Компьютерная индустрия занята беспрестанными поисками путей повышения производительности. Принимая как лозунг высказывание, что быстрее - это всегда лучше, инженеры тем не менее ищут способы увеличить производительность, не переусложняя при этом конструкцию и не слишком взвинчивая себестоимость устройств.

Компьютер, состоящий из самых разных по принципам работы и назначению устройств, можно с достаточно вескими основаниями назвать "гнездом раздора". Ну никак его подсистемы и узлы не хотят согласованно работать на общее благо. Если процессор вырывается вперед, от него отстает память, а о дисковых накопителях и говорить не приходится. И заставить всех бежать со скоростью, задаваемой лидером, чрезвычайно сложно.

Кэширование - один из технических приемов, направленных на согласование работы разных по скорости устройств, используемый в компьютере многократно и на самых разных уровнях. Хотя реализация кэширования в том или ином конкретном случае может быть весьма сложной, его идея очень проста. Внутри компьютера кэш представляет собой место, где временно хранится программная информация, адреса или данные.

Поскольку компьютерные вычисления носят ярко выраженный итерационный характер (то есть некоторая последовательность действий повторяется раз за разом с минимальными изменениями), кэширование обеспечивает весьма эффективный метод повышения производительности, предоставляя системе возможность сохранять часто требуемые данные в ближайшей промежуточной кэш-памяти, доступ устройства к которой происходит быстрее и легче, чем к основной памяти.

Кэширование чтения в жестких дисках Все ведущие производители, такие, например, как Seagate, признают технику кэширования особенно эффективной в отношении накопителей на жестких дисках. Связано это с тем, что скорость винчестеров в тысячи и даже миллионы раз меньше, чем у твердотельных элементов оперативной памяти на материнской плате компьютера.

Так как компьютер обычно обращается к дисковым накопителям последовательно, то есть последовательность запросов в какой-то мере предсказуема, производительность дисковой подсистемы можно существенно поднять, если считывать дополнительные данные в кэш-память еще до того, как компьютер обратится за ними. И необходимые данные будут тогда выданы из твердотельной памяти в несколько тысяч раз быстрее, чем если бы их пришлось считывать с диска.

Тесты показывают, что когда компьютер обращается за данными по некоторому адресу, в 80-90 процентах случаев следующий запрос коснется данных, расположенных вслед за ними. К сожалению, попытки поднять производительность за счет использования кэширования все же носят рискованный характер. Дополнительная информация считывается с диска на основании пусть и больших, но все-таки не стопроцентных шансов на успех, то есть на то, что они пригодятся в дальнейшем.

Итак, кэширование чтения основано на предсказании следующих обращений к диску за данными (обычно расположенными непосредственно вслед за только что прочитанными) и помещении их в быстродействующую память перед тем, как они потребуются системе. Поскольку программа, отвечающая за кэширование, считывает информацию в память до того, как за ней обратятся, такой механизм часто называют буфером с упреждающим чтением (read look-ahead buffer). С точки зрения еще более существенного повышения производительности не имеет смысла размещать кэш-буфер и соответствующую программу в основной памяти компьютера, так как тогда она потребует часть вычислительных ресурсов центрального процессора. Дисковый накопитель сам способен справиться с упреждающим кэшированием, не отвлекая компьютер на хлопоты, связанные с управлением кэш-памятью.

По этим причинам сегодня все жесткие диски, включая винчестеры для мобильных, настольных и высокопроизводительных систем, поддерживают кэширование чтения, используя усовершенствованную концепцию. Например, при размещении на накопителе большего числа чипов памяти, что оборачивается возможностью держать в готовности большее количество данных, не дожидаясь их считывания с диска после получения запроса. Другими словами, при установке на печатную плату контроллера накопителя не 64, а 128 килобайт памяти появляется возможность загодя прочитать и приготовить к выдаче вдвое большее количество информации. И, до тех пор пока компьютер будет продолжать запрашивать последовательно записанные на диск данные, они будут моментально выдаваться ему из кэша.

Сегодня, когда большинство производителей использует от 128 до 512 килобайт кэш-памяти, компания Seagate в своих наиболее производительных накопителях Barracuda и Cheetah увеличила ее объем до полновесного мегабайта (предусмотрев возможность ее наращивания в четыре раза), а винчестеры Elite рекордной емкости (23 гигабайта) сразу оснащает 2 мегабайтами кэша. Это необходимо с учетом тех приложений, для которых предназначены указанные жесткие диски - для рабочих станций и серверов класса "хай-энд", мини- и суперкомпьютеров. В каждом из этих случаев постоянно требуется прочтение большого количества данных при максимальной скорости передачи. Настолько быстро, насколько только возможно.

Адаптивное кэширование Каждый раз, когда компьютер обращается за данными, которые уже находятся в кэше, запрос называется "попаданием в кэш". Если же запрошенных данных в кэше не оказалось и накопитель должен привести в действие свою механику и прочитать их с дисков, говорят о "промахе". О том, насколько эффективно работает программа (или алгоритм) кэширования, легче всего судить по соотношению попаданий и промахов. Сравнивая число попаданий с числом промахов, получают так называемый "рейтинг попаданий" для примененной схемы кэширования.

Применение стратегий, известных как адаптивное и сегментированное кэширование, помогает минимизировать частоту осечек.

Вот, к примеру, как работает сегментированный кэш. Предположим, что на винчестере установлено 800 килобайт кэш-памяти. Простая стратегия кэширования предполагает, что все эти 800 килобайт будут заполняться считываемыми в порядке упреждения данными.Если никакая часть из этих данных не будет востребована системой при следующем обращении, всех их придется удалить из кэша. Это промах. Замечу, что такое происходит сплошь и рядом при работе современных многозадачных систем, в которых за данными к диску обращаются поочередно несколько прикладных программ, причем каждая из них интересуется информацией, записанной на диске в совершенно другом месте.

Представим теперь, что кэш-память разделена на два сегмента по 400 килобайт каждый. Накопитель расценивает их как два абсолютно независимых кэш-буфера. Теперь данные для одного приложения можно записывать в первый 400-килобайтный сегмент, а для второго - во второй 400-килобайтный сегмент. Данные для обеих программ будут выдаваться из кэш-памяти, соотношение попаданий и промахов улучшится раза в два, если не больше. Именно поэтому в своих винчестерах Seagate применяет кэш-буферы, разделенные на два или четыре сегмента фиксированного размера. Наращивать их число свыше четырех инженеры из Seagate считают неоправданным, кроме исключительных случаев.

Второй путь улучшения рейтинга попаданий называется адаптивным кэшированием. В действительности термин адаптивное кэширование описывает два различных метода повышения эффективности. В соответствии с первым реализуется адаптивная сегментация, которая позволяет контроллеру винчестера управлять числом независимых сегментов, организуемых в кэш-памяти. Второй тип адаптивного кэширования подразумевает использование адаптивного алгоритма.

Предположим снова, что на винчестере установлен 800-килобайтый кэш-буфер с упреждающим чтением и этот буфер разделен на четыре сегмента по 200 килобайт. Предположим также, что запущенное на компьютере приложение запрашивает данные, которых нет ни в одном из четырех сегментов. Накопитель должен смириться с промахом и прочитать их со своих дисковых пластин, а заодно решить, куда их поместить в кэш-памяти. Чтобы принять такое решение, ему предстоит определить, какой из четырех сегментов лучше очистить. Разумеется, нежелательно помещать новые данные в сегмент, информация из которого вскоре может быть затребована, так как это приведет к повторному ее считыванию и перезагрузке кэша. Адаптивный алгоритм принимает решение о том, данные из какого сегмента скорее всего больше не понадобятся, основываясь на собственном анализе предыдущего использования данных.

В кэшировании наиболее приятно то, что оно предлагает относительно недорогой и простой способ согласования быстродействия компьютера и периферийных устройств. Хорошо реализованное кэширование помогает увеличить производительность сразу на несколько порядков.

Роман Соболенко,по материалам Seagate

Стоимость старших моделей смартфонов завышена. Все мы прекрасно понимаем, что разница в цене между 16 ГБ и 32+ ГБ моделями неоправданно большая. Речь идёт и о iPhone, и о всём многообразии флагманских представителей Android. В итоге человек берёт младшую модель с 16 гигабайтами хранилища на борту в надежде, что этого хватит. Но, зачастую реальность не оправдывает его ожидания.

Что съедает память в смартфоне

Для начала нужно понять, что указанный производителем объём памяти в устройстве - это не то же самое, что доступный пользователю объём памяти. То есть, на практике нам всегда доступно меньше памяти, чем написано на упаковке, и это справедливо как для iPhone, так и для семейства Android.

В обоих случаях операционная система устройства занимает 2-3 ГБ памяти, и вернуть их в распоряжение пользователя нельзя - эта пространство нужно для работы устройства.

Поэтому, когда вы подыскиваете новый смартфон, то считайте так: 16 ГБ на самом деле примерно равно 13 ГБ, а 32 ГБ - это в лучшем случае 29-30 ГБ.

В дальнейшем на оставшийся пользователю объём памяти будут посягать устанавливаемые приложения и игры . Экраны всё лучше, картинка должна быть всё качественнее, графика всё круче - это серьёзно утяжеляет приложения.

Кроме того, со временем установленные приложения будут толстеть, накапливая в памяти данные кэша - это всё, что остаётся в устройстве в процессе работы приложения и после его закрытия. Любое приложение, получающее контент из Сети, сохраняет его на устройстве для более оперативного предоставления пользователю. Смотрите YouTube - получаете кэшированные видеозаписи. Слушаете музыку онлайн - она кэшируется локально. Сёрфите в Интернете через Chrome - посещённые в браузере странички кэшируются.

Если у вас Android и вы оказались в ситуации, когда срочно нужно получить несколько сотен мегабайт места под видео или фото, то очистите данные кэша.

Настройки -> Память -> тап на Данные кэша.

Также можно выборочно очистить кэш у отдельных приложений.

Настройки -> Приложения -> тап по толстому приложению -> Очистить кэш.

В iOS таких штатных средств нет, но есть сторонние утилиты .

В наши дни 1 ГБ для одной игры уже кажется вполне приемлемым. Периодическая чистка игр с предварительным вопросом к самому себе «буду ли я в это ещё играть?» поможет избавиться от надоевших и ненужных игрушек, которые продолжают занимать порядочное количество памяти. Это же справедливо для любых других приложений. Не понравилось приложение? Не планируете пользоваться им в будущем? Удалите его, не держите просто так на устройстве.

Загружаемая пользователем в устройство музыка становится всё качественнее. Некоторые уже не воспринимают 320 кбит mp3 и хотят только flac. Такие треки занимают в несколько раз больше места на устройстве.

Подумайте, обеспечат ли используемые вами наушники достаточное качество воспроизведения звука, чтобы вы почувствовали разницу? Быть может, mp3 среднего качества вполне хватит?

Если речь идёт о фото и видео , то всё ещё хуже. В топовые актуальные смартфоны ставят 8+ мегапиксельные камеры, которые умеют снимать FullHD видео с высоким фреймрейтом и делать фото очень большого разрешения. Такие фото и видео занимают очень много места. Для примера, 1 час видео в качестве 1080p может занять на вашем смартфоне 10 ГБ места.

С отснятыми видео вариантов фактически нет. Их нужно периодически перемещать из мобильного устройства на компьютер для последующего хранения или размещения на видео-хостинге.

С хранением фотографий может помочь мобильное приложение Dropbox - в нём есть функция автоматического переноса снимков из памяти устройства в облако.

И всё же, чем более технологичными становятся наши мобильные устройства, тем больше будет требоваться места под приложения и контент. Производители понимают это, и зачастую идут навстречу пользователю, встраивая в смартфоны и планшеты слот под съёмные карты памяти . К сожалению, пользователи iPhone, гуглофонов и некоторых других линеек Android лишены такого преимущества. Google предлагает нам хранить все данные в Сети.

Такую концепцию поддерживают и многие разработчики - сейчас нам доступны сотни тематических онлайн-сервисов, предоставляющих контент в виде потоковой передачи. Их дополняют десятки облачных хранилищ. В таком случае память устройства будет забиваться значительно меньше, но значительно возрастают требования к качеству и скорости мобильного Интернета.

Кэширование — это один из способов оптимизации Web приложений. В любом приложении встречаются медленные операции (SQL запросы или запросы к внешним API), результаты которых можно сохранить на некоторое время. Это позволит выполнять меньше таких операций, а большинству пользователей показывать заранее сохраненные данные.

Наиболее популярная технология кеширования для Web приложений — Memcache .

Когда нужно кэшировать

Старайтесь избегать кэширования, пока в этом не будет прямой необходимости. Это простая техника, но это снижает гибкость приложения. Не делайте лишнюю работу заранее, но закладывайте возможность использования кэширования в будущем:

  • Используйте классы или функции, для работы с данными. Не используйте повторяющихся SQL выборок в основном приложении.
  • Используйте обертки для работы с внешними API.

Что кэшировать?

Кэшировать нужно данные, которые медленно генерируются и часто запрашиваются. На практике это обычно:

  • Результаты запросов к внешним сервисам (RSS, SOAP, REST и т.п.).
  • Результаты медленных выборок из базы данных.
  • Сгенерированные html блоки либо целые страницы.

Кэширование выборок из баз данных

Запросы к базе данных — наиболее распространенный пример. На основе Мemcache реализуется очень просто:

!$list = memcache_get("online_users") ) { $sql = "SELECT * FROM users WHERE last_visit > UNIX_TIMESTAMP() - 60*10"; $q = mysql_query($sql); while ($row = mysql_fetch_assoc($q)) $list = $row; memcache_set("online_users", $list, 60*60); } return $list; } $list = get_online_users(); ...

# Запрос на получение пользователей кэшируется на 1 час

Обновление данных

Если Вы кэшируете данные, которые могут обновляться, необходимо очищать кэш после каждого обновления:

memcache_delete("user" . $id); }

Кэширование списков

Допустим, Вы кэшируете данные каждого пользователя, как в примере, а также их списки (например, список online пользователей). При обновлении данных пользователя, Вы удаляете данные из кэша только для указанного пользователя. Но его данные могут также присутствовать в списке online пользователей, которые тоже лежат в кэше. Сбрасывать списки при каждом обновлении данных любого пользователя не эффективно. Поэтому обычно используют такой подход:

  1. Кэшируют списки, которые состоят только из ID пользователей.
  2. Для вывода списка отправляют отдельный запрос для получения данных каждого пользователя.

Реализация выглядит так:

id FROM users WHERE last_visit > UNIX_TIMESTAMP() - 60*10"; $q = mysql_query($sql); while ($row = mysql_fetch_assoc($q)) $list = $row["id"] ; memcache_set("online_users", $list, 60*60); } return $list; } $list = get_online_users(); foreach ($list as $id) { $user = get_user($id); ... }

# Получим список ID пользователей и для каждого из них получим актуальные данные

Для получения данных сразу нескольких объектов можно использовать Multiget .

Повторные запросы

Некоторые данные могут запрашиваться несколько раз в рамках одной страницы, например:

get_user($_SESSION["id"])["name"] )?>

... Email: get_user($_SESSION["id"])["email"] ?> ... get_user($_SESSION["id"])["nick"] ?>">Моя страница ...

Каждый вызов get_user() будет получать данные из кэша. Если Memcache стоит на отдельном сервере, это вызовет большой сетевой трафик и задержки.

Чтобы этого избежать, можно использовать дополнительный кэш внутри самого приложения:

global $app_cache; if ($app_cache["user" . $id]) return $app_cache["user" . $id]; if (!$data = memcache_get("user" . $id)) { $sql = "SELECT * FROM users WHERE id= " . intval($id); $q = mysql_query($sql); $data = mysql_fetch_assoc($q); memcache_set("user" . $id, $data, 60*60); $app_cache["user" . $id] = $data; } return $data; } function save_user($id, $data) { global $app_cache; mysql_query("UPDATE users SET ... WHERE id = " . intval($id)); memcache_delete("user" . $id); unset($app_cache["user" . $id]); }

В реальных приложениях, имеет смысл иметь обертку для Memcache с дополнительным кэшом:

inner_cache)) return $this->inner_cache[$key]; $data = memcache_get($this->resource, $key); $this->inner_cache[$key] = $data; return $data["value"]; } public static function set($key, $value, $ttl) { memcache_set($key, $value, $ttl); $this->inner_cache[$key] = $value; } public static function del($key) { memcache_delete($key); unset($this->inner_cache[$key]); } }

# $inner_cache хранит дополнительный кэш

Внимание. Использование этого подхода может приводить к утечкам памяти в случаях, когда идет работа с большим количеством данных в кэше. Например, в cron-задачах (допустим, мы перебираем всех пользователей для отправки рассылки). Тогда лучше добавить отключение внутреннего кэша:

public static $inner_cache_enabled = true; public static function get($key) { if (self::$inner_cache_enabled && array_key_exists($key, $this->inner_cache)) return $this->inner_cache[$key]; $data = memcache_get($this->resource, $key); $this->inner_cache[$key] = $data; return $data["value"]; } public static function set($key, $value, $ttl) { memcache_set($key, $value, $ttl); if (self::$inner_cache_enabled) $this->inner_cache[$key] = $value; } public static function del($key) { memcache_delete($key); unset($this->inner_cache[$key]); } } ... mem_cache::$inner_cache_enabled = false;

# Отключаем внутренний кэш

Подогревание

При обновлении особенно тяжелых данных следует использовать не сброс кэша, а прямое обновление данных в нем:

# операции по обновлению внешних ресурсов $data = file_get_contents("http://rss.com/rss"); memcache_set("rss", $data, 60*60); }

Это позволит избежать дополнительной нагрузки при выполнении тяжелых выборок, когда ключ удаляется. Такую методику обычно используют в cron задачах, чтобы периодически обновлять результаты очень тяжелых выборок.

Время жизни (ttl)

ttl (время жизни) — это время, после которого, данные будут удалены из кэша. В Memcache устанавливается в секундах:

60*60 );

# Установка ttl на 1 час

Чаще всего ttl ставят от нескольких минут до нескольких дней. Не используйте значение 0 (бесконечное хранение), это может засорить память.

LRU

Любой кэш работает по принципу вытеснения если ему не хватает памяти. Т.е. если Memcache может использовать максимум 1G памяти, а Вы пытаетесь сохранить ключей на 2G, то половину из этих данных Memcache удалит. Для определения, какие именно ключи удалять, используется алгоритм LRU (Least Recently Used):

Memcache постарается удалить прежде всего те данные, которые запрашивались очень давно (т.е. менее популярные удалит, а более популярные оставит).

Кэширование очень медленных запросов

Представьте, что у Вас есть запрос, который выполняется 10 секунд. Вы сохраняете его в кэш на 1 час. Когда проходит это время, данные в кэше удаляются. В первые 10 секунд после этого Вы сталкиваетесь с ситуацией, когда несколько пользователей одновременно вызывают этот тяжелейший запрос. Это может привести к катастрофическим последствиям, т.к. в течение 10 секунд может быть несколько сотен или тысяч таких вызовов.

Чтобы этого избежать, необходимо использовать специальную методику дублирования .

Атомарные операции

Иногда в кэше хранятся счетчики (например, количество пользователей). При добавлении новых пользователей, вместо сброса счетчика и повторной выборки, можно просто увеличить значение кэша на единицу. Но сделать это через приложение нельзя, т.к. это приведет к потере данных от двух одновременно выполненных запросов:

Memcache поддерживает две атомарные операции увеличения и уменьшения чисел:

# Увеличит счетчик на 1, функция memcache_decrement() уменьшает счетчик

Самое важное

Кэширование в приложениях на основе Memcache — это очень сильный инструмент. Не забывайте, что Memcache не гарантирует Вам сохранности данных. Это значит, что нельзя рассчитывать на то, что сохраненные на 60 минут данные будут находиться в кэше именно 60 минут.

Процесс работы персонального компьютера сопряжен с выполнением пользовательских команд. Для оптимизации этого процесса и уменьшения временных затрат в компьютере реализовано множество технологий, основное место среди которых занимает кэширование. И если для продвинутых юзеров этот термин понятен, то у новичков он вызывает лишь недоумение. Что такое кэширование данных и какую роль этот процесс играет в работе компьютера? И насколько сильно разниться кэширование настольной системы от аналогичной процедуры в мобильных гаджетах?

Понятие кеша

Если говорить на простом языке, который будет понятен абсолютно всем категориям пользователей, то кеш - это буфер, в который помещаются обрабатываемые процессором данные, с целью ускорения доступа к ним кристаллу. Одним из основных преимуществ кеша является быстродействие, поскольку доступ к нему осуществляется значительно быстрее, чем к жесткому диску. Однако он обладает ограниченным объемом, что является одним из его недостатков. Стоит отметить, что технология кэширования применяется не только в CPU, но и в работе винчестера, в работе интернет-браузеров и различных онлайн-сервисов, а также во многих других процессах, происходящих во время работы персонального компьютера. В основу кэширования положено структурирование массивов данных, которые, в свою очередь, выступают всего-лишь копией основной информации, хранящейся на компьютере. Для ускорения доступа к кэшируемым данным, каждому массиву присваивается персональный тэг, выступающий в качестве идентификатора, необходимого для определения качества соответствия с оригиналом.

Процесс использования

В процессе работы CPU или любого другого клиента происходит запрос определенных данных. Однако первым делом используются неосновные данные, которые расположены на жестком диске, а те, которые находятся непосредственно в кеш-памяти. Если таковые имеются, то происходит то, что называется попаданием. При необходимости, кэшируемые данные могут записываться и на основной источник хранения информации. Однако если в кеше отсутствуют необходимый массив, то клиент ищет необходимые данные в базовом хранилище, после чего найденные данные копируются в кеш-память.

Обновление данных

Процесс обновления данных проще всего рассмотреть на примере работы интернет-браузера. В процессе работы этих программ, происходит копирование веб-содержимого в кеш, с целью ускорения дальнейшей загрузки веб-содержимого. Таким образом, в процессе работы программа постоянно производит поиск копии загружаемого ресурса в своем кеше. Однако из-за ограниченного размера кеш-памяти происходит периодическое его обновление, в результате которого часть сохраненной ранее информации просто стирается. В основе этого процесса заложен специальный алгоритм, принцип работы которого практически идентичен независимо от типа используемого гаджета.

Политика записи

В процессе изменения массива данных, содержащегося в кеш-памяти, происходит и изменение оригинала данных, хранящегося на основном носителе. Временная задержка, которая присутствует между вносимыми изменениями, зависит от политики записи. На сегодняшний день существует всего два типа записи:
Немедленная запись. Все изменения вносятся одновременно в кеш и в основной памяти.
Отложенная или обратная запись. Изменения в массив данных, который находится в памяти постоянного запоминающегося устройства, вносятся не сразу, а с определенной периодичностью или если возникает запрос этих данных со стороны пользователя. Для отслеживания всех изменений используется принцип идентификации записей.

Современные вызовы

По мере развития современных технологий и изобретении новых моделей процессоров, работающих на более высоких частотах, а также скоростной оперативной памяти возникла необходимость увеличения производительности кеш-памяти. Это объясняется тем, что работа кеш-памяти более эффективна в том случае, если частота RAM-памяти меньше аналогичной у кристалла, поскольку CPU работает значительно быстрее. Поэтому инженеры пошли на определенные доработки и реализовали в различных устройствах свою кеш-память, что позволило увеличить время работы основного кеша. Также стоит отметить, что в современных процессорах реализована кеш-память меньшего размера, поскольку в основе их работы положен принцип виртуальной адресации, способной очень быстро обрабатывать большие массивы данных. Однако подобный подход при разработке других устройств показал меньшую эффективность, а в некоторых случаях даже бесполезность. Например, в большинстве современных моделей смартфонов и планшетных компьютеров используется медленная кеш-память с небольшим объемом, поэтому в этих гаджетах частота обновления кеша значительно выше.

Взаимная работа кеша различных устройств

Из всего вышеописанного можно сделать вывод, что кеш-память работает более эффективно и быстро, если она одна. Однако как быть в том случае, если их много? В этом случае работа кешапроисходит по принципу когерентности или с использованием технологий взаимного обмена данными. Всего различают три типа обмена:
Инклюзивный: каждая кеш-память работает независимо от других.
Эксклюзивный: способ обмена данными разрабатывается индивидуально, с учетом всех индивидуальных особенностей.
Неэкслюзивный: универсальный стандарт обмена массивами данных.

Уровни кэширования

Современные модели процессоров и других девайсов поддерживают трех- или четырехуровневую кеш-память. Чем большим количеством уровней она обладает, тем больший объем данных может храниться в ней, однако, и тем большее количество времени необходимо для их обработки.
Кеш первого уровня. Является одним из наиболее быстрых, поскольку располагается непосредственно на одном физическом ядре кристалла, благодаря чему необходимо меньшее количество времени для обработки данных, хранящихся в нем. Этот кеш реализован во всех современных моделях CPU и работает он синхронно с процессором на одной частоте.

Кеш второго уровня. В большинстве случаев находится возле кеша первого уровня и используется в качестве памяти раздельного использования. Для определения его величины необходимо объем разделить на количество физических ядер, реализованных в кристалле.
Кеш третьего уровня. Является самым большим по объему, но и самым медленным в работе. Основным предназначением кеша третьего уровня является объединение хранящихся массивов данных, хранящихся в кеше второго уровня.

Кеш четвертого уровня. Встречается преимущественно в мощных системах и серверах, которые в процессе работы задействуют несколько процессоров. Он располагается независимо от кристалла и реализован отдельной микросхемой.

Ассоциативность кеша

Основной и наиболее важной характеристикой кеш-памяти является ассоциативность. Если говорить на простом языке, то это логическое разделение кэшируемых данных на отдельные блоки, с целью оптимизации процесса обработки данных и ускорения процесса доступа к ним. Именно поэтому в процессе работы компьютера оперативная память находится в тесном взаимодействии с кешем.

Аннотация: Рассматриваются вопросы использования различных видов кэширования, поддерживаемых ASP.NET. Приводятся примеры применения кэширования на страницах ASP.NET приложения.

Цель лекции : изучить принципы использования кэширования при создании Web-приложений. На практических примерах рассмотреть возможности ASP . NET по организации различных видов кэширования как целых страниц, так и их частей.

Web-приложения целесообразно создавать в тех случаях, когда необходимы хорошие показатели масштабируемости и производительности. Количество пользователей таких приложений может достигать десятков и сотен тысяч. Каждое обращение пользователя может приводить к необходимости чтения и записи каких-либо данных на жесткие диски сервера. В тех случаях, когда некоторая часть информации является более востребованной, чем ее другие части, целесообразно использовать кэширование данных . Как известно, кэширование способно значительно ускорить работу как аппаратных, так и программных частей компьютера. Практически все современные устройства хранения и передачи данных используют кэш - память для ускорения работы за счет минимизации задержек, связанных с ожиданием окончания записи, чтения или передачи данных.

В ASP . NET кэширование - это способ ускорения работы за счет организации хранения в оперативной памяти сервера копий информации, создание которой связано с большими накладными расходами. Так, если пользователи постоянно запрашивают информацию, для получения которой необходимо выполнить достаточно громоздкую, сложную и длительную вычислительную процедуру, целесообразно будет выполнить ее один раз, записать результат ее выполнения в кэш и при обращении пользователей сразу выдавать результат. Понятно, что такой подход значительно ускорит процесс получения пользователями результата.

Но применение кэширования не только приводит к повышению производительности и масштабируемости, но и создает ряд проблем, которые необходимо знать и уметь их обходить. Одна из таких проблем - это то, что кэширование задействует оперативную память , которая никогда не бывает лишней. Если попытаться сохранить в оперативной памяти слишком много данных, операционная система сбрасывает лишние данные на диск , что может привести к замедлению работы всей системы в целом. Для управления этим процессом в ASP . NET реализован интеллектуальный механизм определения переполнения кэша, который основан на том, что при попытке записи в кэш данных, объем которых превышает доступный для кэша объем оперативной памяти, ASP . NET выборочно удалит из кэша часть данных для обеспечения максимальной общей производительности системы. Кроме того, при использовании механизмов кэширования необходимо помнить, что должен быть некий принцип, согласно которому будет осуществляться проверка обновления информации в кэше. Если данные таблицы базы данных или файла изменились, это может означать, что данные кэша устарели и их необходимо обновить. ASP . NET 2.0 предоставляет усовершенствованный механизм управления кэшированием , реализуя все необходимые элементы управления политикой кэширования. В частности, он позволяет управлять замещением информации, находящейся в кэше, управлять профилями кэшей, с помощью которых можно определить настройки кэширования для группы страниц, управлять хранением содержимого кэша в оперативной памяти и на жестких дисках, отслеживать изменения в исходных данных и удалять или объявлять недействительными кэшированные элементы.

Основы кэширования в ASP.NET

ASP . NET поддерживает два типа кэширования: кэширование данных и кэширование вывода . Рекомендуется использовать оба эти типа кэширования, т. к. это способно значительно повысить производительность приложения.

Кэширование данных управляется непосредственно из кода ASPNET-приложения, в котором разработчик сам определяет, какую информацию необходимо поместить в кэш . Страницы, к которым обращаются пользователи, могут проверять существование интересующей их информации в кэше, прежде чем выполнять шаги, необходимые для ее получения. В этом смысле кэширование можно сравнить с состоянием приложения, с той лишь разницей, что при невозможности сохранения данных в кэше они удаляются; кроме того, возможно настроить автоматическое удаление данных из кэша по истечении определенного времени.

Кэширование вывода позволяет сохранить копию сгенерированной HTML-страницы, отправленной клиенту. Таким образом, если еще один или несколько клиентов запросят у сервера ту же страницу, они получат ее копию из кэша.

Упомянутые виды кэширования стали основой для создания еще двух разновидностей.

  • Кэширование фрагментов - позволяет сохранять в кэше лишь часть готового HTML-кода страницы. В основном это относится к пользовательским элементам управления.
  • Кэширование источников данных - встроенный в объекты доступа к данным механизм кэширования данных, который запускается автоматически при использовании соответствующего элемента.

Рассмотрим основные аспекты применения кэширования в ASP . NET

Кэширование вывода

При использовании данного вида кэширования сгенерированный в результате выполнения приложения HTML-код сохраняется в памяти, и при повторном запросе этой же страницы клиенту передается уже сгенерированный ранее HTML-код.

В качестве демонстрации возможностей кэширования вывода воспользуемся хорошо известным примером вывода значения текущего времени и даты в окно браузера.

Создадим новое Web- приложение , откроем редактор кода страницы и введем следующую команду в обработчик события Page_Load :

Response.Write(DateTime.Now.ToString());

При запуске на страницу будет выводиться текущая дата и время. Если нажать кнопку "Обновить" в окне браузера, показания времени изменятся в соответствии с текущим значением системных часов.


Рис. 9.1.

Добавим данную страницу в кэш . Для этого добавим к файлу страницы директиву

<%@ OutputCache Duration="10" VaryByParam="None" %>

Атрибут Duration задает количество секунд, в течение которых необходимо хранить страницу в кэше. Параметр VaryByParam , равный значению None , устанавливает режим кэширования, при котором, независимо от дополнительных параметров, в кэше будет сохраняться только одна копия данной страницы.

Теперь при запуске приложения в окне браузера будет выведено текущее значение времени и дата, однако при попытке обновления страницы никаких изменений текущих значений происходить не будет в течение 10 секунд. При попытке обновления страницы по истечении 10 секунд обновится текущее значение времени, а также дата.

Несмотря на явное указание времени, в течение которого страница должна находиться в кэше, она может быть удалена из него ранее. Это может произойти в том случае, если для помещения в кэш нового элемента не хватает места. Благодаря такому механизму, реализованному в ASP .