Вторым важнейшим видом преобразований электрических колебаний в радиотехнических устройствах является процесс детектирования. Принятые высокочастотные колебания, промодулированные по амплитуде, частоте, фазе или имеющие форму импульсов, необходимо преобразовать в радиоприемном устройстве снова в колебания низкой частоты, которые могут быть восприняты человеком или зарегистрированы приборами. Этот процесс преобразования называется детектированием. Как и всякое преобразование колебаний, детектирование возможно только при использовании нелинейного элемента.

Наиболее просто производится детектирование AM колебаний (рис. 7 ). Если подать высокочастотные колебания, промодулированные по амплитуде, на нелинейный элемент - детектор, обладающий односторонней проводимостью (в качестве такого элемента может быть использован полупроводниковый или электровакуумный диод), то ток в его цели приобретает форму синусоидальных импульсов, амплитуда которых изменяется пропорционально интенсивности звукового сигнала.

Рис.7. Детектирование АМ колебаний:
а – процессы в цепи детектора; б – схема детектора.

Все гармонические составляющие и постоянная составляющая периодической последовательности импульсов, представляющая собой среднее значение тока за период, пропорциональны амплитуде импульсов. Следовательно, постоянная составляющая тока в цепи детектора I Д изменятся пропорционально напряжению сигнала, промодулировавшего колебания в передатчике. Ее отфильтровывают от высокочастотных составляющих тока с помощью фильтра, обычно состоящего из резистора R и конденсатора С малой емкости. Высокочастотные составляющие тока проходят через конденсатор, не создавая значительного напряжения на нем. Этот конденсатор необходим также для того, чтобы все высокочастотное детектируемое напряжение полностью попадало на диод Д (при отсутствии конденсатора часть этого напряжения падала бы на резисторе R ). Звуковая составляющая тока, проходя через резистор R , создает на нем напряжение, которое затем передается в последующую цепь.

Возникновение напряжения звуковой частоты на фильтре можно объяснить и не прибегая к понятию о гармонических составляющих тока. Импульсы тока, проходя через резистор R , создают на нем падение напряжения, которое заряжает конденсатор. За промежуток времени между импульсами конденсатор успевает только частично разрядиться через резистор, вследствие чего в интервале между импульсами напряжение на резисторе не исчезает полностью. Каждый новый импульс подзаряжает конденсатор. Таким образом, на конденсаторе создается некоторое усредненное напряжение, которое изменяется пропорционально амплитуде импульсов.



При детектировании ЧМ колебаний можно сначала превратить изменение мгновенной частоты в изменение тока высокочастотных колебаний, т. е. преобразовать ЧМ колебания в AM. Это достигается подачей ЧМ тока в цепь контура с собственной частотой f ok , расстроенного относительно средней частоты передатчика f cp (рис. 8 ). В этом случае изменение частоты передатчика в ту или другую сторону приводит к изменению амплитуды высокочастотных колебаний в контуре, причем ЧМ колебания преобразовываются в AM. Последние же могут быть продетектированы описанным выше способом.

Рис.8. Преобразование ЧМ колебаний в АМ с помощью расстроенного контура

Недостатком данного метода является наличие значительных нелинейных искажений, возникающих вследствие нелинейности резонансной характеристики контура. Кроме того, при описанном выше способе детектирования ЧМ колебаний изменения амплитуды колебаний на входе детектора будут вызывать изменения выходного напряжения. Следовательно, помехи, наводимые в приемной антенне, будут создавать искажения сигнала на выходе. Чтобы исключить это, можно поставить до детектора амплитудный ограничитель, однако это приводит к уменьшению амплитуды сигнала на входе детектора.

На практике широко применяют схемы частотных детекторов (их также называют частотными различителями или дискриминаторами), в значительной мере свободные от отмеченных выше недостатков.

Детектирование ФМ сигналов может быть произведено тем же способом, но в усилителе низкой частоты необходимо ввести частотную коррекцию (построить схему так, чтобы коэффициент усиления был обратно пропорционален частоте), без которой высокие частоты будут воспроизводиться с большей интенсивностью, чем низкие. Детектирование АИМ и ШИМ сигналов осуществляется так же, как обычных AM сигналов. При детектировании колебаний с ФИМ последовательность продетектированных импульсов, следующих один за другим через различные промежутки времени, преобразуют в последовательность импульсов, промодулированных по ширине, и уже из них выделяют напряжение звуковых частот.

Вопрос 4. Усиление сигналов низкой частоты.

При пояснении принципов усиления с помощью ламп или транзисторов были использованы схемы с резистором R H в роли нагрузки выходной цепи. Резистивные каскады широко применяют для усиления малых сигналов. Рассмотрим работу таких каскадов подробнее. На рис. 9.а дана схема лампового, а на рис. 9.б - транзисторного резистивного каскада (фильтры развязки в обеих схемах представлены лишь конденсаторами С ф , пропускающими токи сигналов мимо источника питания).

Ламповый каскад предназначен для усиления напряжения сигнала: усиленное напряжение должно воздействовать на вход следующего каскада и управлять его работой (данный каскад имеет лампу Л 1 следующий - лампу Л 2 ). Об усилении мощности здесь говорить не приходится, так как, во-первых, цепи сеток работают без расхода мощности, а во-вторых, мощность, расходуемая в резисторе R h , сама по себе не является полезной. Лампа Л1 - пентод, но в резистивном каскаде может применяться и триод. Все детали литания и нагрузки нам уже известны, за исключением конденсатора С р и резистора Re . Входное напряжение U m 1 подается от генератора сигнала ГС на управляющую сетку лампы Л 1 Усиленное напряжение возникает на резисторе R н , включенном в анодную цепь лампы Л 1 . Но для того чтобы переменное напряжение с резистора R н воздействовало на управляющую сетку следующей лампы, а постоянное напряжение анодной батареи не попадало в цепь этой сетки, между выходом данного и входом следующего каскада ставится разделительный конденсатор С р емкостью в десятки тысяч пикофарад. Этот конденсатор должен обладать высоким сопротивлением изоляции для постоянного тока. Наличие разделительного конденсатора делает необходимым включение от сетки на катод резистора : во-первых, через этот резистор подается с нижнего зажима резистора R K на управляющую сетку лампы Л 2 отрицательное постоянное напряжение смещения; во-вторых, электроны, попадающие с катода лампы Л 2 на ее управляющую сетку и способные образовать на ней отрицательный заряд, который может запереть лампу, стекают через резистор Rс на катод. Поэтому резистор (сопротивлением сотни кОм и больше) называется иногда сопротивлением сеточной утечки (более грубо, просто «утечкой»).

Так составляется схема каскада предварительного усиления (усиления напряжения) на резисторах с применением электронной лампы. Следует еще учесть, что выходные зажимы нашего каскада шунтируются входной емкостью С вх2 следующего каскада. Обычно эта емкость исчисляется десятками пикофарад (с учетом емкости сетка - катод, емкости между монтажными проводами и емкости деталей на корпус усилителя). К той же емкости С вх 2 следует отнести и выходную емкость лампы Л 1 , шунтирующую сопротивление резистора (см. ниже).

Транзисторный каскад собран по схеме с ОЭ на транзисторе Т 1 . Он получает от генератора сигнала (ГС) напряжение на базу U m 1 . Смещения на базы данного и следующего транзисторов подаются через резисторы R б .

Рис.9. Резистивные усилительные каскады:
а – ламповый; б – транзисторный.

Нагрузочный резистор R h включен в цель коллектора, с его зажима снимается переменное выходное напряжение U m 2 через разделительный конденсатор С р . Полезным потребителем энергии сигнала является входное сопротивление транзистора Т 2 следующего каскада. Здесь можно говорить об усилении напряжения, тока и мощности.

Ручная и автоматическая регулировка усиления,
борьба с помехами радиоприему.

Назначение и основные принципы реализации
автоматической регулировки усиления

Автоматическая регулировка усиления (АРУ) предназначается для сохранения заданного постоянства выходного напряжения приемника в условиях изменения уровня принимаемых сигналов. Существует два основных типа систем АРУ:

Система АРУ с обратной связью (система регулировки «назад» или обратная регулировка);

- система АРУ без обратной связи (система «вперед» или прямая регулировка).

Возможна также комбинированная схема, сочетающая обратную и прямую регулировки. На рисунке 1 показана структурная схема обратной АРУ. Она обеспечивает уменьшение усиления с увеличением уровня сигнала и увеличение усиления при уменьшении уровня сигнала.

Рис. 1. Структурная схема АРУ с обратной связью (регулировка «назад»)

Сигнал с выхода тракта УПЧ подается на амплитудные детекторы сигнала Д с и АРУ Д ару . С детектора АРУ напряжение через фильтр нижних частот подводится к регулируемым каскадам. В случае режимной регулировки управляющее напряжение с детектора АРУ подается на управляющие электроды (в цепи базы, затвора и т. п.) усилительных приборов регулируемых каскадов. Если сигнал на входе приемника имеет нормальную величину, то на управляющих электродах усилительных приборов действует напряжение, соответствующее исходной (нормальной) рабочей точке. Увеличение уровня несущего сигнала приводит к увеличению напряжения на входе детектора АРУ, а следовательно, и к увеличению выпрямленного напряжения. Это напряжение через фильтр подается на управляющие электроды усилительных приборов регулируемых каскадов и снижает их усиление. Основная особенность схемы АРУ с обратной связью невозможность обеспечения полного постоянства выходного напряжения, так как сам процесс регулирования предполагает наличие изменений напряжения сигнала. Можно уменьшить эти изменения до незначительной величины, но полностью устранить нельзя.

Система АРУ с прямым регулированием (рис. 2 ) характерна тем, что регулируемые каскады находятся после узла, с которого поступает сигнал на детектор АРУ. Если попытаться охватить регулировкой первые каскады приемника, то в цепи АРУ необходимо такое же усиление, что и в основном канале.

Рис. 2. Структурная схема прямой АРУ.

Это сильно усложняет схему приемника. Если же снимать напряжение для АРУ с какого-то промежуточного каскада, то все предыдущие не будут подвергаться регулировке и могут перегружаться. Преимуществом АРУ «вперед» является возможность получить при определенных условиях строгое постоянство выходного напряжения приемника, а при необходимости - даже падение его с ростом входного сигнала. Однако ее очень сложно выполнить как в конструктивном отношении, так и с точки зрения подбора характеристик регулируем элементов, и поэтому в приемниках АРУ «вперед» используется очень редко.

Рассмотрим более подробно различные виды обратной АРУ. Используются простая АРУ, АРУ с задержкой, АРУ с задержкой и усилением.

В простой АРУ напряжение с детектора АРУ, который можно совместить с детектором сигнала, через фильтр НЧ подается на регулируемые каскады при любых, даже самых малых, уровнях входного сигнала. Из сравнения показанных на рис. 3 амплитудных характеристик приемника без АРУ (1) и с простой АРУ (2) видно, что при этой АРУ коэффициент усиления приемника уменьшается не только для больших сигналов, но и для самых маленьких, когда уменьшение усиления не имеет смысла.

Рис.3. Амплитудные характеристики приемника:
1 – без АРУ; 2 – при простой АРУ; 3 – при АРУ с задержкой;
4 – при АРУ с задержкой и усилением.

Это основной недостаток простой АРУ, и поэтому она применяется редко и только в простейших радиовещательных приемниках. Недостатки простой АРУ устраняются использованием АРУ с задержкой. Основное отличие АРУ с задержкой от простой в том, что пока уровень несущей на входе приемника не превосходит величины соответствующей номинальной чувствительности, детектор АРУ закрыт напряжением задержки Ез и система АРУ не работает. Как только сигнал превысит этот уровень, на входе детектора АРУ появится напряжение U mc >\Ез\ и начинает действовать система регулирования, которая поддерживает выходное напряжение относительно постоянным. Схема АРУ с задержкой (рис. 3 ) содержит специальный детектор АРУ на диоде Д 2 .С помощью потенциометра R 1 R 3 создается напряжение Е з , подаваемое «а диод детектора АРУ и запирающее его. Регулирующее напряжение снимается с нагрузки детектора АРУ R 2 через фильтры R ф C ф подается на базы транзистора регулируемых каскадов. Амплитудная характеристика приемника, в котором применена АРУ с задержкой, показана на рис. 3 (кривая 3). В отличие от простой АРУ (кривая 2), АРУ с задержкой не влияет на коэффициент усиления приемника до тех пор, пока входное напряжение не превысит U BX о , т. е. пока входное напряжение детектора АРУ не превысит напряжение запирания диода Е З . Только после этого начинает работать схема АРУ и начинает замедляться рост выходного напряжения. Для увеличения пределов регулирования применяются схемы АРУ с задержкой и усилением. В этих схемах перед детектором АРУ ставятся дополнительные каскады УПЧ АРУ или после детектора АРУ каскады усиления постоянного тока. В связи с трудностями стабилизации выходного напряжения усилителя постоянного тока эта схема применяется реже. Из рис. 3 (кривая 4) видно, что эффективность усиленной АРУ выше, чем всех остальных схем. Фильтр R ф С ф (рис. 4 ) в цепи регулирования определяет инерционные свойства системы АРУ и служит для решения двух основных задач. Первая задача заключается в фильтрации напряжения промежуточной частоты и устранении тем самым обратной связи по промежуточной частоте. Вторая задача связана со свойствами амплитудно-модулированных сигналов. При приеме таких сигналов на нагрузке детектора АРУ будет действовать не только постоянное напряжение, пропорциональное амплитуде несущей частоты, но и переменное напряжение с частотой модуляции. Если оба эти напряжения подать на регулируемые каскады, то усиление сигнала в приемнике будет сопровождаться его демодуляцией (уменьшением коэффициента модуляции). Для устранения этого явления инерционные свойства фильтра АРУ должны быть такие, чтобы на его выходе обеспечивалось отфильтровывание составляющих, изменяющихся с частотами модуляции. Обычно фильтр АРУ состоит из резистора и конденсатора. Для устранения связи между несколькими регулируемыми каскадами, которая может привести к самовозбуждению, между регулируемыми каскадам и в цепь регулирования ставятся развязывающие фильтры (R" ф С" ф на рис. 4 ).

Рис. 4. Схема АРУ с задержкой.

Рассмотрим вопрос о возможных пределах регулировки усиления в одном каскаде и необходимом числе регулируемых каскадов, обеспечивающем заданные общие пределы АРУ, если в одном каскаде их обеспечить не удается. Реально можно получить в одном каскаде режимную регулировку в пределах 5-10 раз и до 20-30 раз при других видах регулировок. Если учесть, что уровень сигнала на входе приемника может изменяться в 10 4 - 10 5 раз, а на выходе приемника эти изменения не должны превышать 1,5 - 4 раза, то становится очевидной необходимость использования для регулировки усиления ряда каскадов приемника.

>> Модуляция и детектирование

§ 53 МОДУЛЯЦИЯ и ДЕТЕКТИРОВАНИЕ

Амплитудная модуляция высокочастотных колебаний достигается специальным воздействием на генератор высокочастотных незатухающих колебаний. В частности, модуляцию можно осуществить, изменяя на колебательном контуре напряжение, создаваемое источником (см. § 36). Чем больше напряжение на контуре генератора, тем больше.энергии поступает за период от источника в контур. Это приводит к увеличению амплитуды ко.чебаний в контуре. При уменьшении напряжения энергия, поступающая в контур, также уменьшается. Поэтому уменьшается и амплитуда колебаний в контуре.

Если менять напряжение на контуре с частотой, много меньшей частоты колебаний, вырабатываемых генератором, то изменения амплитуды этих колебаний будут приближенно прямо пропорциональны изменениям напряжения. В самом простом устройстве для осуществления амплитудной модуляции включают последовате.тьно с источником постоянного напряжения дополнительный источник переменного напряжения низкой частоты. Этим источником может быть, например, вторичная обмотка трансформатора , если по его первичной обмотке проходит ток звуковой частоты (рис. 7.10). В результате амплитуда колебаний в колебательном контуре генератора будет изменяться в такт с изменениями напряжения на транзисторе. Это и означает, что высокочастотные колебания модулируются по амплитуде низкочастотным сигналом.

Временную развертку модулированных колебаний можно непосредственно наблюдать на экране осциллографа, если подать на него напряжение с колебательного контура.

Кроме амплитудной модуляции, в некоторых случаях применяют частотную модуляцию - изменение частоты колебаний в соответствии с управляющим сигналом. Ее преимуществом является большая устойчивость по отношению к помехам.

Детектирование. Принятый приемником модулированный высокочастотный сигнал даже после усиления не способен непосредственно вызвать колебания мембраны телефона или рупора громкоговорителя со звуковой частотой. Он может вызвать только высокочастотные колебания, не воспринимаемые нашим ухом. Поэтому в приемнике необходимо сначала из высокочастотных модулированных колебаний выделить сигнал звуковой частоты, т. е. провести детектирование .

Детектирование осуществляется устройством, содержащим элемент с односторонней проводимостью - детектор. Таким элементом может быть полупроводниковый диод.

Рассмотрим принцип работы полупроводникового детектора. Пусть этот прибор включен в цепь последовательно с источником модулированных колебаний и нагрузкой (рис. 7.11). Ток в цени будет идти преимущественно в одном направлении, отмеченном на рисунке стрелкой, так как сопротивление диода в прямом направлении много меньше, чем в обратном. Мы вообще можем пренебречь обратным током и считать, что диод обладает односторонней проводимостью. Вольт-амперную характеристику диода приближенно можно представить в виде ломаной, состоящей из двух прямолинейных отрезков (рис. 7.12).

В цепи (см. рис. 7.11) будет идти пульсирующий ток, график силы тока которого показан на рисунке 7.13. Этот пульсирующий ток сглаживается с помощью фильтра. Простейший фильтр представляет собой конденсатор , присоединенный к нагрузке (рис. 7.14).

Фильтр, работает так. В те моменты времени, когда диод пропускает ток, часть его проходит через нагрузку, а другая часть тока ответвляется в конденсатор, заряжая его (сплошные стрелки на рисунке 7.14). Разветвление тока уменьшает пульсации тока, проходящего через нагрузку. Зато в промежутке между импульсами, когда диод заперт, конденсатор частично разряжается через нагрузку. Поэтому в интервале между импульсами ток через нагрузку идет в ту же сторону (штриховые стрелки на рисунке 7.14). Каждый новый импульс подзаряжает конденсатор. В результате этого через нагрузку идет ток звуковой частоты, форма колебаний которого почти точно воспроизводит форму низкочастотного сигнала на передающей станции (рис. 7.15).

Более сложные фильтры сглаживают небольшие высокочастотные пульсации, и колебания звуковой частоты происходят более плавно, чем это изображено на рисунке 7.15.

Простейший радиоприемник. Простейший радиоприемник состоит из колебательного контура, связанного с антенной, и подключенной к нему цепи, состоящей из детектора, конденсатора и телефона (рис. 7.16). В колебательном контуре радиоволной возбуждаются модулированные колебания. Катушки телефонов выполняют роль нагрузки. Через них идет ток звуковой частоты. Небольшие пульсации высокой частоты не сказываются заметно на колебаниях мембраны и не воспринимаются на слух .

Модулировать можно амплитуду или частоту колебаний. Проще всего осуществляется амплитудная модуляция.

При детектировании переменный ток выпрямляется и высокочастотные пульсации сглаживаются фильтром.


1. От чего зависит амплитуда автоколебаний в генераторе на транзисторе!
2. Как устроен простейший детекторный радиоприемник!

Мякишев Г. Я., Физика . 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Библиотека с учебниками и книгами на скачку бесплатно онлайн , Физика и астрономия для 11 класса скачать , школьная программа по физике, планы конспектов уроков

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Детектирование (демодуляция) – нелинейный процесс, в результате которого из модулированного высокочастотного сигнала выделяется низкочастотный сигнал сообщения. Детектирование - это радиотехнический процесс обратный модуляции и поэтому его часто называют демодуляцией.

7.4.1. Детектирование амплитудно-модулированных сигналов .

Амплитудный детектор (АД). Процесс детектирования рассмотрим для случая АМ-сигнала с однотональной модуляцией:

После детектирования мы должны получить низкочастотный сигнал сообщения Поскольку в спектре высокочастотного модулированного сигналане содержится низкочастотная составляющая с частотой, то возникает необходимость в изменении спектра высокочастотного модулированного сигнала с последующим выделением низкочастотной составляющей сигнала сообщения. Этим определяется структурная схема АД (рис. 7.7а), в которой нелинейный элемент, преобразует спектр АМ- сигнала, а с помощью фильтра низких частот (ФНЧ) из преобразованного спектра выделяется низкочастотный сигнал сообщения.

где – несущая частота;– верхняя частота спектра низкочастотного сигнала сообщения.

Рис. 7.7. Схемы детекторов амплитудно-модулированных сигналов

а) структурная схема;

б) схема диодного амплитудного детектора

Квадратичное детектирование. При подаче на вход детектора амплитудно-модулированного сигнала с малой амплитудой (0,3 В) вольт-амперная характеристика диода достаточно точно аппроксимируется полиномом второй степени:

Пусть на вход амплитудного детектора поступает сигнал вида

Подставив (7.27) в (7.26), получим

Из этого выражения видно, что вследствие нелинейности ВАХ диод изменил спектр выходного тока. На выходе диода ток содержит постоянную составляющую, низкочастотную составляющую и две высокочастотные составляющие с частотами и. ФНЧ отфильтрует высокочастотные составляющие. Разделительный конденсаторне пропускает на выход детектора постоянное напряжение, возникающее на резистореR за счет протекания постоянной составляющей тока. Низкочастотная составляющая тока, которая несет информацию,

протекая через резистор R , образует выходное напряжение детектора, пропорциональное квадрату амплитуды входного сигнала

Поэтому такое детектирование называется квадратичным.

В случае модуляции однотональным низкочастотным сигналом получим

Как видно из (7.31), при квадратичном детектировании выходное напряжение кроме полезного сигнала с частотой содержит составляющую с удвоенной частотой 2, которая порождает нелинейные искажения передаваемого сигнала. Поэтому квадратичное детектирование используется, например, для детектирования радиоимпульсов прямоугольной формы. Ввиду больших нелинейных искажений, квадратичное детектирование не применяется в радиовещании.

Линейное детектирование. При подаче на вход детектора сигнала с большой амплитудой (= 0,5…1,0 В) работу линейного детектора обычно рассматривают, считая диод идеальным, а его вольт-амперную характеристику аппроксимируют кусочно-линейной зависимостью

Как видно из рис. 7.8 ток через диод протекает только часть периода, т.е. диод работает в режиме отсечки с углом отсечки <90 0 . В спектре импульсов тока содержится низкочастотная (нулевая) составляющая, основная гармоника с частотой и бесконечное количество гармоник с частотами кратными(см. ряд Фурье). В соответствии с неравенством (7.25), из всего спектраRC -фильтр низких частот выделит составляющую с n =0, которая изменяется по закону низкочастотного информационного сигнала,

Низкочастотный ток, протекая через резистор R , образует напряжение

где – коэффициент нулевой гармоники.

В стационарном режиме на диоде действует напряжение . Угол отсечки определяется из условия:а отсюда

(от лат. detectio - открытие, обнаружение)

преобразование электрических колебаний, в результате которого получаются колебания более низкой частоты или постоянный ток. Наиболее распространённый случай Д. - демодуляция - состоит в выделении низкочастотного модулирующего сигнала из модулированных высокочастотных колебаний (см. Модуляция колебаний). Д. применяется в радиоприёмных устройствах для выделения колебаний звуковой частоты, в телевидении - сигналов изображения и т.д.

Модулированное по амплитуде колебание представляет собой в простейшем случае совокупность трёх высоких частот ω, ω + Ω и ω - Ω, где ω - высокая несущая частота, Ω - низкая частота модуляции. Т. к. сигнала частоты Ω нет в модулированном колебании, то Д. обязательно связано с преобразованием частоты. Электрические колебания подводятся к устройству (детектору), которое проводит ток только в одном направлении. При этом колебания превратятся в ряд импульсов тока одного знака. Если амплитуда детектируемых колебаний постоянна, то на выходе детектора импульсы тока имеют постоянную высоту (рис. 1 ). Если амплитуда колебаний на входе детектора изменяется, то высота импульсов тока становится различной. Огибающая импульсов при этом повторяет закон изменения амплитуды подводимых к детектору модулированных колебаний (рис. 2 ). Если колебания выпрямляются лишь частично, т. е. ток через детектор течёт в обоих направлениях, но электропроводность детектора различна, то Д. также происходит. Т. о., для Д. можно использовать любое устройство с различной электропроводностью в различных направлениях, например Диод. Спектр частот тока, прошедшего через диод, значительно богаче спектра исходного модулированного колебания. Он содержит постоянную составляющую, колебание частоты Ω, а также составляющие с частотами ω, 2ω, Зω и т.д. Для выделения сигнала частоты Ω ток диода пропускается через линейный фильтр, обладающий высоким сопротивлением на частоте Ω и малым сопротивлением на частотах ω, 2ω и т.д. Простейший фильтр состоит из сопротивления R и ёмкости С , величина которых определяется условиями ωRC >> 1 и ΩRC

Рассмотренный выше детектор с кусочно-линейной зависимостью тока от напряжения (рис. 3 , б), называется линейным, воспроизводит практически без искажений колебание низкой частоты Ω, которым модулировался входной сигнал (рис. 3 , в). Значительно бо́льшие искажения получаются при квадратичном Д., когда зависимость между током I и напряжением V выражается квадратичным законом: I = I 0 + AV + BV 2 . Модулированный по амплитуде сигнал (рис. 3 , а), поданный на квадратичный детектор, вызовет ток через детектор, в спектре которого содержатся частоты: Ω, 2Ω, ω - Ω, ω, ω + Ω, 2ω - Ω, 2ω + Ω и т.д. Линейный фильтр легко отсеивает все частоты, начиная с третьей, однако колебание частоты 2Ω ослабляется фильтром слабо и является искажающей сигнал Ω «помехой». Избавиться от неё можно лишь при малой глубине модуляции, т.к. амплитуда тока частоты 2Ω пропорциональна квадрату глубины модуляции входного сигнала.

Один и тот же диод может работать и как квадратичный, и как линейный детектор в зависимости от величины поступающего на него сигнала. Для малого сигнала характеристика диода квадратична, для большого же сигнала характеристику можно считать «кусочно-линейной». Т. о., для Д. с малыми искажениями желательно подавать на детектор достаточно большой сигнал.

Для Д. используется нелинейность зависимости тока от напряжения в вакуумных и полупроводниковых диодах (См. Полупроводниковый диод) (диодное Д.), нелинейность характеристики участка сетка-катод вакуумного Триода (сеточное Д.), нелинейность зависимости анодного тока триода от напряжения на его сетке (анодное Д.). Сам процесс Д. во всех случаях сводится к диодному Д., только при сеточном и анодном Д. он сопровождается усилением сигналов в триоде. Д. возможно и в оптическом диапазоне, где оно осуществляется с помощью фотоприёмников (фотоэлементов, фотоумножителей, фотодиодов и т.д.) или нелинейных кристаллов (см. Нелинейная оптика).

Лит.: Стрелков С. П., Введение в теорию колебаний, 2 изд., М., 1964; Сифоров В. И., Радиоприёмные устройства, 5 изд., М., 1954, гл. 6; Гуткин Л. С., Преобразование сверхвысоких частот и детектирование, М. - Л., 1953.

В. Н. Парыгин.

Рис. 1. На входе детектора колебания с постоянной амплитудой (а); на выходе детектора импульсы тока I одинаковой высоты (б). Детектор регистрирует постоянную составляющую тока.

  • - преобразование электрич. колебаний, в результате к-рого обычно получаются колебания другой частоты...

    Большой энциклопедический политехнический словарь

  • - преобразование электрических колебаний, в результате которого получаются колебания более низкой частоты или постоянный ток. Наиболее распространённый случай Д. - демодуляция - состоит в выделении...

    Большая Советская энциклопедия

  • - преобразование электрических колебаний, в результате которого обычно получаются колебания другой частоты...

    Большой энциклопедический словарь

  • - детекти́рование ср. 1. процесс действия по несов. гл. детектировать 2. Результат такого действия...

    Толковый словарь Ефремовой

  • - детект"...

    Русский орфографический словарь

  • - детекти́рование рад. выделение колебаний низкой частоты из высокочастотных модулированных колебаний; д. иногда называется демодуляцией...

    Словарь иностранных слов русского языка

  • - сущ., кол-во синонимов: 2 видео преобразование...

Детектирование гравитационных волн

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Детектирование гравитационных волн Я сразу узнаю удачу, едва она появится… Жюльетта Бенцони «Марианна в огненном венке» Из сказанного выше об астрофизических источниках можно сделать вывод, что безразмерные амплитуды гравитационных волн, которые мы имеем шанс

Детектирование

Из книги Большая Советская Энциклопедия (ДЕ) автора БСЭ

Радио, 1953, №1

Передача по радио звуков (речи, музыки и т. д.) осуществляется с помощью радиоволн. Для этого звуковыми колебаниями, преобразованными в электрические, воздействуют на высокочастотные колебания радиопередатчика. Высокочастотные колебания, подвергшиеся воздействию передаваемых звуковых колебаний, называются модулированными.

Достигнув приёмной антенны, радиоволны возбуждают в ней колебания, модулированные так же, как и те, которые излучаются антенной передатчика. Для того, чтобы воспроизвести передаваемые сигналы, из поступивших в приёмник модулированных колебаний должны быть получены низкочастотные колебания, соответствующие передаваемому звуку. Процесс получения последних называется детектированием, а устройства, в которых этот процесс осуществляется,- детекторами.

Для передачи сигналов можно воздействовать на высокочастотные колебания так, чтобы эти сигналы изменяли либо амплитуду высокочастотных колебаний (амплитудная модуляция), либо их частоту (частотная модуляция), или применением ещё какого-нибудь более сложного вида модуляции. Процесс детектирования различно модулированных высокочастотных колебаний протекает по-разному. Поскольку для целей радиовещания пока наиболее широко применяется амплитудная модуляция, и процесс детектирования мы будем рассматривать только для случая колебаний, модулированных по амплитуде.

В своих первых приёмниках изобретатель радио А. С. Попов для детектирования высокочастотных колебаний применял так называемый когерер. Однако когерер обладает рядом недостатков, и А. С.Попов вынужден был поэтому заменить его кристаллическим детектором. В дальнейшем П. Н. Рыбкин (ближайший сотрудник А. С. Попова) предложил метод непосредственного преобразования принимаемых затухающих высокочастотных колебаний в звуковые сигналы при помощи кристаллического детектора и телефона. Это позволило производить приём на слух телеграфных сигналов и послужило первым и наиболее важным шагом в осуществлении радиотелефонии.

"ИДЕАЛЬНЫЙ" ДЕТЕКТОР

Для того, чтобы форма «огибающей» модулированных колебаний (рис. 1), подводимых к детектору приёмника, была такой же, как и форма «огибающей» колебаний, излучаемых передающей антенной, необходимо, чтобы приёмник «пропускал» всю передаваемую полосу частот.

Рис. 1. Кривая, проходящая через «вершины» модулированных колебаний, называется «огибающей» этих модулированных колебаний.

Низкочастотный ток, имеющий форму этой огибающей, может быть получен с помощью цепи, пропускающей ток только в одном направлении (полное выпрямление) или пропускающей ток в одном направлении лучше, чем в другом (частичное выпрямление).

Рассмотрим сначала случай полного выпрямления.

Представим себе проводник, который обладает следующими свойствами: если к его концам приложено напряжение U одного направления, по этому проводнику течёт ток I, пропорциональный этому напряжению, как и в обычном проводнике; но при перемене знаков напряжения ток в проводнике вовсе не возникает. Такой проводник называют идеальным детектором.

Зависимость силы тока, текущего по проводнику, от его напряжения графически изображают с помощью так называемых вольт-амперных характеристик, которые строятся следующим образом: по горизонтальной оси откладывается приложенное к проводнику напряжение U, а по вертикальной - протекающий в нём ток I.

Вольтамперная характеристика идеального детектора представляет собой ломаную линию, состоящую из двух отрезков прямых линий (рис. 2). Для напряжения того направления, при котором детектор пропускает ток (его называют прямым напряжением), участок характеристики проходит под углом к горизонтальной оси тем большим, чем меньше сопротивление детектора в этом прямом направлении. Для напряжений же того направления, при котором детектор не пропускает тока (его называют обратным напряжением), участок характеристики совпадает с горизонтальной осью, так как при - всех значениях этого напряжения сила тока равна нулю.

Посмотрим теперь, какой ток течёт в цепи идеального детектора, когда на него действуют немодулированные колебания.

Рис. 2. Вольтамперная характеристика идеального детектора.

Для этого поступаем следующим образом: под характеристикой детектора вдоль её вертикальной оси изобразим графически зависимость приложенного напряжения от времени t (рис. 3). Каждому значению приложенного напряжения соответствует определённое значение силы тока в цепи детектора, которое можно найти по его характеристике (для нахождения этих значений тока служат вертикальные пунктирные линии на рис, 3). Так как приложенное напряжение всё время изменяется, то изменяется и ток. Откладывая различные значения тока вправо в такой же последовательности, как соответствующие изменения напряжения (для этого служат горизонтальные пунктирные линии на рис. 3), мы получим графическое изображение изменения тока в цепи детектора от времени t.

Рис. 3. Графическое построение кривой изменения тока в цепи идеального детектора при приложенном к нему синусоидальном напряжении.

Сила тока в цепи изображается «половинками синусоид» одного направления. Иначе говоря, в цепи детектора получаются лишь отдельные импульсы тока, текущего только в одном направлении. Такой ток называется пульсирующим.

ПОСТОЯННАЯ И ПЕРЕМЕННАЯ СОСТАВЛЯЮЩИЕ

Всякий пульсирующий ток можно рассматривать, как сумму двух токов - постоянного и переменного (рис. 4). Их называют соответственно постоянной и переменной составляющей данного пульсирующего тока. При этом постоянная составляющая определяется количеством электричества, протекающего в цепи в среднем за единицу времени. Иначе говоря, постоянная составляющая данного тока есть среднее значение силы этого тока. В случае обычного переменного тока, когда ток течёт полпериода в одном направлении и полпериода в другом, причём амплитуда и форма тока в обоих направлениях одинаковы, среднее значение тока, а значит и его постоянная составляющая равны нулю. В случае же пульсирующего тока, текущего всё время в одну сторону, его постоянная составляющая отлична от нуля. Величина постоянной составляющей определяется из следующих соображений.

Так как количество электричества, протекающего в цепи за какое-либо время, равно произведению силы тока на время, в течение которого этот ток протекает, то, следовательно, оно выражается площадью, заключённой между кривой, изображающей изменения силы тока, и осью времени. Поэтому постоянная составляющая данного пульсирующего тока, т. е. его среднее значение, изображается такой прямой, для которой площадь между ней и осью времени (заштрихованная площадь на рис. 4, Б), равна площади, ограниченной импульсами пульсирующего тока (заштрихованная площадь на рис. 4, А).

Постоянная составляющая пульсирующего тока будет тем большей, чем больше высота импульсов, т. е. в конечном счёте, чем больше амплитуда подводимого к детектору напряжения.

Рис. 4. График А представляет собой сумму постоянного тока, показанного на графике Б, и переменного тока, показанного на графике В.

Переменная составляющая пульсирующего тока в сумме с постоянной составляющей должна дать рассматриваемый пульсирующий ток. Как видно из рис. 4, В, эта переменная составляющая имеет ту же частоту, что и подводимое к детектору напряжение, но её кривая по форме не является синусоидальной. В то же время площади, ограниченные участками этой кривой, лежащими выше и ниже оси времени (штриховка с разным наклоном), равны, а следовательно, количества электричества, протекающего за период в том и другом направлении, одинаковы. Следовательно, количество электричества, протекающее в цепи, в среднем за период равно нулю, как и в случае обычного переменного тока. Величина переменной составляющей пульсирующего тока тем больше, чем больше «высота» импульсов.

Рис. 5. Схема простейшего детекторного приёмника.

Рассмотренный нами способ разложения пульсирующего тока на постоянную и переменную составляющие может показаться искусственным и чисто формальным. Однако в действительности такое разложение и происходит в цепи детектора и телефона. Рассмотрим простейшую схему приёмника с кристаллическим детектором (рис. 5). Здесь к концам катушки L1 колебательного контура присоединяется цепь, состоящая из последовательно включённых детектора Д и обмотки телефона Т. Параллельно обмоткам телефона обычно включается блокировочный конденсатор С б. При наличии колебаний в контуре на катушке L1 возникает высокочастотное напряжение, которое должно быть подано на детектор. Включённые последовательно с детектором обмотки телефона обладают значительным активным сопротивлением и, кроме того, большим индуктивным сопротивлением для токов высокой частоты. Поэтому, если бы напряжение высокой частоты подавалось на детектор через эти обмотки, то на них падала бы значительная часть этого напряжения. Следовательно, на детекторе падала бы лишь малая доля всего высокочастотного напряжения, возникающего в колебательном контуре. Чтобы избежать этого и служит блокировочный конденсатор С б ёмкостью от нескольких сот до тысячи пикофарад. Такой конденсатор обладает малым сопротивлением для токов высокой частоты и поэтому высокочастотное напряжение с контура почти полностью поступает на детектор (Между витками обмотки телефона и проводами, с помощью которых они соединяются со схемой приёмника, всегда существует ёмкость, которая как бы включена параллельно обмоткам. Она играет такую же роль, как и блокировочный конденсатор С б; поэтому и при отсутствии в приёмнике блокировочного конденсатора схема цепи детектора и телефона практически остаётся такой же, как изображённая на рис. 5.).

В то же время блокировочный конденсатор представляет собой очень большое сопротивление для постоянного тока. Поэтому постоянная составляющая тока, проходящего через детектор, будет протекать по обмоткам телефона, а переменная составляющая - через блокировочный конденсатор.

Итак, в цепи детектора под действием синусоидального напряжения возникают как постоянная составляющая тока, так и переменная. При этом постоянная составляющая будет тем большей, чем больше амплитуда напряжения, подаваемого на детектор.

ДЕТЕКТИРОВАНИЕ МОДУЛИРОВАННЫХ КОЛЕБАНИЙ

Теперь рассмотрим случай, когда на детектор действуют модулированные колебания. Так как величина постоянной составляющей зависит от амплитуды подводимого к детектору напряжения, то в данном случае «постоянная» составляющая будет изменяться в соответствии с изменением амплитуды этих модулированных колебаний (рис. 6, В). Иначе говоря, в случае детектирования модулированных колебаний в цепи детектора возникает ещё и переменная составляющая напряжения низкой частоты, кривая изменения которого по форме подобна огибающей модулированных колебаний, подаваемых на детектор.

Рис. 6. Детектирование модулированных колебаний идеальным детектором: А - кривая модулированных колебаний; Б - импульсы в цепи детектора; В - «постоянная» составляющая импульсов, изменяющаяся в соответствии с изменением их высоты.

Переменная составляющая низкой частоты, проходя через обмотки телефона (Ёмкость конденсатора подбирается так, чтобы его сопротивление для составляющей низкой частоты было значительно больше сопротивления обмоток телефона.), заставляет его воспроизводить те звуки, которые воздействуют на микрофон передатчика. Так же как и в случае, когда на детектор подаётся немодулированное напряжение, высокочастотная переменная составляющая пройдёт через блокировочный конденсатор.

Реальный детектор пропускает ток в обратном направлении, т. е. обладает несимметричной проводимостью. Его вольтамперная характеристика имеет различную крутизну при различных направлениях приложенного напряжения. Предположив, что она имеет вид, изображённый на рис. 7, повторим и для этого случая построение, аналогичное рис. 3. В этом случае мы получаем импульсы двух направлений. Можно считать, что импульсы каждого из них дают постоянную составляющую, определяемую их высотой. А поскольку высота импульсов тока различных направлений неодинакова, то и их постоянные составляющие также различны. Так как эти постоянные составляющие текут в разные стороны (поскольку импульсы направлены в разные стороны), то результирующее значение постоянной составляющей в цепи равно разности этих двух постоянных составляющих. Величина результирующей постоянной составляющей будет очевидно меньше, чем в случае идеального детектора, но она и в этом случае будет зависеть от амплитуды подводимого напряжения. Поэтому реальный детектор, так же как и идеальный, в случае модулированных колебаний будет давать низкочастотную составляющую, по форме подобную огибающей модулированных колебаний, но амплитуда её будет меньше, чем в случае идеального детектора.

Рис. 7. Графическое построение кривой изменения тока в цепи реального детектора при приложенном к нему синусоидальном напряжении.

КОНСТРУКЦИИ КРИСТАЛЛИЧЕСКИХ ДЕТЕКТОРОВ

Наиболее простым является контактный или кристаллический детектор, в котором несимметричной проводимостью обладает, контакт между кристаллом и металлом или двумя различными кристаллами.

Большинство таких детекторов довоенных выпусков обладали одинаковыми недостатками: для того, чтобы они детектировали, нужно было переставлением конца спиральки отыскивать та поверхности кристалла чувствительную (детектирующую) точку и регулировать степень нажима спиральки на кристалл; при малейшем толчке спиралька смещалась и детектор переставал работать. Только детектор с кристаллом карборунда был свободен от этого недостатка, но зато он отличался низкой чувствительностью.

Современные детекторы обладают постоянной рабочей точкой и поэтому не требуют настройки и регулировки. К наиболее распространённым современным детекторам относятся купроксный и кремниевый детекторы.

Первый из них представляет собой миниатюрный купроксный выпрямитель. Такой детектор обладает не очень высокой чувствительностью и поэтому применяется главным образом при приёме местных радиостанций.

Детектор, наиболее распространённый в современных массовых детекторных приёмниках (рис. 8), содержит кристалл кремния, впаянный в металлическую чашечку 2, и латунную или бронзовую контактную пластинку 5, соприкасающуюся с кристаллом. Монтируется такой детектор в штепсельной вилке 1, одна из ножек которой соединяется с чашечкой кристалла кремния, а вторая - с контактной пластинкой. Чашечка помещается в центральном отверстии штепсельной вилки к верху дном и имеет шлиц 3. Если при сильном сотрясении или значительном грозовом разряде детектор потеряет чувствительность, то плавным вращением чашечки с помощью отвёртки можно восстановить его работоспособность. Вообще же этот детектор работает достаточно стабильно и не требует такой регулировки. Поэтому на заводах после сборки кремниевых детекторов и установки у них рабочей точки поверхности чашечек со стороны шлица покрываются лаком или краской.

Описанный детектор обладает хорошей чувствительностью; он дёшев, прост и удобен в обращении.

Рис. 8. Устройство кремниевого детектора: 1 - штепсельная вилка; 2 - чашечка с кристаллом кремния; 3 - шлиц; 4 - латунная полоска, соединяющая чашечку с одной ножкой вилки; 5 - латунная полоска, соединяющая кристалл с другой ножкой вилки; б - бакелизированная бумажная трубка.

Группа советских специалистов под руководством инженера А. Пужай разработала конструкцию германиевого детектора.

Такой детектор по внешнему виду напоминает маленький круглый конденсатор постоянной ёмкости. Германиевый детектор обладает высокой чувствительностью и «весьма устойчив в работе.

В заключение отметим, что до появления электронной лампы кристаллический детектор был единственным типом детектора, применявшимся в радиоприёмниках. Однако после появления электронной лампы положение изменилось. Электронная лампа, способная не только детектировать, но также усиливать и генерировать колебания, стала вытеснять кристаллический детектор.

Но в будущем положение, повидимому, снова должно измениться. Дело в том, что, как показал ещё в 1922 году советский изобретатель О. В. Лосев, кристаллический детектор также может служить для усиления и генерирования колебаний. Это изобретение Лосева в своём дальнейшем развитии привело к созданию кристаллического триода, в котором имеются не один, а два металлических проводника, образующих контакт с кристаллом. Кристаллический триод может служить усилителем колебаний.

Профессор С. Хайкин