Оперативная память (Random Access Memory – RAM), т.е. память с произвольным доступом, используется центральным процессором для совместного хранения данных и исполняемого программного кода. По принципам хранения информации ОЗУ можно разделить на статические и динамические.

Оперативную память можно рассматривать как некий набор ячеек, каждая из которых может хранить один информационный бит.

В статических ОЗУ ячейки построены на различных вариантах триггеров. После записи бита в такую ячейку она может сохранять его сколь угодно долго – необходимо только наличие питания. Отсюда и название памяти – статическая, т.е. пребывающая в неизменном состоянии. Достоинством статической памяти является ее быстродействие, а недостатками – высокое энергопотребление и низкая удельная плотность данных, поскольку одна триггерная ячейка состоит из нескольких транзисторов и, следовательно, занимает на кристалле немало места. К примеру, микросхема емкостью 4 Мбит состояла бы более чем из 24 млн. транзисторов, потребляя соответствующую мощность.

В динамических ОЗУ элементарная ячейка представляет собой конденсатор, выполненный по КМОП – технологии. Такой конденсатор способен в течение нескольких миллисекунд сохранять электрический заряд, наличие которого можно ассоциировать с информационным битом. При записи логической единицы в ячейку памяти конденсатор заряжается, при записи нуля – разряжается. При считывании данных конденсатор разряжается, и если его заряд был ненулевым, то на выходе схемы считывания устанавливается единичное значение. Процесс считывания (обращения к ячейке) сочетается с восстановлением (регенерацией) заряда. Если обращения к ячейке не происходит в течение длительного времени, то конденсатор за счет токов утечки разряжается и информация теряется. Для компенсации утечки заряда периодически циклически обращаются к ячейкам памяти, т.к. каждое обращение восстанавливает прежний заряд конденсатора. К достоинствам динамической памяти относятся высокая плотность размещения данных и низкое энергопотребление, а к недостаткам – низкое быстродействие по сравнению со статической памятью.

В настоящее время динамическая память (Dynamic RAM – DRAM) используется в качестве оперативной памяти компьютера, а статическая память (Static RAM – SRAM)- для создания высокоскоростной кэш – памяти процессора.

Микросхемы динамической памяти организованы в виде квадратной матрицы, причем пересечение строки и столбца матрицы задает одну из элементарных ячеек. При обращении к той или иной ячейке нужно задать адрес нужной строки и столбца. Задание адреса строки происходит, когда на входы микросхемы подается специальный стробирующий импульс RAS (Raw Address Strobe), а задание адреса столбца – при подаче импульса CAS (Column Address Strobe). Импульсы RAS и CAS подаются последовательно друг за другом по мультиплексированной шине адреса.

Регенерация в микросхеме происходит одновременно по всей строке матрицы при обращении к любой из ее ячеек, т.е. достаточно циклически перебрать все строки.

В обычном микрокомпьютере увеличить объем памяти несложно вам лишь надо решить, сколько мегабайт стоит добавить, и к какому поставщику обратиться. Больше умственных усилий надо затратить при разработке прибора с микропроцессорным управлением, где распределение памяти является элементом проектирования, и где совместно используются блоки запоминающих устройств разных типов - энергонезависимые ПЗУ для хранения программ, а энергозависимые ОЗУ для временного размещения данных и стеков, а также как рабочее пространство программы.

(См. оригинал)

Рис. 11.29. 12-разрядные двухканальвые ЦАП (с любезного разрешения Analog Devices), а - микросхема 7537 с шириной загрузки 1 байт; б - микросхема 7547 с шириной загрузки 12 бит.

Энергонезависимые ПЗУ с «зашитыми» программами широко используются в микропроцессорных устройствах, чтобы избавиться от необходимости каждый раз при включении прибора загружать программу. В настоящем разделе мы рассмотрим различные виды памяти: статические и динамические ОЗУ (оперативные запоминающие устройства), РПЗУ (репрограммируемые постоянные запоминающие устройства), ЭРПЗУ (электрически стираемые репрограммируемые постоянные запоминающие устройства). Как только вы немного в них разберетесь, выбор уже не составит труда. Можете сразу обратиться к рис. 11.35, где мы свели воедино типы запоминающих устройств.

Статические и динамические ОЗУ.

В статических ОЗУ биты хранятся в матрицах триггеров, в то время как в динамических ОЗУ - в заряженных конденсаторах. Бит, записанный в статическое ОЗУ, остается в нем до тех пор, пока не будет перезаписан, или пока не выключится источник питания. В динамическом ОЗУ данные, если их не «регенерировать», исчезнут менее чем через секунду. Другими словами, динамическое ОЗУ непрерывно забывает данные, и чтобы их сохранить, приходится периодически опрашивать «строки» двумерной матрицы битов в микросхеме памяти. Например, в ОЗУ объемом 256 кбит к каждому из 256 рядов приходится обращаться каждые 4 мс.

Вы можете задаться вопросом, кому же придет в голову выбирать динамическое ОЗУ? Дело в том, что обходясь без триггеров, динамическое ОЗУ занимает меньше места, в результате чего микросхема большей емкости оказывается дешевле. Например, популярное сегодня статическое ОЗУ емкостью кбит) стоит около 10 долл., в два раза больше нынешней цены динамического ОЗУ емкостью 1 Мбит. В результате, используя динамические ОЗУ, вы за половину стоимости будете иметь в 4 раза больше памяти.

Теперь, наверное, вы удивляетесь, кому же нужны статические ОЗУ (что-то вас кидает из стороны в сторону)? Основное достоинство статических ОЗУ заключается в их простоте. Отпадает необходимость в циклах регенерации, не нужно заботиться об их синхронизации (циклы регенерации конкурируют с обычными циклами обращения к памяти и должны поэтому жестко синхронизоваться). В простых системах с ограниченным числом микросхем памяти естественно использовать статические ОЗУ. К тому большая часть нынешних статических ОЗУ используют КМОП-технологию, что существенно для приборов с батарейным питанием. Между прочим, статическое КМОП ОЗУ, автоматически переключаемое на батарейное питание при выключении основного (с помощью микросхемы управления питанием типа ), представляет неплохую альтернативу ПЗУ в качестве энергонезависимой памяти. Другим достоинством статических ОЗУ является их высокое быстродействие (выпускаются микросхемы с характерным временем 25 не и менее), а также удобная компоновка секциями по 8 бит. Рассмотрим оба типа ОЗУ подетальнее.

Статические ОЗУ. Мы уже столкнулись со статическим ОЗУ в нашей микропроцессорной разработке, где одно такое ОЗУ емкостью использовалось для размещения данных, стека и рабочей области (программа была записана в РПЗУ). Организовать обмен данными со статическим ОЗУ проще простого: в цикле чтения вы устанавливаете сигналы адреса, выбора микросхемы (CS) и разрешения выхода (ОЕ); запрошенные данные появляются на тристабильных линиях данных спустя максимум (адресное время доступа). В цикле записи вы устанавливаете сигналы адреса, данных и CS, а затем (спустя время упреждения адреса ) импульс разрешения записи (WE); достоверные данные записываются в конце импульса WE. Действующие временные ограничения для 120 не статического ОЗУ показаны на рис. 11.30, из которого видно, что «быстродействие» памяти - это время от установки достоверного адреса до достоверных данных (при чтении) или до завершения цикла записи (при записи).

Рис. 11.30. Синхронизация статического ОЗУ с быстродействием 120 нс. а - цикл чтения, б - цикл записи.

Для статических ОЗУ интервал времени между последовательными обращениями к памяти («длительность цикда») равен времени доступа; для динамических ОЗУ, как будет показано ниже, это не так.

Микросхемы статических ОЗУ могут иметь емкость от 1 Кбит (или меньше) до 1 Мбит при ширине 1, 4 или 8 бит. Быстродействие (время доступа) колеблется от 150 до 10 не или около того. В настоящее время широко используются недорогие статические КМОП ОЗУ емкостью с временем доступа 80 не, а также меньше по емкости, но более быстродействующие не) статические КМОП ОЗУ для кеш-памяти. Варианты микросхем могут иметь отдельные выводы для входов и выходов, два порта доступа и то или иное внешнее оформление (например, однорядный корпус ).

Может быть это и существенно, однако заметьте, что вам не надо заботиться, чтобы линии данных ЦП подключались обязательно к одноименным выводам микросхемы памяти - ведь независимо от порядка соединения вы при чтении всегда получите то же, что записали! Это замечание справедливо и для адресов. Однако не пытайтесь так поступить с ПЗУ.

Упражнение 11.18. А почему?

Динамические ОЗУ. По сравнению со статическими ОЗУ динамические ОЗУ - это сплошная мигрень. На рис. 11.31 показан нормальный цикл. Адрес (содержащий, например, для ОЗУ объемом 1 Мбайт 20 бит) расщепляется на две группы и мультиплексируется на вдвое меньшее число выводов, сначала «адрес строки», стробируемый сигналом Address Strobe - строб адреса строки), а затем «адрес колонки», стробируемый сигналом CAS (Column Address -строб адреса колонки). Данные записываются (или читаются в соответствии с состоянием входа направления ) вслед за установкой CAS. Перед началом следующего цикла памяти должно пройти некоторое время «выдержки RAS», поэтому длительность цикла больше времени доступа; например, динамическое ОЗУ может иметь время доступа 100 не и длительность цикла 200 не. Цикл регенерации выглядит так же, но без сигнала CAS. Вообще-то обычные обращения к памяти отлично ее регенерируют, если только вы можете гарантировать обращения со всеми возможными адресами строк!

Динамические ОЗУ, как и статические, выпускаются с шириной данных 1, 4 и 8 бит, емкостью от 64 Кбит до 4 Мбит и с быстродействием приблизительно от 70 до 150 не. Наиболее популярны большие -битовые микросхемы, что вполне объяснимо: если вам нужна большая матрица памяти, скажем объемом 4 Мбайт и шириной 16 бит, и имеются в наличии ОЗУ емкостью 1 Мбит с организацией , имеет смысл использовать -битовые микросхемы, потому что (а) каждая линия данных будет подключена только к двум микросхемам (а не к 16), что существенно уменьшит емкостную нагрузку, и (б) эти микросхемы занимают меньше места, потому что меньшее число выводов данных более чем компенсирует дополнительные адресные выводы.

Рис. 11.31. Циклы чтения и записи динамического ОЗУ (Motorola, 120 нс).

Кроме того, -битовые микросхемы, как правило, дешевле. Приведенные рассуждения справедливы, если вы строите большую память, и не относятся, например, к нашему простому микропроцессору с памятью Заметьте, однако, что улучшенная технология упаковки микросхем с высокой плотностью уменьшает важность минимизации числа выводов.

Существует ряд способов генерации последовательности мультиплексированных адресов и сигналов RAS, С AS и , требуемой для управления динамическим ОЗУ. Поскольку это ОЗУ всегда подключается к микропроцессорной магистрали, вы начинаете работу с ним, обнаружив сигнал (или эквивалентный ему), говорящий о том, что установлен правильный адрес из пространства динамического ОЗУ (о чем свидетельствуют старшие адресные линии). Традиционный метод заключается в использовании дискретных компонент средней степени интеграции для мультиплексирования адреса (несколько -канальных -входовых мультиплексоров ) и генерации сигналов RAS, CAS, а также сигналов управления мультиплексором.

Требуемая последовательность создается с помощью сдвигового регистра, тактируемого с частотой, кратной тактовой частоте микропроцессора или, что лучше, с помощью линии задержки с отводами. Для организации периодических циклов регенерации (только RAS) вам потребуется еще несколько логических схем и счетчик, отсчитывающий последовательные адреса строк. На все это уйдет около 10 корпусов.

Привлекательным способом, альтернативным «дискретным» схемам управления динамическим ОЗУ, является использование ПЛМ, причем для генерации всех необходимых сигналов достаточно одной-двух микросхем. Еще проще взять специальную микросхему «поддержки динамического ОЗУ», например, . Такого рода микросхемы берут на себя не только мультиплексирование адресов и образование сигналов RAS/CAS, но также и арбитрацию регенерации вместе с образованием адресов строк; более того, они даже включают мощные драйверы и демпфирующие резисторы, которые нужны для подключения больших матриц микросхем памяти, как это будет объяснено ниже. К таким контроллерам динамических ОЗУ обычно прилагаются дополнительные микросхемы для синхронизации, а также обнаружения и коррекции ошибок; в результате небольшой набор микросхем полностью решает проблему включения динамического ОЗУ в вашу разработку.

Впрочем, почти полностью! Основные неприятности с динамическими ОЗУ начинаются, когда вы пытаетесь освободиться от наводок на всех этих стробирующих и адресных магистральных линиях. Суть проблемы заключается в том, что несколько десятков корпусов МОП-схем оказываются разбросанными на большой площади системной платы, причем ко всем корпусам подходят управляющие и адресные шины. Для подключения к ним нескольких десятков микросхем требуются мощные выходные каскады Шоттки; однако большая длина линий и распределенная входная емкость в сочетании с крутыми фронтами выходных каскадов приводят к появлению «звона» большой амплитуды. Часто можно увидеть на адресных линиях ОЗУ отрицательные выбросы до -2 В! Типичным средством борьбы (не всегда полностью успешной) является включение на выходе каждого драйвера последовательных демпфирующих резисторов с сопротивлением около 33 Ом. Другая проблема заключается в огромных переходных токах, часто достигающих величины на линию. Представьте себе микросхему -разрядного драйвера, у которого большинство выходов случайно переключаются в одном направлении, например, с высокого уровня на низкий. Это приводит к переходному току величиной около 1 А, который на некоторое время повышает потенциал нулевого вывода, а вместе с ним и всех выходов, которые должны были иметь низкий уровень. Отмеченная проблема отнюдь не носит академического характера - однажды мы наблюдали сбои в работе памяти как раз из-за таких переходных токов на нулевом выводе, образующихся из-за выбросов токов -драйвера. При этом наводки, проходящие в -драйверы той же микросхемы, оказывались достаточными для завершения цикла памяти!

Дополнительным источником наводок в динамических ОЗУ являются большие переходные токи, образованные микросхемами в целом, причем наиболее честные разработчики даже включают сведения об этом явлении в свои технические материалы (рис. 11.32). Обычным средством борьбы является установка шунтирующих конденсаторов, подключенных к нулевой линии с малой индуктивностью; считается разумным шунтировать каждую микросхему керамическим конденсатором с емкостью .

Мы пришли к выводу, что логические драйверы с внешними резисторами хорошо работают с динамическим ОЗУ, как и специальные драйверы типа , которые включают интегральные демпфирующие резисторы. Контроллер динамического ОЗУ , упоминавшийся выше, по заверениям разработчиков может обслуживать до 88 микросхем памяти без внешних компонент, давая при этом отрицательные выбросы не более -0,5 В.

Рис. 11.32. Переходные токи динамического ОЗУ.

Даже более важным, нежели выбор конкретного драйвера, является использование нулевых линий с низкой индуктивностью и частого шунтирования . Двухсторонние платы с узкими линиями заземления неминуемо приведут к неприятностям; макетные платы с накруткой проводов обычно немногим лучше.

Важно понимать, что сбои памяти, возникающие из-за наводок, могут в сильной степени зависеть от распределения бит в передаваемых данных и не всегда проявляются в простых тестах памяти на чтение/запись. Лучшим способом обеспечить надежную работу памяти является консервативное проектирование и исчерпывающее тестирование памяти (с осциллографическим исследованием форм сигналов).

Постоянные запоминающие устройства (ПЗУ).

ПЗУ относятся к памяти, неразрушаемой при выключении питания (энергонезависимой), и нужда в них возникает практически в любой компьютерной системе. К примеру, в микрокомпьютерах необходимо иметь по крайней мере небольшое ПЗУ для хранения последовательности команд начальной загрузки, которая включает не только строки выделения стека и инициализации портов и прерываний, но также и команды, обеспечивающие чтение операционной системы с диска. Когда ваш персональный компьютер выполняет тестирование памяти и затем загружает DOS, он выполняет приказы некоторого ПЗУ. Кроме того, для микрокомпьютера типично хранение в ПЗУ некоторой части операционной системы (обычно наиболее аппаратно-зависимых модулей); эта часть называется «базовой системой ввода-вывода» (basic I/O system, BIOS) и обеспечивает стандартный механизм для обращения операционной системы к конкретным портам. ПЗУ широко используются для хранения различных таблиц, например, для генератора символов, отображаемых на экране дисплея. В предельном случае вообще вся операционная система, включая даже компиляторы и графические программы, может размещаться в ПЗУ. Например, в микрокомпьютере Macintosh значительная часть системного программного обеспечения записана в ПЗУ, и почти все 256 Кбайт ОЗУ отдаются пользователю. Однако такой «ПЗУ-ориентированный» подход используется в микрокомпьютерах относительно редко ввиду его негибкости; заметьте, однако, что исправление ошибок и умеренные усовершенствования программного обеспечения могут осуществляться с помощью заплат, размещаемых в ОЗУ.

В приборах с микропроцессорным управлением ПЗУ используются более широко. В ПЗУ хранится вся автономная программа, а энергозависимое ОЗУ используется только для хранения массивов и временных данных. Именно так было сделано в нашем усреднителе сигналов. ПЗУ часто оказываются полезными в дискретной цифровой аппаратуре, например, для конструирования произвольных конечных автоматов, или в качестве хранилища таблиц поправок для линеаризации функции отклика измерительной системы. Рассмотрим кратко разные виды энергонезависимой памяти: ПЗУ с масочным программированием, а также электрически стираемые ЭРПЗУ.

РПЗУ. Стираемые программируемые постоянные запоминающие устройства выполняются в виде больших микросхем с кварцевым окном. Это, несомненно, самый популярный тип энергонезависимой памяти для компьютеров. РПЗУ используют КМОП- и МОП-технологию и состоят из больших матриц полевых и МОП-транзисторов с плавающим затвором, которые можно зарядить с помощью «лавинной -процесса пробоя слоя, изолирующего затвор, при приложении напряжения свыше 20 В. Данные хранятся в РПЗУ неограниченно долго в виде ничтожного заряда (около 106 электронов) изолированных «погребенных» затворов, которые можно рассматривать как конденсаторы с постоянной времени порядка столетий. Чтобы прочитать состояние отдельного конденсатора, ему надо выступить в качестве затвора канала полевого МОП-транзистора. Поскольку затвор электрически недоступен, стереть заряд можно лишь облучая микросхему интенсивным потоком ультрафиолетовых лучей в течение 10-30 мин, отчего запасенный заряд стекает за счет явления фотопроводимости. В результате отдельные байты РПЗУ выборочно стереть нельзя.

В первом издании этой книги мы упоминали «классическую» микросхему 2716, РПЗУ стоившую 25 долл. Теперь она стала такой классической, что ее уже нигде не достанешь! Типичные РПЗУ нашего времени имеют емкость от до и цену несколько долларов. Время доступа обычно составляет 150- 300 не, хотя такие компании, как Cypress, предлагают ПЗУ небольшого объема с быстродействием 25 не. Чтобы запрограммировать РПЗУ, к нему надо просто приложить повышенное напряжение (обычно 12,5 или 21 В), устанавливая при этом требуемые значения байтов. Исходные алгоритмы требовали на программирование каждого байта (что дает 100 с для микросхемы 2716, но для РПЗУ умеренного объема превращается в полчаса). Выпуск больших ПЗУ потребовал от разработчиков изобретения более совершенных алгоритмов, в которых каждый байт программируется последовательностью импульсов длительностью , причем после каждой записи делается попытка чтения; когда байт считывается правильно, выполняется окончательная запись, равная по длительности утроенной сумме всех предыдущих. Большая часть байтов программируется первым же импульсом, в результате на каждый байт тратится около , а на все ПЗУ объемом - 2 мин.

РПЗУ очень удобны при разработке опытных образцов, так как после стирания их можно использовать повторно. Они также применяются при выпуске небольших партий приборов. В продаже имеются более дешевые варианты РПЗУ без кварцевого окна, иногда называемые «РПЗУ однократного программирования». Хотя эти микросхемы не следовало бы называть РПЗУ, инженеры не желают изменять привычное название. Консервативные производители РПЗУ гарантируют сохранение в них информации в течение лишь 10 лет. Эта величина предполагает наихудшие условия (в частности, высокую температуру, которая приводит к утечке заряда); в действительности РПЗУ, похоже, не теряют данные, если только вам не попалась дефектная партия.

Для РПЗУ характерно ограниченное число циклов репрограммирования, т. е. стирания и программирования заново. Производители неохотно называют это число, хотя вы можете считать, что микросхема заметно ухудшит свои характеристики лишь после 100 или около того циклов стирания / программирования.

Рис. 11.33. Микроконтроллер с РПЗУ. а - 8-разрядный микроконтроллер с контактами для установки РПЗУ; б - 8-разрядный микроконтроллер со встроенным РПЗУ.

Масочные ПЗУ и ПЗУ с плавкими перемычками. Масочно-программируемые ПЗУ относятся к категории заказных микросхем, которые рождаются с указанным вами расположением бит. Фирма-производитель преобразует вашу спецификацию бит в маску металлизации, используемую далее при изготовлении ПЗУ. Такая процедура хороша для больших партий микросхем, и вам, надеемся, не придет в голову заказывать ПЗУ с масочным программированием для макетного образца. Типичная стоимость составляет от 1 до 3 тыс. долл. за производственный цикл, и фирмы неохотно берут заказы на партии ПЗУ менее тысячи штук. При таких количествах микросхема может обойтись в несколько долларов.

Многие однокристальные микроконтроллеры содержат в том же корпусе несколько кбайт ПЗУ и ОЗУ, так что законченный прибор может обходиться без дополнительных микросхем памяти. В большинстве случаев микроконтроллерное семейство включает варианты, требующие внешнего ПЗУ, а иногда и варианты со встроенным РПЗУ (рис. 11.33). Это дает возможность при разработке прибора использовать вариант с РПЗУ (или внешним ПЗУ), куда можно записать программу, при подготовке же партии приборов обратиться к более дешевым контроллерам с масочным программированием.

Другим типом ПЗУ с однократным программированием являются ПЗУ с плавкими перемычками. При выпуске в них все биты установлены, и для сброса требуемых бит ПЗУ надо подвергнуть действию электрического тока. В качестве типичного примера можно привести микросхему Harris , КМОП ППЗУ (программируемое постоянное запоминающее устройство) объемом ППЗУ с плавкими перемычками выпускаются также на базе биполярной (ТТЛ) технологии.

ЭРПЗУ. Электрически стираемые программируемые ПЗУ могут быть выборочно стерты и электрически репрограммированы прямо в той же схеме, где они используются в качестве памяти. Такого рода ПЗУ идеально подходят для хранения констант конфигурации, параметров калибровки и прочей информации, которую нельзя записать в ПЗУ до включения компьютера. ЭРПЗУ, как и РПЗУ, используют технологию МОП с плавающим затвором.

Первые ЭРПЗУ требовали повышенных напряжений и длительной процедуры программирования. Современные микросхемы используют одно напряжение питания и работают практически так же, как и статические ОЗУ - другими словами, вы можете репрограммировать любой байт с помощью одного цикла записи на магистрали. В микросхеме ЭРПЗУ предусмотрены внутренние цепи для генерации повышенного программирующего напряжения, а внутренняя логика фиксирует данные и генерирует программирующую последовательность длительностью несколько миллисекунд, в которой на время процесса устанавливается флаг BUSY или в цикле чтения образуются инвертированные данные, чтобы показать, что идет процесс записи. Некоторые ЭРПЗУ реализуют оба этих протокола, обычно называемые .

Сопряжение с этими ПЗУ осуществляется просто - достаточно подключить их также, как обычные ОЗУ и использовать линию BUSY для возбуждения прерываний (либо считывать состояние BUSY или данных, и использовать его как флаг состояния) (см. рис. 11.34).

Рис. 11.34. ЭРПЗУ.

Протокол -опроса удобен тем, что ЭРПЗУ можно вставить в стандартный разъем для ОЗУ без каких-либо схемных изменений (разумеется, в ваши программы придется включить строки анализа считываемых назад данных и ожидания их совпадения с тем, что вы записываете). Поскольку запись в ЭРПЗУ выполняется относительно редко, фактически в прерываниях по линии RDY/BUSY необходимости не возникает.

КМОП ЭРПЗУ выпускаются в виде микросхем с емкостью по цене примерно 10-50 долл. Время доступа (200-300 не) и время программирования при использовании внутреннего усовершенствования алгоритма) сравнимы с показателями стандартного РПЗУ. ЭРПЗУ, как и РПЗУ, допускают ограниченное число циклов чтения записи. Хотя производители избегают называть конкретные цифры, можно встретить упоминание о 100000 циклах чтения записи при .

Замечание. Хотя ЭРПЗУ уникальны в том отношении, что допускают репрограммирование в рабочей схеме, их также можно запрограммировать и отдельно от места использования, в программаторе для РПЗУ. Это делает их очень удобными для разработки встроенного программного обеспечения, так как вам не надо ждать полчаса, пока РПЗУ со старой программой прожарится под ультрафиолетовым облучателем.

Имеются два любопытных варианта ЭРПЗУ. Фирмы National, Xicor и др. выпускают маленькие микросхемы ЭРПЗУ в с 8 выводами. Емкость этих схем может составлять от до бит; они работают в режиме последовательного доступа и оснащаются тактовым входом и единственной линией данных. Эти микросхемы трудно использовать без микропроцессора; однако в приборах с микропроцессорным управлением они очень удобны для хранения небольшого количества установочных параметров и проч. Та же фирма Xicor выпускает «электрически стираемый потенциометр , остроумное применение электрически стираемой памяти, в которой хранится положение «цифрового контакта». В эту микросхему встроена цепочка из 99 равных по величине резисторов, причем положение отвода от них, устанавливаемое программно, сохраняется в энергонезависимой памяти, входящей в ту же микросхему. Нетрудно представить себе прикладные задачи, в которых желательна автоматическая или дистанционная калибровка некоторого инструмента без механической настройки ручек управления.

Недавно появившаяся модификация ЭРПЗУ, называемая моментальной (flash), сочетает высокую плотность РПЗУ с репрограммированием в рабочей схеме, присущим ЭРПЗУ. Однако моментальные РПЗУ, как правило, не позволяют стирать отдельные байты, как это можно делать с обычными ЭРПЗУ. Так, моментальное ЭРПЗУ Intel допускает только полное стирание (как и РПЗУ), в то время как в микросхеме фирмы Seeq предусмотрено стирание либо посекторное (512 байт), либо целиком. Далее, большинство доступных сейчас моментальных ЭРПЗУ требуют дополнительного отключаемого источника питания +12 В на время стирания/записи, что является слишком дорогой ценой, если вспомнить, что обычные ЭРПЗУ питаются от единственного источника + 5 В.

Моментальные ЭРПЗУ могут выдерживать от 100 до 10000 программных циклов.

Технология производства ППЗУ продолжает развиваться, и мы с любопытством ожидаем, что она нам еще преподнесет; ждите и вы!

Энергонезависимые ОЗУ.

РПЗУ удобны для применения в качестве энергонезависимых ПЗУ, однако часто возникает необходимость иметь энергонезависимую оперативную память. Для этого можно использовать ЭРПЗУ, однако для них характерен очень длинный ) цикл записи (и ограниченное число циклов чтения/записи). Имеются две возможности достичь характерного для ОЗУ времени чтения записи ) при неограниченном числе циклов чтения записи: использовать либо статическое КМОП ОЗУ с резервным батарейным питанием, либо необычную микросхему фирмы Xicor, в которой объединены статическое ОЗУ и ЭРПЗУ.

Ранее уже обсуждался вопрос о резервном батарейном питании ОЗУ, которое убивает двух зайцев разом: низкая цена и высокая скорость чтения записи ОЗУ сочетаются с энергонезависимостью ПЗУ. Разумеется, в этом случае следует использовать КМОП ОЗУ с известным значением критического тока. Некоторые фирмы выпускают «энергонезависимые ОЗУ», размещая в обычном -корпусе вместе с микросхемой КМОП ПЗУ литиевую батарейку и логические схемы переключения питания. В качестве примера можно указать микросхемы фирмы Dallas Semiconductor эта фирма также выпускает линейку «интеллектуальных разъемов», содержащих батарейку и логические схемы, с помощью которых обычные ОЗУ как по мановению волшебной палочки становятся энергонезависимыми. Учтите, что образованное таким образом энергонезависимое ОЗУ, строго говоря, не бессмертно; срок службы батарейки, а следовательно, и данных, около 10 лет. Как и для обычного статического ОЗУ, здесь нет ограничений на выдерживаемое памятью число циклов чтения записи. в ОЗУ.

Если сравнивать два описанных варианта энергонезависимых ОЗУ, то вариант с резервной батарейкой представляется в общем предпочтительным, поскольку позволяет использовать любое наличное ОЗУ, если только в нем предусмотрен режим отключения при нулевом токе. Это значит, что вы можете использовать большие ОЗУ последних выпусков, а также, например, выбрать наиболее быстродействующие ОЗУ, если это для вас важно. Хотя батарейки имеют конечный срок эксплуатации, для большинства приложений он достаточен. Для кратковременного (сутки или менее) хранения информации вы можете заменить литиевую батарейку двухслойным конденсатором большой емкости; такие конденсаторы в очень маленьких корпусах с емкостью до фарады и более предлагаются фирмами Panasonic, Sohio и др.

Запоминающие устройства: общая сводка.

Рис. 11.35 подытоживает важнейшие характеристики различных типов ЗУ. Из показанных на рисунке мы рекомендуем динамические ОЗУ шириной 1 бит для больших матриц памяти с возможностью чтения и записи, статические ОЗУ шириной 1 байт для небольших матриц памяти микропроцессорных систем, РПЗУ для хранения программ и параметров, не требующих перезаписи, и либо ЭРПЗУ (если длительность процесса записи не имеет значения), либо статические ОЗУ с резервным батарейным питанием (для достижения максимального быстродействия по чтению / записи) для энергонезависимого хранения модифицируемых данных.

Рис. 11.35. Типы запоминающих устройств.

Динамическая оперативная память

Динамическая оперативная память (DRAM – Dynamic Random Access Memory) – энергозависимая полупроводниковая память с произвольным доступом. На данный момент – это основной тип оперативной памяти, используемый в современных персональных компьютерах и обеспечивающий наилучший показатель отношения цена-качество по сравнению с другими типами оперативной памяти. Однако, требования к быстродействию, энергопотреблению и надежности оперативной памяти постоянно растут, и динамическая оперативная память уже с трудом соответствует современным потребностям, так что в ближайшие годы стоит ожидать появления серийно выпускаемых конкурирующих типов оперативной памяти, таких как магниторезистивная оперативная память.

1. Устройство динамической оперативной памяти.

Динамическая оперативная память (DRAM – Dynamic Random Access Memory) – энергозависимая память с произвольным доступом, каждая ячейка которой состоит из одного конденсатора и нескольких транзисторов. Конденсатор хранит один бит данных, а транзисторы играют роль ключей, удерживающих заряд в конденсаторе и разрешающих доступ к конденсатору при чтении и записи данных.

Однако транзисторы и конденсатор – неидеальные, и на практике заряд с конденсатора достаточно быстро истекает. Поэтому периодически, несколько десятков раз в секунду, приходится дозаряжать конденсатор. К тому же процесс чтения данных из динамической памяти – деструктивен, то есть при чтении конденсатор разряжается, и необходимо его заново подзаряжать, чтобы не потерять навсегда данные, хранящиеся в ячейке памяти.

На практике существуют разные способы реализации динамической памяти. Упрощенная структурная схема одного из способов реализации приведена на рисунке 1.

Как видно из рисунка, основным блоком памяти является матрица памяти, состоящая из множества ячеек, каждая из которых хранит 1 бит информации.

Каждая ячейка состоит из одного конденсатора (С) и трех транзисторов. Транзистор VT1 разрешает или запрещает запись новых данных или регенерацию ячейки. Транзистор VT3 выполняет роль ключа, удерживающего конденсатор от разряда и разрешающего или запрещающего чтение данных из ячейки памяти. Транзистор VT2 используется для считывания данных с конденсатора. Если на конденсаторе есть заряд, то транзистор VT2 открыт, и ток пойдет по линии AB, соответственно, на выходе Q1 тока не будет, что означает – ячейка хранит бит информации с нулевым значением. Если заряда на конденсаторе нет, то конденсатор VT2 закрыт, а ток пойдет по линии AE, соответственно, на выходе Q1 ток будет, что означает – ячейка хранит бит информации со значением “единица”.

Заряд в конденсаторе, используемый для поддержания транзистора VT2 в открытом состоянии, во время прохождения по нему тока, быстро расходуется, поэтому при чтении данных из ячейки необходимо проводить регенерацию заряда конденсатора.

Для работы динамической памяти на матрицу должно всегда поступать напряжение, на схеме оно обозначено, как Uп. С помощью резисторов R напряжение питания Uп равномерно распределяется между всеми столбцами матрицы.

Также в состав памяти входит контроллер шины памяти, который получает команды, адрес и данные от внешних устройств и ретранслирует их во внутренние блоки памяти.

Команды передаются в блок управления, который организует работу остальных блоков и периодическую регенерацию ячеек памяти.

Адрес преобразуется в две составляющие – адрес строки и адрес столбца, и передается в соответствующие дешифраторы.

Дешифратор адреса строки определяет, с какой строки надо провести чтение или запись, и выдает на эту строку напряжение.

Дешифратор адреса столбца при чтении данных определяет, какие из считанных бит данных были запрошены и должны быть выданы в шину памяти. При записи данных дешифратор определяет, в какие столбцы надо подать команды записи.

Блок работы с данными определяет, какие данные, в какую ячейку памяти требуется записать, и выдает соответствующие биты данных для записи в эти ячейки.

Блоки регенерации определяют:

  • когда происходит чтение данных и надо провести регенерацию ячейки, из которой данные были считаны;
  • когда происходит запись данных, а, следовательно, регенерацию ячейки производить не надо.

Буфер данных сохраняет всю считанную строку матрицы, так как при чтении всегда считывается вся строка целиком, и позволяет потом выбрать из считанной строки требуемые биты данных.

Рассмотрим принцип работы динамической памяти на примере структурной схемы, приведенной на рисунке 1. Рассматривать будем работу с первой ячейкой (M11). Работа остальных ячеек памяти полностью идентична.

1.1. Работа динамической памяти в состоянии покоя.

И так, первое что мы рассмотрим – этот состояние покоя, когда к памяти отсутствуют обращения, и она не в стадии регенерации данных.

DRAM – память энергозависимая, поэтому работа с ней возможна только при подаче питания. На схеме подаваемое на плату питание обозначено, как Uп. Подаваемое питание распределяется между всеми столбцами матрицы памяти с помощью транзисторов R.

Если память бездействует (от контроллера шины памяти не приходит никаких команд), то от дешифратора адреса строки не выдается сигнал ни на одну линию строк (S1-Sn) матрицы памяти. Соответственно, транзисторы VT1 и VT3 ячейки памяти M11 закрыты, также как и аналогичные транзисторы всех остальных ячеек памяти.

Следовательно, ток от подаваемого питания проходит по линии AE для первого столбца и аналогично для всех остальных столбцов матрицы памяти. Далее попадает на выходы Q1-Qm, на которых устанавливается «высокий» уровень напряжения, соответствующий значению логической «1». Но так как никаких команд от блока управления нет, то «Буфер данных» игнорирует получаемые сигналы.

Тут становится понятно, зачем нужен транзистор VT3. Он защищает конденсатор от разряда, когда к данной ячейки памяти нет обращения.

Ток по линии AE также попадает на «Блок регенерации 1», а именно, на нижний вход элемента L3 (логическое «И»), то есть на нижний вход элемента L3 подается логическая единица.

Рассмотрим, как в этом случае будет работать блок регенерации.

Так как от контроллера памяти нет никаких сигналов, то на входе элемента L1 (логическое «НЕ») будет логический ноль, а, соответственно, на выходе – логическая «1». Таким образом, на верхнем входе элемента L3 (логическое «И») будет логическая единица.

Имея на входах элемента L3 (логическое «И») две логические единицы, на выходе получим так же логическую единицу.

На выходе элемента L2 (логическое «И») будет логический ноль, так как на обоих его входах напряжение отсутствует, так как от контроллера памяти нет никаких команд и данных.

В результате, на входах элемента L4 (логическое «ИЛИ-НЕ») будет логический ноль и логическая единица, а, соответственно, на его выходе будет логический ноль, то есть напряжение будет отсутствовать. Так как напряжение отсутствует, то ни один конденсатор первого столбца матрицы памяти подзаряжен не будет. Хотя, даже если бы напряжение и присутствовало, все равно подзарядка была бы невозможна, так как транзисторы подзарядки (доля ячейки М11 – это VT1) были бы закрыты, ведь ни на одну строку матрицы памяти (S1-Sn) напряжение не подается.

Точно такая же ситуация будет со всеми столбцами матрицы памяти.

Таким образом, при бездействии памяти конденсаторы не подзаряжаются и хранят тот заряд (а, соответственно, и тот бит данных), который у них был с момента последней подзарядки. Однако долго это продолжаться не может, так как из-за саморазрядки конденсатор, через несколько десятков миллисекунд, разрядится, и данные будут утеряны. Поэтому необходимо постоянно проводить регенерацию памяти.

1.2. Работа динамической памяти при чтении данных и регенерации.

Будем рассматривать принцип чтения данных из динамической памяти на примере считывания данных из ячейки памяти М11:

1. Процессор запрашивает порцию данных (размер зависит от разрядности процессора, для 32-разрядного процессора минимальной единицей обмена, обычно, являются 32 бита) и выдает их адрес.

2. Контроллер шины памяти преобразует адрес в номер строки и номер столбца и выдает номер строки в дешифратор адреса строки. Дешифратор адреса строки выдает сигнал в соответствующую строку матриц памяти. Мы договорились, что в примере данные будем читать из первой ячейки памяти. Поэтому дешифратор адреса строки подаст напряжение на первую строку (S1).

3. Напряжение, поданное на строку S1, откроет транзисторы VT1 и VT3 первой ячейки памяти и соответствующие транзисторы всех остальных ячеек первой строки.

4. Дальнейшая работа памяти зависит от наличия или отсутствия заряда на конденсаторе. Рассмотрим отдельно два случая, когда на конденсаторе ячейки М11 есть заряд, и когда нет.

4.1 . В начале рассмотрим случай, когда заряд в конденсаторе есть (ячейка памяти содержит бит со значением ноль):

Так как на конденсаторе С ячейки памяти М11 есть заряд, то транзистор VT2 будет открыт, а, соответственно, ток, создаваемый входным напряжением Uп, пойдет по линии AB. В результате, на выходе Q1 первого столбца тока не будет. А это означает, что с ячейки памяти М11 считан ноль. Соответствующая информация о считанном бите с первого столбца будет записана в «Буфер данных».

Для поддержания транзистора VT2 в открытом состоянии и протекания тока по линии AB расходуется заряд конденсатора С. В результате, конденсатор очень быстро разрядится, если не провести его регенерацию.

Так как на выходе Q1 тока нет, то он не будет поступать и в «Блок регенерации 1», а, соответственно, на нижнем входе элемента L3 (логическое «И») будет логический ноль.

Так как мы рассматриваем случай чтения данных, то сигнал записи V1 и данные для записи D1 в «Блок регенерации 1» подаваться не будут. В остальные блоки регенерации соответствующие сигналы D1-Dm и V1-Vm также подаваться не будут.

В результате, на входе элемента L1 (логическое «НЕ») будет логический «0», а на выходе – логическая «1», поэтому на входах элемента L3 (логическое «И») будет логический «0» и логическая «1». Это значит, что на выходе этого элемента будет логический «0».

На выходе логического элемента L2 (логическое «И») будет логический ноль, так как на обоих его входах напряжение отсутствует, так как от контроллера шины памяти отсутствуют команды на запись и данные для записи.

Имея на обоих входах элемента L4 (логическое «ИЛИ-НЕ») логический «0», на его выходе будем иметь логическую «1», то есть с блока регенерации пойдет ток подзарядки конденсатора С. Так как транзистор подзарядки VT1 ячейки памяти М11 открыт, то ток подзарядки беспрепятственно пройдет в конденсатор С. Остальные ячейки памяти первого столбца имеют закрытый конденсатор подзарядки, а, следовательно, подзарядка их конденсаторов происходить не будет.

4.2 . Теперь рассмотрим случай, когда в конденсаторе нет заряда (ячейка памяти хранит бит со значением «1»):

Ток, создаваемый входным напряжением Uп, пойдет по линии AЕ, так как транзистор VT2 будет закрыт. Следовательно, на входе Q1 «Буфера данных» будет ток, что означает – с ячейки памяти считана единица. Информация о считанном бите с первого столбца будет записана в «Буфер данных».

Так как в конденсаторе заряда не было, то и подзаряжать его надобности нет. Следовательно, с блока регенерации ток пойти не должен.

Так как на выходе Q1 ток есть, то он поступает и в «Блок регенерации». Следовательно, на нижний вход элемента L3 (логическое «И») подается логическая единица.

Так как мы рассматриваем случай чтения данных, то сигнала записи V1 и данных для записи D1 в «Блок регенерации 1» подаваться не будет. Так же в остальные блоки регенерации, соответствующие сигналы D1-Dm и V1-Vm так же подаваться не будут.

Следовательно, на входе элемента L1 (логическое «НЕ») будет логический ноль, а на выходе – логическая «1». Таким образом, на входах элемента L3 (логическое «И») будут две логические единицы. В результате, на выходе получим так же логическую единицу.

На выходе логического элемента L2 (логическое «И») будет логический ноль, так как на обоих его входах напряжение отсутствует, так как от контроллера памяти нет команд на запись и данных для записи.

В результате, на входах элемента L4 (логическое «ИЛИ-НЕ») будет логический ноль и логическая единица, а, соответственно, на его выходе будет логический ноль, то есть напряжение будет отсутствовать. Так как напряжение отсутствует, то ни один из конденсаторов первого столбца матрицы памяти подзаряжаться не будет.

5. Параллельно с чтением и регенерацией данных первого столбца происходит по такому же алгоритму чтение данных с остальных столбцов. В результате, в буфер данных будет записано значение всех ячеек памяти первой строки.

6. С контроллера памяти на дешифратор адреса столбца выдаются номера столбцов для считывания. За один такт номера считываются сразу с нескольких столбцов. Количество столбцов для считывания определяется разрядностью процессора и способом его взаимодействия с памятью. Для 32-разрядных процессоров минимальной порцией является считывание данных с 32 столбцов.

7. С дешифратора адреса столбцов номера столбцов передаются в «Буфер данных», откуда соответствующие данные считываются и передаются в процессор.

На этом цикл чтения данных заканчивается. Как вы заметили, при чтении данных считываются значения сразу со всей строки памяти данных, а потом из нее в «Буфере данных» выбираются нужные данные. Поэтому минимальной порцией чтения данных с динамической оперативной памяти является строка.

При чтении данных одновременно происходит и их регенерация. Однако не все данные ОЗУ постоянно нужны для работы, поэтому обращение к некоторым ячейкам памяти может быть очень редким. Для того чтобы данные в таких ячейках не были утеряны, их приходится считывать принудительно, не дожидаясь пока они потребуются процессору.

Поэтому «Блок управления» с определенной частотой, в моменты простоя памяти или между обращением к памяти процессора (или других устройств), регенерирует данные во всех ячейках памяти.

1.3. Работа динамической памяти при записи данных.

Будем рассматривать принцип записи данных в динамическую память на примере записи данных в ячейку памяти М11:

1. Контроллер шины памяти получает команду на запись данных, данные и адрес, куда необходимо записать эти данные.

2. Контроллер шины памяти преобразует адрес на две составляющие – номер строки и номера столбцов, и передает полученные составляющие в «Дешифратор адреса строки» и в «Дешифратор адреса столбцов». А данные передает в «Блок работы с данными».

3. Дешифратор адреса строки выдает сигнал в соответствующую строку матрицы памяти. Мы договорились, что в примере данные будем записывать в первую ячейку памяти. Поэтому дешифратор адреса строки подаст напряжение на первую строку (S1).

4. Одновременно с «Дешифратора адреса столбцов» выдаются сигналы V в столбцы, соответствующие полученному адресу. В эти же столбцы подаются сигналы D с «Блока работы с данными», уровень которых определяется значением битов записываемого слова.

5. Напряжение, поданное на строку S1, откроет конденсаторы VT1 и VT3 первой ячейки памяти и соответствующие конденсаторы всех остальных ячеек первой строки.

6. Если в ячейке М11 хранится бит со значением «0» (в конденсаторе есть заряд), то ток, создаваемый входным напряжением Uп, пойдет по линии AB, иначе – по линии AE. Но нам это не важно, так как в ячейку М11 производится запись данных, а не их чтение, поэтому буфер данных будет игнорировать считанное с ячейки значение. А с выхода элемента L3 «Блока регенерации 1» будет всегда идти логический ноль, так как с дешифратора столбцов приходит сигнал (V1) на запись данных в первый столбец.

В результате, на входе элемента L1 будет логическая единица, а на выходе – логический ноль. Соответственно, на верхнем входе элемента L3 мы всегда имеем логический ноль, что означает – независимо от значений на нижнем входе, на выходе элемента L3 будет логический ноль.

На нижнем входе элемента L2 будет логическая единица, так как с дешифратора адреса столбцов выдается сигнал V1, а на верхнем входе будет либо ноль, либо единица, в зависимости от того, какое значение имеет бит записываемой информации.

Если бит имеет значение «1», то на верхнем входе элемента L2 будет «1». Имея две единицы на входе, мы получим на выходе так же логическую единицу. Соответственно, на входах элемента L4 будет получена логическая «1» и логический «0». В результате, на выходе будет логический «0», то есть ток будет отсутствовать, а, соответственно, зарядка конденсатора C идти не будет. Если до этого конденсатор С содержал заряд, то через несколько микросекунд он разрядится, пропуская ток по линии АВ. Таким образом в конденсатор С будет записан бит данных «1», соответствующий разряженному состоянию конденсатора.

Если бит имеет значение «0», то на верхнем входе элемента L2 будет «0». Имея на верхнем входе логический ноль, а на нижнем – логическую единицу, на выходе элемента L2 получим логический ноль. В результате, на верхнем и нижнем входах элемента L4 имеем логические нули, что означает – на выходе элемента L4 будет логическая единица, то есть пойдет ток зарядки конденсатора. Таким образом в конденсатор С будет записан бит данных «0», соответствующий заряженному состоянию конденсатора.

Аналогичным образом будут записаны данные в другие столбцы матрицы памяти. В тех столбцах, в которых запись данных не требуется, будет произведено чтение данных из ячейки памяти и ее регенерация. При этом данные в буфер памяти записаны не будут.

Запись данных во все требуемые ячейки строки матрицы памяти и чтение с регенерацией из оставшихся ячеек строки производятся параллельно.

Приведенная на рисунке 1 структурная схема памяти и описанный принцип работы соответствуют одной из самых простых организаций динамической памяти. На практике такую память уже давно не используют. Со временем, она претерпела ряд изменений, позволивших ей работать гораздо быстрее. Давайте рассмотрим эти улучшения.

2. Этапы модернизации динамической оперативной памяти.

Все усовершенствования в работе динамической памяти были направлены на увеличение скорости работы памяти, так как скорость оперативной памяти всю историю существования вычислительной техники являлась одним из факторов, сдерживающих рост производительности ЭВМ. Если обратиться к истории ЭВМ, то можно увидеть, что каждый прорыв в области организации оперативной памяти приводил к резкому скачку в быстродействии ЭВМ.

Естественно, скорость работы памяти увеличивалась, за счет повышения тактовой частоты и улучшения технологического процесса производства. Это был закономерный процесс, приводивший к плавному увеличению скорости работы. Но нас более интересуют изменения в принципиальном устройстве памяти, приводившие к появлению новых типов памяти. Именно о них я буду рассказывать в этой главе.

2.1. PM DRAM.

Один из первых видов оперативной памяти, используемой в персональных компьютерах, была простая динамическая оперативная память (PM DRAM – Page Mode DRAM), принцип работы которой описан выше. PM DRAM использовалась вплоть до середины 90-х годов.

Однако ее быстродействия катастрофически не хватало, поэтому на смену ей в 1995 году пришла память FPM DRAM.

2.2. FPM DRAM.

FPM DRAM (Fast Page Mode DRAM) – быстрая страничная память. Основное ее отличие от памяти FP DRAM заключалось в поддержке сохраненных адресов. То есть, если новое считываемое из памяти слово находилось в той же строке, что и предыдущее слово, то обращение к матрице памяти не требовалось, а выборка данных осуществлялась из «Буфера данных» (смотри рисунок 1) по номерам столбцов. Это позволяло в случае чтения из памяти массивов данных значительно сократить время чтения.

Однако запись данных в память осуществлялась точно так же, как и в памяти PM DRAM. Да и далеко не всегда считываемые данные располагались в одной строке. В результате, прирост производительности сильно зависел от типа программ, с которыми работала ЭВМ. Прирост мог быть, как существенный, так и вовсе могло быть замедление работы, из-за дополнительных накладных расходов на анализ номера строки предыдущей операции чтения.

Следующий тип памяти, заменивший FPM DRAM, появился через год (в 1996 году) и назывался EDO-DRAM.

2.3. EDO-DRAM.

EDO-DRAM (Extended Data Out DRAM) – динамическая память с усовершенствованным выходом. В этом типе памяти адрес следующего считываемого слова передавался до завершения считывания линии данных памяти, то есть до того, как считанные данные из памяти были переданы процессору.

Приступить к считыванию нового слова данных, до завершения чтения предыдущего, стало возможным, благодаря вводу, так называемых, регистров – защелок, которые сохраняли последнее считанное слово даже после того, как начиналось чтение или запись следующего слова.

Сочетая в себе также новшества памяти FPM RAM, новый тип памяти давал прирост производительности в пике, достигавший 15-20%.

Однако прогресс не стоял на месте, тактовые частоты работы процессоров, системной шины и естественно памяти росли. С повышением тактовой частоты все сложнее было добиваться стабильной работы памяти EDO-DRAM, так как из-за непредвиденных задержек чтение нового слова данных могло начаться прежде, чем предыдущее слово данных было сохранено с помощью регистров-защелок.

В результате, на смену EDO-DRAM пришла память SDRAM.

2.4. SDRAM.

SDRAM (Synchronous DRAM) – синхронная динамическая память с произвольным доступом. Как видно из названия, память работала синхронно, синхронно с контроллером памяти, что гарантировало завершение цикла чтения/записи строк в заданное время. Это позволяло выдавать новую команду на чтение до завершения считывания предыдущего слова данных, будучи уверенным, что считывание завершится верно, а чтение нового слова начнется с минимальной задержкой.

Однако тут возникали проблемы с чередованием чтения и записи. Когда подряд считывалось несколько слов данных – проблем не было никаких, а вот если до окончания записи приходила команда на чтение слова, которое записывалось, то это могло привести к считыванию неверных данных. Поэтому контроллер синхронной памяти дополнительно усложнился, обеспечивая защиту от таких ситуаций.

Также в SDRAM памяти было увеличено количество матриц памяти с одной до двух, иногда до четырех. Это позволило во время обращения к одной матрице памяти регенерировать строки другой матрицы, что, в свою очередь, позволило поднять тактовую частоту работы памяти, из-за уменьшения задержек на регенерацию.

Также это позволило считывать данные сразу из нескольких матриц памяти. То есть, пока идет считывание из одной матрицы памяти, в другую уже передается адрес нового слова для чтения/записи.

Со временем, развитие технологии производства и возможность работы сразу с несколькими матрицами памяти позволили значительно поднять внутреннюю скорость работы микросхем оперативной динамической памяти. Внешняя шина памяти стала узким местом и замедляла работу. В результате, был разработан новый тип памяти DDR SDRAM. С появлением DDR SDRAM предшествующую память SDRAM стали называть SDR SDRAM (Single Data Rate DRAM).

2.5. DDR SDRAM.

DDR SDRAM (Double Data Rate SDRAM) – синхронная динамическая память с произвольным доступом и удвоенной частотой передачи данных.

В этом типе оперативной памяти обмен данными по внешней шине идет не только по фронту тактового импульса, но и по спаду. В результате, без увеличения тактовой частоты внешней шины удваивается объем передаваемой информации.

Но подъема скорости работы внешней шины данных недостаточно, необходимо, чтобы и сама память поддерживала такую скорость. Так как увеличить частоту работы оперативной памяти довольно сложно, трудоемко и дорого, то производители пошли на хитрость. Вместо увеличения тактовой частоты памяти, они увеличили разрядность внутренней шины данных (от ячеек матриц памяти до буферов ввода-вывода) и сделали ее в два раза большей, чем разрядность внешней шины памяти (от контроллера памяти, встраиваемого в северный мост, или процессора до микросхемы памяти). То есть за 1 такт считывалось столько данных, сколько могло передаваться по внешней шине только за два такта. При этом ширина внешней шины данных составляла 64 бита, а внутренней – 128 бит.

В результате, по фронту тактового импульса из чипа памяти передавалась первая часть данных, а по спаду – вторая. Аналогичная ситуация была и при записи данных в память. Сначала принималась первая часть данных, а затем – вторая, после чего они обрабатывались одновременно.

Однако из-за накладных расходов и необходимости применять мультиплексор, для объединения двух частей данных, передаваемых в оперативную память, и демультиплексор, для разделения считываемых данных из памяти на две части, сильно выросла латентность памяти.

Латентность – это время между запросом данных из памяти и временем, когда оперативная память начнет выдавать требуемые данные.

В результате, реальная производительность DDR памяти, по сравнению с SDR, возросла всего лишь на 30-40 процентов.

Наиболее популярные модели памяти DDR работали на тактовой частоте 200 МГц, но имели маркировку DDR400. 400 означало количество транзакций (обменов) в секунду. Действительно, при тактовой частоте 200 МГц и передаче данных по фронту и спаду тактового импульса, в секунду будет совершаться 400 МТр. При этом внутренняя частота чипа памяти также будет 200 МГЦ.

С появлением DDR памяти, одним из актуальных параметров работы чипа памяти стала латентность. В результате, для примерной оценки производительности памяти ввели такое понятие, как тайминги памяти.

Тайминги, обычно, задаются набором из четырех чисел, определяющих основные задержки памяти в тактах работы чипа памяти. В таблице 1 приведен пример расшифровки таймингов памяти DDR266 (тайминги: 2.5-3-3-7) в порядке их расположения в строке.

Тайминги Значение Расшифровка
Tcl 2.5 CAS Latency – задержка в тактах между выдачей в память адреса столбца, когда нужная строка уже открыта, и началом выдачи данных из памяти.
Trcd 3 Row to CAS Delay – задержка в тактах между открытием строки и разрешением доступа к столбцам или, другими словами, задержка между подачей номера строки и номера столбца.
Trp 3 Row Precharge Time – время в тактах, требуемое на закрытие одной строки и открытие другой, или, другими словами, задержка между чтением последней ячейки памяти и подачей номера новой строки.
Tras 7 Tras (Active to Precharge Delay) – минимальное время между подачей номера строки и подачей команды подзарядки ячеек строки (PRECHARGE), то есть количество тактов, затрачиваемое памятью на чтение данных.

Таблица 1. Расшифровка таймингов оперативной памяти.

С помощью таймингов можно определить:

  • время, требуемое на чтение первого бита из памяти, когда нужная строка уже открыта, – Tcl тактов;
  • время, требуемое на чтение первого бита из памяти, когда строка неактивна, – Trcd+ Tcl тактов;
  • время, требуемое на чтение первого бита из памяти, когда активна другая строка, – Trp+Trcd+Tcl тактов;

Тайминги можно изменять (разгонять память), наряду с тактовой частотой, однако стабильность работы памяти при этом не гарантируется, поэтому надо быть крайне внимательными и осторожными при попытках заставить работать память с нестандартными настройками.

В таблице 2 приведены основные сертифицированные стандарты DDR SDRAM и их параметры.

Стандарт Частота внутренней шины, МГц Частота внешней шины, МГц Стандартные тайминги*
DDR200 100 100 200 2-2-2-5 1600
DDR266 133 133 266 2.5-3-3-7 2133
DDR300 166 166 333 2.5-3-3-7 2667
DDR400 200 200 400 2.5-3-3-8 3200

Таблица 2. Параметры стандартов памяти DDR SDRAM.

Поднять тактовую частоту чипа памяти выше 200 МГц на том этапе было крайне затруднительно. Естественно существовала память, работающая на тактовой частоте 233, 250 и даже 267 МГц, но это были несертифицированные стандарты, и стоили они дорого.

В результате, разработчики памяти продолжили развивать архитектуру памяти DDR SDRAM. Логическим результатом этого развития стала память DDR2 SDRAM.

2.6. DDR2 SDRAM.

В памяти DDR2 SDRAM ширина внутренней шины данных была увеличена еще в два раза и стала превосходить внешнюю шину данных в четыре раза. В результате, при одной и той же тактовой частоте внешней шины памяти у памяти DDR2 SDRAM внутренняя тактовая частота была в два раза меньше, по сравнению с памятью DDR SDRAM.

Для сравнения возьмем топовую память DDR (DDR400) и первую спецификацию памяти DDR2 (DDR2-400). Казалось бы, раз это новый тип памяти, то он должен работать быстрее, однако дело тут обстояло совсем не так. На практике память DDR2-400 была чуть ли не медленнее памяти DDR400.

Давайте разберемся почему. И так, первое – это тактовая частота внешней шины данных. Она была у обоих типов памяти одинаковая – 200 МГц, и ширина внешней шины данных тоже была одинаковая – 64 разряда. В результате, и быстродействие у памяти DDR2-400 заметно выше, чем у памяти DDR400, быть не могло.

К тому же в памяти DDR400 ширина внутренней шины была всего в 2 раза больше внешней, тогда как у DDR2-400 – в четыре. В результате, устройство мультиплексора и демультиплексора памяти DDR2-400 – сложнее. К тому же далеко не всегда считываемые/записываемые данные находятся в одной строке матрицы памяти, в результате, считать/записать все слова данных одновременно невозможно, эта особенность тем негативнее сказывается, чем больше ширина внутренней шины данных, а она, естественно, больше у памяти DDR2.

Так в чем же преимущество памяти DDR2-400. А преимущество – в тактовой частоте чипа памяти. Она была в два раза ниже, чем тактовая частота чипа DDR-400. Это давало огромный потенциал для увеличения производительности памяти и уменьшало энергопотребление.

В результате, очень быстро появилась память с внешней шиной, работающей на тактовой частоте 400 МГц. А позже у топовых моделей памяти DDR2 тактовая частота внешней шины достигла 533 МГц, при тактовой частоте чипа памяти – 266 МГц, и пиковой теоретической пропускной способности – 9.6 Гб/с, что, несмотря на увеличившуюся латентность, значительно превосходило возможности памяти DDR.

В таблице 3 приведены основные стандарты DDR2 SDRAM и их параметры.

Стандарт Частота внутренней шины, МГц Частота внешней шины, МГц Количество транзакций в секунду, МТр Стандартные тайминги* Теоретическая пропускная способность, Мб/с
DDR2-400 100 200 400 3-3-3-12 3200
DDR2-533 133 266 533 5-5-5-15 5300
DDR2-667 166 333 667 2.5-3-3-7 2667
DDR2-800 200 400 800 5-5-5-15 7100
DDR2-1066 266 533 1066 5-5-5-15 8500
DDR2-1200 300 600 1200 5-5-5-15 9600

* У различных производителей стандартные тайминги могут варьироваться и сильно зависят от качества элементной базы.

Таблица 3. Параметры стандартов памяти DDR2 SDRAM.

На этом был практически достигнут предел возможности усовершенствования DDR2 памяти по частоте и латентности. Дальнейшее увеличение производительности приводило к значительному росту энергопотребления и тепловыделений, и снижения стабильности и надежности работы памяти.

В результате, разработчики в 2005 году представили прототипы нового поколения DDR SDRAM памяти – DDR3 SDRAM. Однако массовое производство этой памяти и экспансия рынка начались только в 2009 году.

2.7. DDR3 SDRAM.

Основное направление развития памяти DDR3 SDRAM сохранилось таким же, как у DDR2 SDRAM. То есть снова была увеличена вдвое ширина внутренней шины данных памяти, что привело к снижению внутренней тактовой частоты памяти в два раза. К тому же при производстве памяти применялся новый технологический процесс, в начале – до 90 нм, затем – до 65 нм, 50 нм, 40 нм, и видимо это еще не предел.

Все это открыло разработчикам дальнейшие возможности по наращиванию тактовой частоты внешней шины памяти, тактовой чистоты самого чипа памяти, снижению рабочего напряжения и увеличению объема памяти.

Однако вместе с увеличением ширины внутренней шины данных увеличилась латентность памяти, усложнилось устройство мультиплексора/демультиплексора. В общем, все проблемы DDR и DDR2 памяти перешли в DDR3 память.

Но, благодаря улучшению технологического процесса и архитектуры памяти, удалось снизить время цикла чтения/записи, что позволило несколько снизить влияние увеличившейся латентности на производительность памяти.

В таблице 3 приведены существующие стандарты DDR3 SDRAM и их основные параметры.

Стандарт Частота внутренней шины, МГц Частота внешней шины, МГц Количество транзакций в секунду, МТр Стандартные тайминги* Теоретическая пропускная способность, Мб/с
DDR3-800 100 400 800 6-6-6-18 6400
DDR3-1066 133 533 1066 7-7-7-21 8533
DDR3-1333 166 667 1333 8-8-8-24 10667
DDR3-1600 200 800 1600 8-8-8-24 12800
DDR3-1866 233 933 1866 9-9-9-27 14930
DDR3-2000 250 1000 2000 9-9-9-27 16000
DDR3-2133 266 1066 2133 9-11-9-28 17066
DDR3-2200 275 1100 2200 10-10-10-30 17600
DDR3-2400 300 1200 2400 9-11-9-28 19200

* У различных производителей стандартные тайминги могут варьироваться и сильно зависят от технологического процесса производства и качества элементной базы.

Таблица 4. Параметры стандартов DDR3 SDRAM.

Память DDR3 сегодня (начало 2012 года) занимает главенствующие позиции на рынке, однако ей уже грядет замена в лице нового поколения памяти DDR – DDR4 SDRAM.

2.8. DDR4 SDRAM.

Стандарты нового поколения памяти были представлены еще в 2008 году в Сан-Франциско на форуме, организованном компанией Intel. В 2011 году компания Sumsung продемонстрировала свои первые прототипы памяти DDR4.Однако начало производства этого типа памяти планируется на 2012 год, а окончательное завоевание рынка закончится не ранее 2015 года. Такие поздние сроки начала массового производства, в основном, связаны с тем, что возможности памяти DDR3 еще полностью не исчерпаны и позволяют удовлетворить требования большинства пользователей. А, следовательно, выход на рынок с новым типом памяти будет коммерчески неоправдан.

Память DDR4 продолжит тенденции DDR памяти. Будет увеличена ширина внутренней шины, улучшена технология производства до 32-36 нм, подняты тактовые частоты внешней и внутренней шины, а также будет снижено напряжение.

Но поговорим о ней более подробно, когда появятся первые массово выпускаемые образцы памяти, а сейчас подведем итоги обзора динамической памяти и сформулируем ее основные достоинства и недостатки.

3. Достоинства и недостатки динамической памяти.

Преимущества динамической памяти:

  • низкая себестоимость;
  • высокая степень упаковки, позволяющая создавать чипы памяти большого объема.

Недостатки динамической памяти:

  • относительно невысокое быстродействие, так как процесс зарядки и разрядки конденсатора, пусть и микроскопического, занимает гораздо больше времени, чем переключение триггера;
  • высокая латентность, в основном, из-за внутренней шины данных, в несколько раз более широкой, чем внешняя, и необходимости использования мультиплексора/демультиплексора;
  • необходимость регенерации заряда конденсатора, из-за его быстрого саморазряда, ввиду микроскопических размеров.

Типы ОЗУ.

Оперативная память – это память для временного хранения команд и данных, используемых в процессе работы ЭВМ. Она обеспечивает оперативный доступ к требуемой информации процессору, видеокарте и другим элементам ЭВМ, и временное хранение результатов их работы.

В принципе, к оперативной памяти можно отнести любой тип память, как энергонезависимый, так и зависимый, но обладающий достаточным быстродействием, масштабируемостью и надежностью для обеспечения работы процессора и других быстрых компонентов компьютера.

Однако на данный момент оперативную память можно разделить на три типа:

1. Динамическая память (DRAM) – энергозависимая полупроводниковая память с произвольным доступом, в которой каждый разряд храниться в конденсаторе, требующем постоянной регенерации для сохранения информации.

2. Статическая память (SRAM) – энергозависимая полупроводниковая память с произвольным доступом, в которой каждый разряд хранится в триггере, позволяющем поддерживать состояние разряда без постоянной перезаписи.

3. Магниторезистивная оперативная память (MRAM) – это энергонезависимое запоминающее устройство с произвольным доступом, сохраняющее информацию при помощи магнитных моментов, а именно, направления намагниченности ферромагнитного слоя ячейки памяти.

Это деление будет верно, только если не учитывать устаревшие типы памяти, такие как память на ртутных линиях задержки, запоминающие электронно-лучевые трубки (ЭЛТ), память на магнитных сердечниках и так далее, описанных в статье “ЭВМ первого поколения”.

И перспективные разработки, такие как:

FRAM (Ferroelectric Random Access Memory) – сегнетоэлектрическая память, основывающаяся на сегнетоэле?ктриках – диэлектриках, способных менять дипольный момент под действием температуры и внешнего электрического поля;

PCM (Phase Change Memory) – память, основанная на изменении фазового состояния вещества (Ха?лькогени?да) с кристаллического на аморфный и обратно;



PMC (Programmable Metallization Cell) – память на базе программируемой металлизации ячейки, основанной на изменении положения атомов под действием электрического заряда;

RRAM (Resistive Random-Access Memory) – резистивная память, построенная на основе элементов, способных изменять свое сопротивление, в зависимости от величины пропущенного через них тока;

и множество других типов памяти, пока еще не вышедших на рынок в массовом порядке или вообще находящихся в стадии разработки или лабораторного тестирования.

Причем, принцип работы многих из считающихся сегодня перспективными типами памяти был разработан десять и более лет назад, однако из-за дороговизны или сложности производства эти типы памяти не стали популярными, или их разработка вообще не была завершена. И только сейчас на них обратили пристальное внимание.

Динамическая оперативная память.

Динамическая оперативная память (DRAM – Dynamic Random Access Memory) – энергозависимая полупроводниковая память с произвольным доступом. На данный момент – это основной тип оперативной памяти, используемый в современных персональных компьютерах и обеспечивающий наилучший показатель отношения цена-качество по сравнению с другими типами оперативной памяти. Однако, требования к быстродействию, энергопотреблению и надежности оперативной памяти постоянно растут, и динамическая оперативная память уже с трудом соответствует современным потребностям, так что в ближайшие годы стоит ожидать появления серийно выпускаемых конкурирующих типов оперативной памяти, таких как магниторезистивная оперативная память.

1. Устройство динамической оперативной памяти.
1.1. Работа динамической памяти в состоянии покоя.
1.2. Работа динамической памяти при чтении данных и регенерации.
1.3. Работа динамической памяти при записи данных.
2. Этапы модернизации динамической оперативной памяти.
2.1. PM DRAM.
2.2. FPM DRAM.
2.3. EDO-DRAM.
2.4. SDRAM.
2.5. DDR SDRAM.
2.6. DDR2 SDRAM.
2.7. DDR3 SDRAM.
2.8. DDR4 SDRAM.
3. Достоинства и недостатки динамической памяти.

Устройство динамической оперативной памяти.

Динамическая оперативная память (DRAM – Dynamic Random Access Memory) – энергозависимая память с произвольным доступом, каждая ячейка которой состоит из одного конденсатора и нескольких транзисторов. Конденсатор хранит один бит данных, а транзисторы играют роль ключей, удерживающих заряд в конденсаторе и разрешающих доступ к конденсатору при чтении и записи данных.

Однако транзисторы и конденсатор – неидеальные, и на практике заряд с конденсатора достаточно быстро истекает. Поэтому периодически, несколько десятков раз в секунду, приходится дозаряжать конденсатор. К тому же процесс чтения данных из динамической памяти – деструктивен, то есть при чтении конденсатор разряжается, и необходимо его заново подзаряжать, чтобы не потерять навсегда данные, хранящиеся в ячейке памяти.

На практике существуют разные способы реализации динамической памяти. Упрощенная структурная схема одного из способов реализации приведена на рисунке 1.

Как видно из рисунка, основным блоком памяти является матрица памяти, состоящая из множества ячеек, каждая из которых хранит 1 бит информации.

Каждая ячейка состоит из одного конденсатора (С) и трех транзисторов. Транзистор VT1 разрешает или запрещает запись новых данных или регенерацию ячейки. Транзистор VT3 выполняет роль ключа, удерживающего конденсатор от разряда и разрешающего или запрещающего чтение данных из ячейки памяти. Транзистор VT2 используется для считывания данных с конденсатора. Если на конденсаторе есть заряд, то транзистор VT2 открыт, и ток пойдет по линии AB, соответственно, на выходе Q1 тока не будет, что означает – ячейка хранит бит информации с нулевым значением. Если заряда на конденсаторе нет, то конденсатор VT2 закрыт, а ток пойдет по линии AE, соответственно, на выходе Q1 ток будет, что означает – ячейка хранит бит информации со значением “единица”.

Заряд в конденсаторе, используемый для поддержания транзистора VT2 в открытом состоянии, во время прохождения по нему тока, быстро расходуется, поэтому при чтении данных из ячейки необходимо проводить регенерацию заряда конденсатора.

Для работы динамической памяти на матрицу должно всегда поступать напряжение, на схеме оно обозначено, как Uп. С помощью резисторов R напряжение питания Uп равномерно распределяется между всеми столбцами матрицы.

Также в состав памяти входит контроллер шины памяти, который получает команды, адрес и данные от внешних устройств и ретранслирует их во внутренние блоки памяти.

Команды передаются в блок управления, который организует работу остальных блоков и периодическую регенерацию ячеек памяти.

Адрес преобразуется в две составляющие – адрес строки и адрес столбца, и передается в соответствующие дешифраторы.

Дешифратор адреса строки определяет, с какой строки надо провести чтение или запись, и выдает на эту строку напряжение.

Дешифратор адреса столбца при чтении данных определяет, какие из считанных бит данных были запрошены и должны быть выданы в шину памяти. При записи данных дешифратор определяет, в какие столбцы надо подать команды записи.

Блок работы с данными определяет, какие данные, в какую ячейку памяти требуется записать, и выдает соответствующие биты данных для записи в эти ячейки.

Блоки регенерации определяют:

  • когда происходит чтение данных и надо провести регенерацию ячейки, из которой данные были считаны;
  • когда происходит запись данных, а, следовательно, регенерацию ячейки производить не надо.

Буфер данных сохраняет всю считанную строку матрицы, так как при чтении всегда считывается вся строка целиком, и позволяет потом выбрать из считанной строки требуемые биты данных.

Рассмотрим принцип работы динамической памяти на примере структурной схемы, приведенной на рисунке 1. Рассматривать будем работу с первой ячейкой (M11). Работа остальных ячеек памяти полностью идентична.


Динамическая оперативная память (Dynamic RAM - DRAM) используется в большинстве систем оперативной памяти современных ПК. Основное преимущество памяти этого типа состоит в том, что ее ячейки очень плотно упакованы, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно организовать память большой емкости.


Ячейки памяти в микросхеме DRAM - это крошечные конденсаторы, которые удерживают заряды. Именно так (наличием или отсутствием зарядов) и кодируются биты. Проблемы, связанные с памятью этого типа, вызваны тем, что она динамическая, т.е. должна постоянно регенерироваться, так как в противном случае электрические заряды в конденсаторах памяти будут “стекать” и данные будут потеряны. Регенерация происходит, когда контроллер памяти системы берет крошечный перерыв и обращается ко всем строкам данных в микросхемах памяти. Большинство систем имеют контроллер памяти (обычно встраиваемый в набор микросхем системной платы, однако он может быть встроен и в процессор, как в процессорах Athlon 64 и Opteron), который настроен на соответствующую промышленным стандартам частоту регенерации, равную 15 мс. Это означает, что каждые 15 мс прочитываются все строки в памяти для обеспечения регенерации данных.


Регенерация памяти, к сожалению, отнимает время у процессора. Каждый цикл регенерации по длительности занимает несколько тактов центрального процессора. В старых компьютерах циклы регенерации могли занимать до 10% (или больше) процессорного времени, но в современных системах эти расходы составляют менее 1%. Некоторые системы позволяют изменить параметры регенерации с помощью программы настройки BIOS. Интервал между циклами обновления называется tREF и задается не в миллисекундах, а в тактах. Очень важно понимать, что увеличение значения интервала между циклами обновления для повышения быстродействия системы может привести к случайным произвольным ошибкам.


Произвольная ошибка - это ошибка обработки данных, не связанная с дефектом микросхемы памяти. В большинстве случаев надежнее придерживаться рекомендуемой или заданной по умолчанию частоты регенерации. Поскольку затраты на регенерацию в современных компьютерах составляют менее 1%, изменение частоты регенерации оказывает незначительное влияние на характеристики компьютера. Одним из наиболее приемлемых вариантов является использование для синхронизации памяти значений по умолчанию или автоматических настроек, заданных с помощью программы Setup BIOS. Большинство современных систем не позволяют изменять заданную синхронизацию памяти, постоянно используя автоматически установленные параметры.


В устройствах DRAM для хранения одного бита используются только один транзистор и пара конденсаторов, поэтому они более вместительны, чем микросхемы других типов памяти. В настоящее время уже выпускаются микросхемы динамической оперативной памяти емкостью 4 Гбайт и больше. Это означает, что подобные микросхемы содержат более миллиарда транзисторов! А ведь процессор Core 2 Duo имеет только 230 млн. транзисторов. Откуда такая разница? Дело в том, что в микросхеме памяти все транзисторы и конденсаторы размещаются последовательно, обычно в узлах квадратной решетки, в виде очень простых, периодически повторяющихся структур, в отличие от процессора, представляющего собой более сложную схему различных структур, не имеющую четкой организации.


Транзистор каждого одноразрядного регистра DRAM используется для чтения состояния смежного конденсатора. Если конденсатор заряжен, в ячейке записана единица; если заряда нет - записан нуль. Заряды в крошечных конденсаторах все время стекают, поэтому память должна постоянно регенерироваться. Даже мгновенное прерывание подачи питания или какой-нибудь сбой в циклах регенерации приводит к потере заряда в ячейке DRAM, а, следовательно, и к потере данных. В работающей системе это приводит к появлению “синего экрана смерти”, глобальным отказам системы защиты, повреждению файлов или к полному отказу системы.


Типы ОЗУ и производительность

В вопросах производительности памяти наблюдается некоторая путаница, поскольку обычно она измеряется в наносекундах, в то время как быстродействие процессоров - в мегагерцах и гигагерцах. В новых быстродействующих модулях памяти быстродействие измеряется в мегагерцах, что дополнительно усложняет ситуацию. К счастью, перевести одни единицы измерения в другие не составляет труда.


Наносекунда - это одна миллиардная доля секунды, т.е. очень короткий промежуток времени. В частности, скорость света в вакууме равна 299 792 км/с, т.е. за одну миллиардную долю секунды световой луч проходит расстояние, равное всего 29,98 см, т.е. меньше длины обычной линейки.


Быстродействие микросхем памяти и систем в целом выражается в мегагерцах (МГц), т.е. в миллионах тактов в секунду, или же в гигагерцах (ГГц), т.е. в миллиардах тактов в секунду. Современные процессоры имеют тактовую частоту от 2 до 4 ГГц, хотя гораздо большее влияние на их производительность оказывает их внутренняя архитектура (например, многоядерность).


При увеличении тактовой частоты продолжительность цикла уменьшается. В ходе эволюции компьютеров для повышения эффективности обращения к памяти создавались различные уровни кэширования, позволяющие перехватывать обращения процессора к более медленной основной памяти. Только недавно модули памяти DDR, DDR2 и DDR3 SDRAM сравняли свою производительность с шиной процессора. Когда частоты шин процессора и памяти равны, производительность памяти становится оптимальной для конкретной системы.


К 2000 году скорость шины процессора и памяти увеличилась до 100 и даже 133 МГц (эти модули назывались PC100 и PC133 соответственно). В начале 2001 года быстродействие памяти удвоилось и стало равным 200 и 266 МГц; в 2002 году выпускались модули памяти DDR со скоростью 333 МГц, а в 2003 году - 400 и 533 МГц. В 2005 и 2006 годах рост быстродействия памяти соответствовал росту скорости шины процессора - от 667 до 800 МГц. В 2007 году скорость памяти DDR2 была доведена до 1066 МГц, и одновременно с этим была выпущена память DDR3 с такой же и более высокой частотой. В таблице ниже перечислены основные типы модулей памяти и их быстродействие.


Тип памяти Пик популярности Тип модуля Напряжение Макс. частота, МГц Одноканальная, Мбайт/с Двухканальная, Мбайт/с
FPM DRAM 1987-1995 30/72-контактный SIMM 5 В 22 177 -
EDO DRAM 1995-1998 72-контактный SIMM 5 В 33 266 -
SDR DRAM 1998-2002 168-контактный DIMM 3,3 В 133 1066 -
Rambus DRAM 2000-2002 184-контактный RIMM 2,5 В 1066 2133 4266
DDR SDRAM 2002-2005 184-контактный DIMM 2,5 В 400 3200 6400
DDR2 SDRAM 2005-2008 240-контактный DDR2 DIMM 1,8 В 1066 8533 17066
DDR3 SDRAM 2008+ 240-контактный DDR3 DIMM 1,5 В 1600 12800 25600

EDO. Extended Data Out (расширенные возможности вывода данных).

DIMM. Dual Inline Memory Module (модуль памяти с двухрядным расположением выводов).

DDR. Double Data Rate (удвоенная скорость передачи данных).

FPM. Fast Page Mode (быстрый постраничный режим).

SIMM. Single Inline Memory Module (модуль памяти с однорядным расположением выводов).

RIMM. Rambus Inline Memory Module (модуль памяти стандарта Rambus).


Быстродействие памяти

При замене неисправного модуля или микросхемы памяти новый элемент должен быть того же типа. Обычно проблемы возникают при использовании микросхем или модулей, не удовлетворяющих определенным (не слишком многочисленным) требованиям, например к длительности циклов регенерации. Можно также столкнуться с несоответствием в разводках выводов, емкости, разрядности или конструкции. Если вы не знаете, какие модули памяти позволяет использовать материнская плата, обратитесь к документации.


При установке более быстродействующих модулей памяти производительность компьютера, как правило, не повышается, поскольку система обращается к ней с прежней частотой. В системах, использующих модули DIMM и RIMM, быстродействие и прочие временные характеристики считываются из специального ПЗУ SPD, установленного на модуле. После этого контроллер памяти конфигурируется с применением этих параметров. Производительность таких систем можно повышать, устанавливая более скоростные модули памяти, вплоть до предела, поддерживаемого набором микросхем системной логики.


Чтобы акцентировать внимание на проблемах синхронизации и надежности, Intel и JEDEC создали стандарты для высокоскоростных модулей памяти, определяющие их типы, удовлетворяющие определенным уровням быстродействия. Согласно этим стандартам и выполняется классификация модулей памяти по временным характеристикам.


Основными признаками недостаточного быстродействия памяти или ее несоответствия временным характеристикам системы являются ошибки памяти и четности, а также “зависание” и неустойчивая работа системы. В этом случае тест POST также может выдать ошибки. Если точно не известно, какие модули памяти допустимы для вашей системы, свяжитесь с производителем компьютера и постарайтесь приобрести модули памяти от хорошо зарекомендовавшего себя поставщика.


Контроль четности и коды коррекции ошибок (ECC)

Ошибки при хранении информации в оперативной памяти неизбежны. Они обычно классифицируются как аппаратные отказы и нерегулярные ошибки (сбои).


Если нормально функционирующая микросхема вследствие, например, физического повреждения начинает работать неправильно, то это называется аппаратным отказом. Чтобы устранить данный тип отказа, обычно требуется заменить некоторую часть аппаратных средств памяти, например неисправную микросхему, модуль SIMM или DIMM.


Другой, более коварный тип отказа - нерегулярная ошибка (сбой). Это непостоянный отказ, который не происходит при повторении условий функционирования или через регулярные интервалы. (Такие отказы обычно “лечатся” выключением питания компьютера и последующим его включением.)


Приблизительно 20 лет назад сотрудники Intel установили, что причиной сбоев являются альфа-частицы. Поскольку альфа-частицы не могут проникнуть даже через тонкий лист бумаги, выяснилось, что их источником служит вещество, используемое в полупроводниках. При исследовании были обнаружены частицы тория и урана в пластмассовых и керамических корпусах микросхем, применявшихся в те годы. Изменив технологический процесс, производители памяти избавились от этих примесей.

В настоящее время производители памяти почти полностью устранили источники альфа-частиц. В связи с этим многие производители модулей памяти исключили из своей продукции поддержку проверки четности, несмотря на то что от сбоев памяти не удалось избавиться полностью. Более поздние исследования показали, что альфа-частицы охватывают лишь малую долю причин сбоев памяти.


Сегодня самая главная причина нерегулярных ошибок - космические лучи. Поскольку они имеют очень большую проникающую способность, от них практически невозможно защититься с помощью экранирования. Этот тезис был подтвержден рядом исследований, проведенных компанией IBM под руководством доктора Дж.Ф. Зиглера.


Эксперимент по проверке степени влияния космических лучей на появление ошибок в работе микросхем показал, что соотношение “сигнал–ошибка” (Signal-to-Error Ratio - SER) для некоторых модулей DRAM составило 5950 единиц интенсивности отказов (Failure Units - FU) на миллиард часов наработки для каждой микросхемы. Измерения проводились в условиях, приближенных к реальным, с учетом длительности в несколько миллионов машино-часов. В среднестатистическом компьютере это означало бы появление программной ошибки памяти примерно каждые шесть месяцев. В серверных системах или мощных рабочих станциях с большим объемом установленной оперативной памяти подобная статистика указывает на одну ошибку (или даже более) в работе памяти каждый месяц! Когда тестовая система с теми же модулями DIMM была размещена в надежном убежище на глубине более 15 метров под слоем каменной породы, что полностью устраняет влияние космических лучей, программные ошибки в работе памяти вообще не были зафиксированы. Эксперимент продемонстрировал не только опасность влияния космических лучей, но и доказал, насколько эффективно устранять влияние альфа-лучей и радиоактивных примесей в оболочках модулей памяти.


Ошибки, вызванные космическими лучами, представляют большую опасность для модулей SRAM, чем для DRAM, поскольку заряд, необходимый для хранения одного бита в ячейке SRAM, гораздо меньше емкости конденсатора в DRAM. Космические лучи также представляют большую опасность для микросхем памяти с повышенной плотностью. Чем выше плотность ячеек памяти, тем выше вероятность того, что космический луч заденет такую ячейку. С ростом объема памяти увеличивается и частота ошибок.


К сожалению, производители ПК не признали это причиной погрешностей памяти. Случайную природу сбоя намного легче оправдать разрядом электростатического электричества, большими выбросами мощности или неустойчивой работой программного обеспечения (например, использованием новой версии операционной системы или большой прикладной программы). Исследования показали, что для систем ECC доля программных ошибок в 30 раз больше, чем аппаратных. И это неудивительно, учитывая вредное влияние космических лучей. Количество ошибок зависит от числа установленных модулей памяти и их объема. Программные ошибки могут случаться и раз в месяц, и несколько раз в неделю, и даже чаще.


Хотя космические лучи и радиация являются причиной большинства программных ошибок памяти, существуют и другие факторы.

Скачки в энергоснабжении или шум на линии. Причиной может быть неисправный блок питания или настенная розетка.

Использование памяти с некорректным типом или характеристиками. Тип памяти должен поддерживаться конкретным набором микросхем и обладать определенной этим набором скоростью доступа.

Статические разряды. Вызывают моментальные скачки в энергоснабжении, что может повлиять на целостность данных.

Ошибки синхронизации. Не поступившие своевременно данные могут стать причиной появления программных ошибок. Зачастую причина заключается в неверных параметрах BIOS, оперативной памяти, быстродействие которой ниже, чем требуется системе, разогнанных процессорах и прочих системных компонентах.

Тепловыделение. Скоростные модули памяти характеризуются более высокими рабочими температурами, чем модули устаревших типов. Первыми модулями, оснащенными теплорассеивателями, оказались модули RDRAM RIMM; сейчас теплорассеивателями оснащены многие производительные модули DDR2 и DDR3, так как это единственный способ борьбы с повышенным уровнем тепловыделения.


Большинство описанных проблем не приводят к прекращению работы микросхем памяти (хотя некачественное энергоснабжение или статическое электричество могут физически их повредить), однако могут повлиять на хранимые данные.

Игнорирование сбоев, конечно, - не лучший способ борьбы с ними. Для повышения отказоустойчивости в современных компьютерах применяются такие методы как контроль четности и коды коррекции ошибок (ECC).


Системы без контроля четности вообще не обеспечивают отказоустойчивость. Единственная причина, по которой они используются, - их минимальная базовая стоимость. При этом, в отличие от других технологий, не требуется дополнительная оперативная память. Байт данных с контролем четности включает в себя 9, а не 8 бит, поэтому стоимость памяти с контролем четности выше примерно на 12,5%. Кроме того, контроллеры памяти, не требующие логических мостов для подсчета данных четности или ECC, обладают упрощенной внутренней архитектурой. Портативные системы, для которых вопрос минимального энергопотребления особенно важен, выигрывают от уменьшенного энергоснабжения памяти благодаря использованию меньшего количества микросхем DRAM. И наконец, шина данных памяти без контроля четности имеет меньшую разрядность, что выражается в сокращении количества буферов данных. Статистическая вероятность возникновения ошибок памяти в современных настольных компьютерах составляет примерно одну ошибку в несколько месяцев. При этом количество ошибок зависит от объема и типа используемой памяти.


Подобный уровень ошибок может оказаться приемлемым для обычных компьютеров, не используемых для работы с важными приложениями. В этом случае цена играет основную роль, а дополнительная стоимость модулей памяти с поддержкой контроля четности и кода ECC себя не оправдывает, поэтому легче смириться с нечастыми ошибками.


Контроль четности

Это один из введенных IBM стандартов, в соответствии с которым информация в банках памяти хранится фрагментами по 9 бит, причем восемь из них (составляющих один байт) предназначены собственно для данных, а девятый является битом четности. Использование девятого бита позволяет схемам управления памятью на аппаратном уровне контролировать целостность каждого байта данных. Если обнаруживается ошибка, работа компьютера останавливается, а на экран выводится сообщение о неисправности. Если вы работаете на компьютере под управлением Windows или OS/2, то при возникновении ошибки контроля четности сообщение, возможно, не появится, а просто произойдет блокировка системы. После перезагрузки система BIOS должна идентифицировать ошибку и выдать соответствующее сообщение.


Модули SIMM и DIMM поставляются как с поддержкой битов четности, так и без нее.

Первые ПК использовали память с контролем четности для регулировки точности осуществляемых операций. Начиная с 1994 года на рынке ПК стала развиваться тревожная тенденция. Большинство компаний начали предлагать компьютеры с памятью без контроля четности и вообще без каких бы то ни было средств определения или исправления ошибок. Применение модулей SIMM без контроля четности сокращало стоимость памяти на 10–15%. В свою очередь, память с контролем четности обходилась дороже за счет применения дополнительных битов четности. Технология контроля четности не позволяет исправлять системные ошибки, однако предоставляет пользователю компьютера возможность их обнаружить, что имеет следующие преимущества:

контроль четности защищает от последствий неверных вычислений на базе некорректных данных;

контроль четности точно указывает на источник возникновения ошибок, помогая разобраться в проблеме и улучшая степень эксплуатационной надежности компьютера.


Для реализации поддержки памяти с контролем четности или без него не требуется особых усилий. В частности, внедрить поддержку контроля четности для системной платы не составит труда. Основные затраты внедрения связаны со стоимостью самих модулей памяти с контролем четности. Если покупатели готовы пойти на дополнительные затраты для повышения надежности заказываемых систем, производители компьютеров могут предоставить им такую возможность.


Схема проверки четности

При разработке стандарта контроля четности IBM определила, что значение бита четности задается таким, чтобы количество единиц во всех девяти разрядах (восемь разрядов данных и разряд четности) было нечетным. Другими словами, когда байт (8 бит) данных заносится в память, специальная схема контроля четности (микросхема, установленная на системной плате или на плате памяти) подсчитывает количество единиц в байте. Если оно четное, на выходе микросхемы формируется сигнал логической единицы, который сохраняется в соответствующем разряде памяти как девятый бит (бит четности). Общее количество единиц во всех девяти разрядах при этом становится нечетным. Если же количество единиц в восьми разрядах исходных данных нечетное, то бит четности равен нулю, и сумма двоичных цифр в девяти разрядах также остается нечетной.


Рассмотрим конкретный пример (имейте в виду, что разряды в байте нумеруются с нуля, т.е. 0, 1, 2, ..., 7).

Значение бита: 1 0 1 1 0 0 1 1 0

В данном случае общее число единичных битов данных нечетное (5), поэтому бит четности должен быть равен нулю.


Рассмотрим еще один пример.

Разряд данных: 0 1 2 3 4 5 6 7 бит чётности

Значение бита: 0 0 1 1 0 0 1 1 1

В этом примере общее число единичных битов данных четное (4), поэтому бит четности должен быть равен единице, чтобы количество единиц во всех девяти разрядах было нечетным.

При считывании из памяти та же самая микросхема проверяет информацию на четность. Если в 9-разрядном байте число единиц четное, значит, при считывании или записи данных произошла ошибка. Определить, в каком разряде она произошла, невозможно (нельзя даже выяснить количество испорченных разрядов). Более того, если сбой произошел в трех разрядах (в нечетном их количестве), то ошибка будет зафиксирована; однако при двух ошибочных разрядах (или четном их количестве) сбой не регистрируется. Поскольку одновременная ошибка в нескольких разрядах одного байта крайне маловероятна, такая схема проверки была недорогой и при этом позволяла с большой вероятностью определять ошибки в памяти.

При обнаружении ошибки схема контроля четности на системной плате формирует немаскируемое прерывание (NMI) - системное предупреждение, которое программы не могут проигнорировать. Основная работа прекращается и инициируется специальная процедура, записанная в BIOS.


Еще несколько лет назад, когда память была дорогой, некоторые компании выпускали модули SIMM с фиктивными микросхемами проверки четности. Вместо того чтобы хранить биты четности для каждого байта памяти, эти микросхемы генерировали всегда корректный бит дополнения. Таким образом, когда система пыталась записать бит четности, он попросту отбрасывался, а при считывании байта всегда подставлялся “нужный” бит четности. В результате система всегда получала информацию о корректной работе памяти, хотя на самом деле все могло быть далеко не так.


Такие мошеннические действия были вызваны дороговизной микросхем памяти, и производители были готовы переплатить пару лишних долларов на генератор, чтобы не платить за более дорогую микросхему, хранящую биты четности. К сожалению, определить наличие в модуле памяти такого генератора было достаточно сложно. Поддельный генератор четности внешне отличался от обычных микросхем памяти и имел маркировку, отличную от других микросхем модуля. Большинство из генераторов имели логотип “GSM”, который указывал на изготовителя логического устройства проверки четности, часто отличавшегося от компании, выпустившей сам модуль памяти.


Единственным инструментом, позволявшим выявить модули с поддельным контролем четности, были аппаратные тестеры. Сейчас же цены на память упали, что устранило первопричину подобных махинаций.


Код коррекции ошибок

Коды коррекции ошибок (Error Correcting Code - ECC) позволяют не только обнаружить ошибку, но и исправить ее в одном разряде. Поэтому компьютер, в котором используются подобные коды, в случае ошибки в одном разряде может работать без прерывания, причем данные не будут искажены. Коды коррекции ошибок в большинстве ПК позволяют только обнаруживать, но не исправлять ошибки в двух разрядах. В то же время приблизительно 98% сбоев памяти вызвано именно ошибкой в одном разряде, т.е. она успешно исправляется с помощью данного типа кодов. Данный тип ECC получил название SEC_DED (эта аббревиатура расшифровывается как “одноразрядная коррекция, двухразрядное обнаружение ошибок”).


В кодах коррекции ошибок этого типа для каждых 32 бит требуется дополнительно семь контрольных разрядов при 4-байтовой и восемь - при 8-байтовой организации (64-разрядные процессоры Athlon/Pentium). Реализация кода коррекции ошибок при 4-байтовой организации, естественно, дороже обычной проверки четности, но при 8-байтовой организации их стоимости равны, поскольку требуют одного и того же количества дополнительных разрядов.


Для использования кодов коррекции ошибок необходим контроллер памяти, вычисляющий контрольные разряды при операции записи в память. При чтении из памяти такой контроллер сравнивает прочитанные и вычисленные значения контрольных разрядов и при необходимости исправляет испорченный бит (или биты). Стоимость дополнительных логических схем для реализации кода коррекции ошибок в контроллере памяти не очень высока, но это может значительно снизить быстродействие памяти при операциях записи. Это происходит потому, что при операциях записи и чтения необходимо ожидать завершения вычисления контрольных разрядов. При записи части слова вначале следует прочитать полное слово, затем перезаписать изменяемые байты и только после этого - новые вычисленные контрольные разряды.


В большинстве случаев сбой памяти происходит в одном разряде, и потому такие ошибки успешно исправляются с помощью кода коррекции ошибок. Использование отказоустойчивой памяти обеспечивает высокую надежность компьютера. Память с кодом ECC предназначена для серверов, рабочих станций или приложений, в которых потенциальная стоимость ошибки вычислений значительно превышает дополнительные средства, вкладываемые в оборудование, а также временные затраты системы. Если данные имеют особое значение, и компьютеры применяются для решения важных задач, без памяти ECC не обойтись. По сути, ни один уважающий себя системный инженер не будет использовать сервер, даже самый неприхотливый, без памяти ECC.


Пользователи имеют выбор между системами без контроля четности, с контролем четности и с ECC, т.е. между желательным уровнем отказоустойчивости компьютера и степенью ценности используемых данных.


Вывод

Для использования кодов коррекции ошибок необходим контроллер памяти, вычисляющий контрольные разряды при операции записи в память. Стоимость дополнительных логических схем для реализации кода коррекции ошибок в контроллере памяти не очень высока, но это может значительно снизить быстродействие памяти при операциях записи. Это происходит потому, что при операциях записи и чтения необходимо ожидать завершения вычисления контрольных разрядов.

Использование отказоустойчивой памяти обеспечивает высокую надежность компьютера. Память с кодом ECC предназначена для серверов, рабочих станций или приложений, в которых потенциальная стоимость ошибки вычислений значительно превышает дополнительные средства, вкладываемые в оборудование, а также временные затраты системы. Если данные имеют особое значение, и компьютеры применяются для решения важных задач, без памяти ECC не обойтись.