные по таблицам линейной и канонической интерполяции

Сравнение графиков функций, построенных по таблицам, вычисленным по формулам линейной и канонической интерполяции, мы видим в ряде промежуточных узлов существенное отклонение значений, полученных по формулам линейной и канонической интерполяции. Более обосновано судить о точности интерполяции можно на основании получения дополнительной информации о характере моделируемого процесса.