Основные понятия Баз данных

Развития вычислительной техники осуществлялось по двум основным направлениям:

применение вычислительной техники для выполнения численных расчетов;

использование средств вычислительной техники в информационных системах.

Информационная система – это совокупность программно-аппаратных средств, способов и людей, которые обеспечивают сбор, хранение, обработку и выдачу информации для решения поставленных задач. На ранних стадиях использования информационных систем применялась файловая модель обработки. В дальнейшем в информационных системах стали применяться базы данных. Базы данных являются современной формой организации, хранения и доступа к информации. Примерами крупных информационных систем являются банковские системы, системы заказов железнодорожных билетов и т.д.

База данных – это интегрированная совокупность структурированных и взаимосвязанных данных, организованная по определенным правилам, которые предусматривают общие принципы описания, хранения и обработки данных. Обычно база данных создается для предметной области.

Предметная область – это часть реального мира, подлежащая изучению с целью создания базы данных для автоматизации процесса управления.

Наборы принципов, которые определяют организацию логической структуры хранения данных в базе, называются моделями данных.

Существуют 4 основные модели данных – списки (плоские таблицы), реляционные базы данных, иерархические и сетевые структуры.

В течение многих лет преимущественно использовались плоские таблицы (плоские БД) типа списков в Excel. В настоящее время наибольшее распространение при разработке БД получили реляционные модели данных. Реляционная модель данных является совокупностью простейших двумерных таблиц – отношений (англ. relation), т.е. простейшая двумерная таблица определяется как отношение (множество однотипных записей объединенных одной темой).

От термина relation (отношение) происходит название реляционная модель данных. В реляционных БД используется несколько двумерных таблиц, в которых строки называются записями, а столбцы полями, между записями которых устанавливаются связи. Этот способ организации данных позволяет данные (записи) в одной таблице связывать с данными (записями) в других таблицах через уникальные идентификаторы (ключи) или ключевые поля.



Основные понятия реляционных БД: нормализация, связи и ключи

1. Принципы нормализации:

В каждой таблице БД не должно быть повторяющихся полей;

В каждой таблице должен быть уникальный идентификатор (первичный ключ);

Каждому значению первичного ключа должна соответствовать достаточная информация о типе сущности или об объекте таблицы (например, информация об успеваемости, о группе или студентах);

Изменение значений в полях таблицы не должно влиять на информацию в других полях (кроме изменений в полях ключа).

2. Виды логической связи.

Связь устанавливается между двумя общими полями (столбцами) двух таблиц. Существуют связи с отношением «один-к-одному», «один-ко-многим» и «многие-ко-многим».

Отношения, которые могут существовать между записями двух таблиц:

один – к - одному, каждой записи из одной таблицы соответствует одна запись в другой таблице;

один – ко - многим, каждой записи из одной таблицы соответствует несколько записей другой таблице;

многие – к - одному, множеству записей из одной таблице соответствует одна запись в другой таблице;

многие – ко - многим, множеству записей из одной таблицы соответствует несколько записей в другой таблице.

Тип отношения в создаваемой связи зависит от способа определения связываемых полей:

Отношение «один-ко-многим» создается в том случае, когда только одно из полей является полем первичного ключа или уникального индекса.

Отношение «один-к-одному» создается в том случае, когда оба связываемых поля являются ключевыми или имеют уникальные индексы.

Отношение «многие-ко-многим» фактически является двумя отношениями «один-ко-многим» с третьей таблицей, первичный ключ которой состоит из полей внешнего ключа двух других таблиц

3. Ключи. Ключ – это столбец (может быть несколько столбцов), добавляемый к таблице и позволяющий установить связь с записями в другой таблице. Существуют ключи двух типов: первичные и вторичные или внешние.

Первичный ключ – это одно или несколько полей (столбцов), комбинация значений которых однозначно определяет каждую запись в таблице. Первичный ключ не допускает значений Null и всегда должен иметь уникальный индекс. Первичный ключ используется для связывания таблицы с внешними ключами в других таблицах.

Внешний (вторичный) ключ - это одно или несколько полей (столбцов) в таблице, содержащих ссылку на поле или поля первичного ключа в другой таблице. Внешний ключ определяет способ объединения таблиц.

Из двух логически связанных таблиц одну называют таблицей первичного ключа или главной таблицей, а другую таблицей вторичного (внешнего) ключа или подчиненной таблицей. СУБД позволяют сопоставить родственные записи из обеих таблиц и совместно вывести их в форме, отчете или запросе.

Существует три типа первичных ключей: ключевые поля счетчика (счетчик), простой ключ и составной ключ.

Поле счетчика (Тип данных «Счетчик»). Тип данных поля в базе данных, в котором для каждой добавляемой в таблицу записи в поле автоматически заносится уникальное числовое значение.

Простой ключ. Если поле содержит уникальные значения, такие как коды или инвентарные номера, то это поле можно определить как первичный ключ. В качестве ключа можно определить любое поле, содержащее данные, если это поле не содержит повторяющиеся значения или значения Null.

Составной ключ. В случаях, когда невозможно гарантировать уникальность значений каждого поля, существует возможность создать ключ, состоящий из нескольких полей. Чаще всего такая ситуация возникает для таблицы, используемой для связывания двух таблиц многие - ко - многим.

Необходимо еще раз отметить, что в поле первичного ключа должны быть только уникальные значения в каждой строке таблицы, т.е. совпадение не допускается, а в поле вторичного или внешнего ключа совпадение значений в строках таблицы допускается.

Если возникают затруднения с выбором подходящего типа первичного ключа, то в качеcтве ключа целесообразно выбрать поле счетчика.

Программы, которые предназначены для структурирования информации, размещения ее в таблицах и манипулирования данными называются системами управления базами данных (СУБД). Другими словами СУБД предназначены как для создания и ведения базы данных, так и для доступа к данным. В настоящее время насчитывается более 50 типов СУБД для персональных компьютеров. К наиболее распространенным типам СУБД относятся: MS SQL Server, Oracle, Informix, Sybase, DB2, MS Access и т. д.

Создание БД. Этапы проектирования

Создание БД начинается с проектирования.

Этапы проектирования БД:

Исследование предметной области;

Анализ данных (сущностей и их атрибутов);

Определение отношений между сущностями и определение первичных и вторичных (внешних) ключей.

В процессе проектирования определяется структура реляционной БД (состав таблиц, их структура и логические связи). Структура таблицы определяется составом столбцов, типом данных и размерами столбцов, ключами таблицы.

К базовым понятиями модели БД «сущность – связь» относятся: сущности, связи между ними и их атрибуты (свойства).

Сущность – любой конкретный или абстрактный объект в рассматриваемой предметной области. Сущности – это базовые типы информации, которые хранятся в БД (в реляционной БД каждой сущности назначается таблица). К сущностям могут относиться: студенты, клиенты, подразделения и т.д. Экземпляр сущности и тип сущности - это разные понятия. Понятие тип сущности относится к набору однородных личностей, предметов или событий, выступающих как целое (например, студент, клиент и т.д.). Экземпляр сущности относится, например, к конкретной личности в наборе. Типом сущности может быть студент, а экземпляром – Петров, Сидоров и т. д.

Атрибут – это свойство сущности в предметной области. Его наименование должно быть уникальным для конкретного типа сущности. Например, для сущности студент могут быть использованы следующие атрибуты: фамилия, имя, отчество, дата и место рождения, паспортные данные и т.д. В реляционной БД атрибуты хранятся в полях таблиц.

Связь – взаимосвязь между сущностями в предметной области. Связи представляют собой соединения между частями БД (в реляционной БД – это соединение между записями таблиц).

Сущности – это данные, которые классифицируются по типу, а связи показывают, как эти типы данных соотносятся один с другим. Если описать некоторую предметную область в терминах сущности – связь, то получим модель сущность - связь для этой БД.

Рассмотрим предметную область: Деканат (Успеваемость студентов)

В БД «Деканат» должны храниться данные о студентах, группах студентов, об оценках студентов по различным дисциплинам, о преподавателях, о стипендиях и т.д. Ограничимся данными о студентах, группах студентов и об оценках студентов по различным дисциплинам. Определим сущности, атрибуты сущностей и основные требования к функциям БД с ограниченными данными.

Основными предметно-значимыми сущностями БД «Деканат» являются: Студенты, Группы студентов, Дисциплины, Успеваемость.

Основные предметно-значимые атрибуты сущностей:

Студенты – фамилия, имя, отчество, пол, дата и место рождения, группа студентов;

Группы студентов – название, курс, семестр;

Дисциплины – название, количество часов

Успеваемость – оценка, вид контроля.

Основные требования к функциям БД:

Выбрать успеваемость студента по дисциплинам с указанием общего количества часов и вида контроля;

Выбрать успеваемость студентов по группам и дисциплинам;

Выбрать дисциплины, изучаемые группой студентов на определенном курсе или

определенном семестре.

Из анализа данных предметной области следует, что каждой сущности необходимо назначить простейшую двумерную таблицу (отношения). Далее необходимо установить логические связи между таблицами. Между таблицами Студенты и Успеваемость необходимо установить такую связь, чтобы каждой записи из таблицы Студенты соответствовало несколько записей в таблице Успеваемость, т.е. один – ко – многим, так как у каждого студента может быть несколько оценок.

Логическая связь между сущностями Группы – Студенты определена как один – ко – многим исходя из того, что в группе имеется много студентов, а каждый студент входит в состав одной группе. Логическая связь между сущностями Дисциплины – Успеваемость определена как один – ко – многим, потому что по каждой дисциплине может быть поставлено несколько оценок различным студентам.

На основе вышеизложенного составляем модель сущность – связь для БД «Деканат» - стрелка является условным обозначением связи: один – ко – многим.

Для создания БД необходимо применить одну из известных СУБД, например СУБД Access.

С точки зрения конечного пользователя процесс создания базы данных можно представить в виде четырех этапов:

  • Анализ предметной области
  • Инфологическое (концептуальное) описание данных;
  • Логическое проектирование баз данных;
  • Физическое проектирование баз данных.

На первом этапе необходимо провести подробное словестное описание предметной области и реальных связей, которые присутствуют между описываемыми объектами.

Предметная область отображается моделями данных нескольких уровней. Предметная область может относиться к любому типу организации.

Необходимо различать полную предметную область(крупное предприятие) и организационную единицу этой предметной области. Организационная единица, в свою очередь, может представлять собою предметную область (например, цех по производству или отдел предприятия).

Информация для описания предметной области зависит от реальной модели и может включать в себя сведения о людях, местах, предметах, событиях и понятиях.

Существует два подхода к выбору состава и структуры предметной области:

Функциональный подход - применяется, когда известны функции некоторой группы лиц и комплексов задач, для обслуживания информационных потребностей которых создается рассматриваемая БД.

Предметный подход - когда информационные потребности будущих пользователей БД жестко не фиксируются.

Концептуальное проектирование . Разработка концептуальной модели предметной области основана на анализе информационных потребностей конечных пользователей и тех требований, которые они предъявляют к создаваемой базе данных.

На этом этапе прежде всего решается вопрос о том, какие данные должны храниться в базе и какого типа информационные выборки и отчеты могут потребоваться пользователю БД.

Главными элементами концептуальной модели данных являются объекты и отношения. Объекты представляют аспекты, которые пользователи считают важными в моделируемой части реальности. Отношения связывают два объектных множества. Отношение само по себе является объектным множеством, состоящим из пар объектов-элементов, взятых из двух множеств, которое соединяет отношение.

Концептуальная модель предметной области обычно представляется в виде графической схемы, на которой показан состав и взаимосвязи хранимых данных. В процессе работы инфологическая модель может дополняться новыми данными в связи с изменяющимися потребностями пользователя.

Существует три основных типа отношений:

1) «один-к-одному». Такая связь означает, что каждому значению реквизита А соответствует одно и только одно значение связанного с ним реквизита В, и наоборот. Например, каждому значению реквизита Номер паспорта соответствует единственное значение реквизита ФИО гражданина страны, и наоборот. Такую связь обозначают 1:1, графически в инфологических моделях эта связь изображается одинарными стрелками.

2)«один-ко-многим». Эта связь означает, что каждому значению реквизита А соответствует одно или несколько значений связанного с ним реквизита В, а каждому значению реквизита В соответствует одно и только одно значение реквизита А. Например, для аэропорта , из которого осуществляется множество рейсов, характерна следующая связь между описывающими этот объект реквизитами: одному значению реквизита Название аэропорта вылета соответствует несколько значений реквизита Номер рейса, а каждому значению Номер рейса соответствует только одно Название аэропорта вылета.

3)«многие-ко-многим». Такая связь означает, что каждому значению реквизита А соответствует несколько значений связанного с ним реквизита В, и наоборот. Например, турагентство может работать с несколькими туроператорами, а туроператор обычно имеет разветвленную сеть турагентов. Такую связь обозначают М: М, а графически изображают двойными стрелками.

Аналогичные связи могут быть установлены в БД между реляционными таблицами и практически реализованы за счет наличия в них общих полей (реквизитов). Если общих полей в связываемых таблицах нет, то нужно сделать следующее:

  • если между реляционными таблицами существует связь 1:1 или 1: М, то следует скопировать поле, по которому устанавливается связь, из одной связываемой таблицы в другую;
  • если между реляционными таблицами существует связь М:М, то следует создать новую таблицу и включить в нее ключевые поля связываемых таблиц.

Логическое проектирование заключается в определении числа и структуры таблиц, формировании запросов к БД, определении типов отчетных документов, разработке алгоритмов обработки информации, создании форм для ввода и редактирования данных.

На этом этапе осуществляется выбор подходящей системы управления базами данных и представление инфологической модели предметной области в форме структуры базы данных конкретной СУБД.

Для размещения одной и той же информации могут быть использованы различные модели данных. Их выбор зависит от многих факторов, в том числе от имеющегося технического и программного обеспечения, объемов информации, сложности автоматизируемых задач.

Файловая модель. Представляет собой совокупность не связанных между собой файлов из однотипных записей с линейной (одноуровневой) структурой.

Более сложными моделями внутримашинной организации данных являются сетевые и иерархические модели.

В иерархической модели любой объект (запись, сегмент) может подчиняться только одному объекту вышестоящего уровня. В сетевых – любой объект (запись, файл) может подчиняться нескольким объектам.

Сетевые модели данных по сравнению с иерархическими являются более универсальным средством отображения данных для разных предметных областей. Достоинством сетевых моделей является отсутствие дублирования данных в различных элементах модели.

Реляционные модели данных отличаются от сетевых и иерархических простой структурой данных, удобным для пользователя табличным представлением и доступом к данным. Реляционная модель данных является совокупностью простейших двумерных таблиц – отношений. Связи между двумя логически связанными таблицами в реляционной модели устанавливаются по равенству значений одинаковых атрибутов таблиц - отношений.

Физическое проектирование предполагает определение способов и мест размещения базы данных, оценку ее объема и других параметров.

В каждой СУБД по -разному организованы хранение и доступ к данным. В системах баз данных файлы можно классифицировать следующим образом:

Файлы прямого доступа;

Файлы последовательного доступа;

Индексные файлы.


Похожая информация.


Следуя принципам, описанным в этой статье, можно создать базу данных, которая работает надлежащим образом и в будущем может быть адаптирована под новые требования. Мы рассмотрим основные принципы проектирования базы данных , а также способы ее оптимизации.

Процесс проектирования базы данных

Надлежащим образом структурированная база данных:

  • Помогает сэкономить дисковое пространство за счет исключения лишних данных;
  • Поддерживает точность и целостность данных;
  • Обеспечивает удобный доступ к данным.

Разработка БД включает в себя следующие этапы:

  1. Анализ требований или определение цели базы данных;
  2. Организация данных в таблицах;
  3. Указание первичных ключей и анализ связей;
  4. Нормализация таблиц.

Рассмотрим каждый этап проектирования баз данных подробнее. Обратите внимание, что в этом руководстве рассматривается реляционная модель базы данных Эдгара Кодда , написанная на языке SQL (а не иерархическая, сетевая или объектная модели ).

Анализ требований: определение цели базы данных

Например, если вы создаете базу данных для публичной библиотеки, нужно продумать, каким образом и читатели, и библиотекари должны получать доступ к БД .

Вот несколько способов сбора информации перед созданием базы данных:

  • Опрос людей, которые будут ее использовать;
  • Анализ бизнес-форм, таких как счета-фактуры, расписания, опросы;
  • Рассмотрение всех существующих систем данных (включая физические и цифровые файлы ).

Начните со сбора существующих данных, которые будут включены в базу. Затем определите типы данных, которые нужно сохранить. А также объекты, которые описывают эти данные. Например:

Клиенты

  • Адрес;
  • Город, штат, почтовый индекс;
  • Адрес электронной почты.

Товары

  • Название;
  • Цена;
  • Количество в наличии;
  • Количество под заказ.

Заказы

  • Номер заказа;
  • Торговый представитель;
  • Дата;
  • Товар;
  • Количество;
  • Цена;
  • Стоимость.

При проектировании реляционной базы данных эта информация позже станет частью словаря данных, в котором описаны таблицы и поля БД . Разбейте информацию на минимально возможные части. Например, подумайте о том, чтобы разделить поле почтового адреса и штата, чтобы можно было фильтровать людей по штату, в котором они проживают.

После того, как вы определились с тем, какие данные будут включены в базу, откуда эти данные будут поступать, и как они будут использоваться, можно приступить к планированию фактической БД .

Структура базы данных: построение блоков

Следующим шагом будет визуальное представление базы данных. Для этого нужно точно знать, как структурируются реляционные БД . Внутри базы связанные данные группируются в таблицы, каждая из которых состоит из строк и столбцов.

Чтобы преобразовать списки данных в таблицы, начните с создания таблицы для каждого типа объектов, таких как товары, продажи, клиенты и заказы. Вот пример:

Каждая строка таблицы называется записью. Записи включают в себя информацию о чем-то или о ком-то, например, о конкретном клиенте. Столбцы (также называемые полями или атрибутами) содержат информацию одного типа, которая отображается для каждой записи, например, адреса всех клиентов, перечисленных в таблице.

Чтобы при проектировании модели базы данных обеспечить согласованность разных записей, назначьте соответствующий тип данных для каждого столбца. К общим типам данных относятся:

  • CHAR — конкретная длина текста;
  • VARCHAR — текст различной длины;
  • TEXT — большой объем текста;
  • INT — положительное или отрицательное целое число;
  • FLOAT , DOUBLE — числа с плавающей запятой;
  • BLOB — двоичные данные.

Некоторые СУБД также предлагают тип данных Autonumber , который автоматически генерирует уникальный номер в каждой строке.

В визуальном представлении БД каждая таблица будет представлена блоком на диаграмме. В заголовке каждого блока должно быть указано, что описывают данные в этой таблице, а ниже должны быть перечислены атрибуты:


При проектировании информационной базы данных необходимо решить, какие атрибуты будут служить в качестве первичного ключа для каждой таблицы, если таковые будут. Первичный ключ (PK ) — это уникальный идентификатор для данного объекта. С его помощью вы можете выбрать данные конкретного клиента, даже если знаете только это значение.

Атрибуты, выбранные в качестве первичных ключей, должны быть уникальными, неизменяемыми и для них не может быть задано значение NULL (они не могут быть пустыми ). По этой причине номера заказов и имена пользователей являются подходящими первичными ключами, а номера телефонов или адреса — нет. Также можно использовать в качестве первичного ключа несколько полей одновременно (это называется составным ключом ).

Когда придет время создавать фактическую БД , вы реализуете как логическую, так и физическую структуру через язык определения данных, поддерживаемый вашей СУБД .

Также необходимо оценить размер БД , чтобы убедиться, что можно получить требуемый уровень производительности и у вас достаточно места для хранения данных.

Создание связей между сущностями

Теперь, когда данные преобразованы в таблицы, нужно проанализировать связи между ними. Сложность базы данных определяется количеством элементов, взаимодействующих между двумя связанными таблицами. Определение сложности помогает убедиться, что вы разделили данные на таблицы наиболее эффективно.

Каждый объект может быть взаимосвязан с другим с помощью одного из трех типов связи:

Связь «один-к одному»

Когда существует только один экземпляр объекта A для каждого экземпляра объекта B, говорят, что между ними существует связь «один-к одному » (часто обозначается 1:1 ). Можно указать этот тип связи в ER-диаграмме линией с тире на каждом конце:


Если при проектировании и разработке баз данных у вас нет оснований разделять эти данные, связь 1:1 обычно указывает на то, что в лучше объединить эти таблицы в одну.

Но при определенных обстоятельствах целесообразнее создавать таблицы со связями 1:1 . Если есть поле с необязательными данными, например «описание», которое не заполнено для многих записей, можно переместить все описания в отдельную таблицу, исключая пустые поля и улучшая производительность базы данных.

Чтобы гарантировать, что данные соотносятся правильно, в нужно будет включить, по крайней мере, один идентичный столбец в каждой таблице. Скорее всего, это будет первичный ключ.

Связь «один-ко-многим»

Эта связи возникают, когда запись в одной таблице связана с несколькими записями в другой. Например, один клиент мог разместить много заказов, или у читателя может быть сразу несколько книг, взятых в библиотеке. Связи «один- ко-многим » (1:M ) обозначаются так называемой «меткой ноги вороны», как в этом примере:


Чтобы реализовать связь 1:M , добавьте первичный ключ из «одной » таблицы в качестве атрибута в другую таблицу. Если первичный ключ таким образом указан в другой таблице, он называется внешним ключом. Таблица со стороны связи «1 » представляет собой родительскую таблицу для дочерней таблицы на другой стороне.

Связь «многие-ко-многим»

Когда несколько объектов таблицы могут быть связаны с несколькими объектами другой. Говорят, что они имеют связь «многие-ко-многим » (M:N ). Например, в случае студентов и курсов, поскольку студент может посещать много курсов, и каждый курс могут посещать много студентов.

На ER-диаграмме эти связи отображаются с помощью следующих строк:


При проектировании структуры базы данных реализовать такого рода связи невозможно. Вместо этого нужно разбить их на две связи «один-ко-многим ».

Для этого нужно создать между этими двумя таблицами новую сущность. Если между продажами и продуктами существует связь M:N , можно назвать этот новый объект «sold_products », так как он будет содержать данные для каждой продажи. И таблица продаж, и таблица товаров будут иметь связь 1:M с sold_products . Этот вид промежуточного объекта в различных моделях называется таблицей ссылок, ассоциативным объектом или таблицей связей.

Каждая запись в таблице связей будет соответствовать двум сущностям из соседних таблиц. Например, таблица связей между студентами и курсами может выглядеть следующим образом:


Обязательно или нет?

Другим способом анализа связей является рассмотрение того, какая сторона связи должна существовать, чтобы существовала другая. Необязательная сторона может быть отмечена кружком на линии. Например, страна должна существовать для того, чтобы иметь представителя в Организации Объединенных Наций, а не наоборот:


Два объекта могут быть взаимозависимыми (один не может существовать без другого ).

Рекурсивные связи

Иногда при проектировании базы данных таблица указывает на себя саму. Например, таблица сотрудников может иметь атрибут «руководитель», который ссылается на другое лицо в этой же таблице. Это называется рекурсивными связями.

Лишние связи

Лишние связи — это те, которые выражены более одного раза. Как правило, можно удалить одну из таких связей без потери какой-либо важной информации. Например, если объект «ученики » имеет прямую связь с другим объектом, называемым «учителя », но также имеет косвенные отношения с учителями через «предметы », нужно удалить связь между «учениками » и «учителями ». Так как единственный способ, которым ученикам назначают учителей — это предметы.

Нормализация базы данных

После предварительного проектирования базы данных можно применить правила нормализации, чтобы убедиться, что таблицы структурированы правильно.

В то же время не все базы данных необходимо нормализовать. В целом, базы с обработкой транзакций в реальном времени (OLTP ), должны быть нормализованы.

Базы данных с интерактивной аналитической обработкой (OLAP ), позволяющие проще и быстрее выполнять анализ данных, могут быть более эффективными с определенной степенью денормализации. Основным критерием здесь является скорость вычислений. Каждая форма или уровень нормализации включает правила, связанные с нижними формами.

Первая форма нормализации

Первая форма нормализации (сокращенно 1NF ) гласит, что во время логического проектирования базы данных каждая ячейка в таблице может иметь только одно значение, а не список значений. Поэтому таблица, подобная той, которая приведена ниже, не соответствует 1NF :


Возможно, у вас возникнет желание обойти это ограничение, разделив данные на дополнительные столбцы. Но это также противоречит правилам: таблица с группами повторяющихся или тесно связанных атрибутов не соответствует первой форме нормализации. Например, приведенная ниже таблица не соответствует 1NF :


Вместо этого во время физического проектирования базы данных разделите данные на несколько таблиц или записей, пока каждая ячейка не будет содержать только одно значение, и дополнительных столбцов не будет. Такие данные считаются разбитыми до наименьшего полезного размера. В приведенной выше таблице можно создать дополнительную таблицу «Реквизиты продаж », которая будет соответствовать конкретным продуктам с продажами. «Продажи » будут иметь связь 1:M с «Реквизитами продаж ».

Вторая форма нормализации

Вторая форма нормализации (2NF ) предусматривает, что каждый из атрибутов должен полностью зависеть от первичного ключа. Каждый атрибут должен напрямую зависеть от всего первичного ключа, а не косвенно через другой атрибут.

Например, атрибут «возраст » зависит от «дня рождения », который, в свою очередь, зависит от «ID студента », имеет частичную функциональную зависимость. Таблица, содержащая эти атрибуты, не будет соответствовать второй форме нормализации.

Кроме этого таблица с первичным ключом, состоящим из нескольких полей, нарушает вторую форму нормализации, если одно или несколько полей не зависят от каждой части ключа.

Таким образом, таблица с этими полями не будет соответствовать второй форме нормализации, поскольку атрибут «название товара » зависит от идентификатора продукта, но не от номера заказа:

  • Номер заказа (первичный ключ );
  • ID товара (первичный ключ );
  • Название товара.

Третья форма нормализации

Третья форма нормализации (3NF ) : каждый не ключевой столбец должен быть независим от любого другого столбца. Если при проектировании реляционной базы данных изменение значения в одном не ключевом столбце вызывает изменение другого значения, эта таблица не соответствует третьей форме нормализации.

В соответствии с 3NF , нельзя хранить в таблице любые производные данные, такие как столбец «Налог », который в приведенном ниже примере, напрямую зависит от общей стоимости заказа:


В свое время были предложены дополнительные формы нормализации. В том числе форма нормализации Бойса-Кодда , четвертая-шестая формы и нормализации доменного ключа, но первые три являются наиболее распространенными.

Многомерные данные

Некоторым пользователям может потребоваться доступ к нескольким разрезам одного типа данных, особенно в базах данных OLAP. Например, им может потребоваться узнать продажи по клиенту, стране и месяцу. В этой ситуации лучше создать центральную таблицу, на которую могут ссылаться таблицы клиентов, стран и месяцев. Например:


Правила целостности данных

Также с помощью средств проектирования баз данных необходимо настроить БД с учетом возможности проверки данных на соответствие определенным правилам. Многие СУБД , такие как Microsoft Access , автоматически применяют некоторые из этих правил.

Правило целостности гласит, что первичный ключ никогда не может быть равен NULL . Если ключ состоит из нескольких столбцов, ни один из них не может быть равен NULL . В противном случае он может неоднозначно идентифицировать запись.

Правило целостности ссылок требует, чтобы каждый внешний ключ, указанный в одной таблице, сопоставлялся с одним первичным ключом в таблице, на которую он ссылается. Если первичный ключ изменяется или удаляется, эти изменения необходимо реализовать во всех объектах, на которые ссылается этот ключ в базе данных.

Правила целостности бизнес-логики обеспечивают соответствие данных определенным логическим параметрам. Например, время встречи должно быть в пределах стандартных рабочих часов.

Добавление индексов и представлений

Индекс — это отсортированная копия одного или нескольких столбцов со значениями в возрастающем или убывающем порядке. Добавление индекса позволяет быстрее находить записи. Вместо повторной сортировки для каждого запроса система может обращаться к записям в порядке, указанном индексом.

Хотя индексы ускоряют извлечение данных, они могут замедлять добавление, обновление и удаление данных, поскольку индекс нужно перестраивать всякий раз, когда изменяется запись.

Представление — это сохраненный запрос данных. Представления могут включать в себя данные из нескольких таблиц или отображать часть таблицы.

Расширенные свойства

После проектирования модели базы данных можно уточнить БД с помощью расширенных свойств, таких как справочный текст, маски ввода и правила форматирования, которые применяются к конкретной схеме, представлению или столбцу. Преимущество этого метода заключается в том, что, поскольку эти правила хранятся в самой базе, представление данных будет согласовано между несколькими программами, которые обращаются к данным.

SQL и UML

Унифицированный язык моделирования (UML ) — это еще один визуальный способ выражения сложных систем, созданных на объектно-ориентированном языке. Некоторые из концепций, упомянутых в этом руководстве, известны в UML под разными названиями. Например, объект в UML известен, как класс.

Сейчас UML используется не так часто. В наши дни он применяется академически и в общении между разработчиками программного обеспечения и их клиентами.

Системы управления базами данных

Структура проектируемой базы данных зависит от того, какую СУБД вы используете. Некоторые из наиболее распространенных:

  • Oracle DB ;
  • MySQL ;
  • Microsoft SQL Server ;
  • PostgreSQL ;
  • IBM DB2 .

Подходящую систему управления базами данных можно выбирать исходя из стоимости, установленной операционной системы, наличия различных функций и т. д.

Перевод статьи «Database Structure and Design Tutorial » дружной командой проекта

В первой статье из цикла «Данные в WordPress» я привела обзорные сведения об использовании реляционных баз данных в WordPress: какие таблицы используются, и какие данные…

Для защиты конфиденциальных данных в MySQL 5.7 появилась возможность шифрования данных с помощью движка InnoDB. В этой статье я объясню принципы шифрования баз данных,…

Этапы проектирования базы данных

Все тонкости построения информационной модели некоторой предметной области деятельности человека преследуют одну цель – получить хорошую БД. Поясним термин – хорошая БД и сформулируем требования, которым должна удовлетворять такая БД:

1. БД должна удовлетворять информационным потребностям пользователей (организаций) и по структуре и содержанию соответствовать решаемым задачам;

2. БД должна обеспечивать получение требуемых данных за приемлемое время, т.е. отвечать требованиям производительности;

3. БД должна легко расширяться при реорганизации предметной области;

4. БД должна легко изменяться при изменении программной и аппаратной среды;

5. Корректные данные, загруженные в БД, должны оставаться корректными (данные должны проверяться на корректность при их вводе).

Рассмотрим основные этапы проектирования (рис. 3.5):

Первый этап . Планирование разработки базы данных. На этом этапе выделятся наиболее эффективный способ реализации этапов жизненного цикла системы.

Второй этап . Определение требований к системе. Производится определение диапазона действий и границ приложения базы данных, а также производится сбор и анализ требований пользователей.

Третий этап . Проектирование концептуальной модели БД. Процесс создания БД начинается с определения концептуальной модели, представляющей объекты и их взаимосвязи без указания способов их физического хранения. Усилия на этом этапе должны быть направлены на структуризацию данных и выявление взаимосвязей между ними. Этот процесс можно разбить еще на несколько подэтапов:

a) Уточнение задачи. Еще перед началом работы над конкретным приложением у разработчика обычно имеются некоторые представления о том, что он будет разрабатывать. В иных случаях, когда разрабатывается небольшая персональная БД, такие представления могут быть достаточно полными. В других случаях, когда разрабатывается большая БД под заказ, таких представлений может быть очень мало, или они наверняка будут поверхностными. Сразу начинать разработку с определения таблиц, полей и связей между ними явно рановато. Такой подход может привести к полной переделке большей части приложения. Поэтому следует затратить некоторое время на составление списка всех основных задач, которые в принципе должны решаться этим приложением, включая и те, которые могут возникнуть в будущем.

Рис. 3.5. Схема проектирования БД

b) Уточнение последовательности выполнения задач. Чтобы приложение работало логично и удобно, лучше всего объединить основные задачи в группы и затем упорядочить задачи каждой группы так, чтобы они располагались в порядке их выполнения. Группировка и графическое представление последовательности их выполнения поможет определить естественный порядок выполнения задач.

c) Анализ данных. После определения списка задач необходимо для каждой задачи составить подробный перечень данных, требуемых для ее решения. После этапа анализа данных можно приступать к разработке концептуальной модели, т.е. к выделению объектов, атрибутов и связей.

Четвертый этап . Построение логической модели. Построение логической модели начинается с выбора модели данных. При выборе модели важную роль играет ее простота, наглядность и сравнение естественной структуры данных с моделью, ее представляющей. Например, если иерархическая структура присуща самим данным, то выбор иерархической модели будет предпочтительнее. Но зачастую этот выбор определяется успехом (или наличием) той или иной СУБД. То есть разработчик выбирает СУБД, а не модель данных. Таким образом, на этом этапе концептуальная модель транслируется в модель данных, совместимую с выбранной СУБД. Возможно, что отображенные в концептуальной модели взаимосвязи между объектами либо некоторые атрибуты объектов окажутся впоследствии нереализуемыми средствами выбранной СУБД. Это потребует изменения концептуальной модели. Версия концептуальной модели, которая может быть обеспечена конкретной СУБД, называется логической моделью . Иногда процесс определения концептуальной и логической моделей называется определением структуры данных.

Пятый этап . Построение физической модели. Физическая модель определяет размещение данных, методы доступа и технику индексирования. На этапе физического проектирования мы привязываемся к конкретной СУБД и расписываем схему данных более детально, с указанием типов, размеров полей и ограничений. Кроме разработки таблиц и индексов, на этом этапе производится также определение основных запросов.

При построении физической модели приходится решать две взаимно противоположные по своей сути задачи. Первой из них является минимизация места хранения данных, а второй – достижение максимальной производительности, целостности и безопасности данных. Например, для обеспечения высокой скорости поиска необходимо создание индексов, причем их число будет определяться всеми возможными комбинациями полей, участвующими в поиске; для восстановления данных требуется ведения журнала всех изменений и создание резервных копий БД; для эффективной работы транзакций требуется резервирование места на диске под временные объекты и т.д., что приводит к увеличению (иногда значительному) размера БД.

Шестой этап . Оценка физической модели. На этом этапе проводится оценка эксплуатационных характеристик. Здесь можно проверить эффективность выполнения запросов, скорость поиска, правильность и удобство выполнения операций с БД, целостность данных и эффективность расхода ресурсов компьютера. При неудовлетворительных эксплуатационных характеристиках возможен возврат к пересмотру физической и логической моделей данных, выбору СУБД и типа компьютера.

Седьмой этап . Реализация БД. При удовлетворительных эксплуатационных характеристиках можно перейти к созданию макета приложения, то есть набору основных таблиц, запросов, форм и отчетов. Этот предварительный макет можно продемонстрировать перед заказчиком и получить его одобрение перед детальной реализацией приложения.

Восьмой этап . Тестирование и оптимизация. Обязательным этапом является тестирование и оптимизация разработанного приложения.

Этап девятый, заключительный . Сопровождение и эксплуатация. Так как выявить и устранить все ошибки на этапе тестирования не получается, то этап сопровождения является обычным для баз данных.

Существует два основных подхода к проектированию схемы данных: нисходящий и восходящий. При восходящем подходе работа начинается с нижнего уровня – уровня определения атрибутов, которые на основе анализа существующих между ними связей группируются в отношения, представляющие объекты, и связи между ними. Процесс нормализации таблиц для реляционной модели данных является типичным примером этого подхода. Этот подход хорошо подходит для проектирования относительно небольших БД. При увеличении числа атрибутов до нескольких сотен и даже тысяч более подходящей стратегией проектирования является нисходящий подход. Начинается этот подход с определения нескольких высокоуровневых сущностей и связей между ними. Затем эти объекты детализируются до необходимого уровня. Примером такого подхода проектирования является использование модели «сущность-связь». На практике эти подходы обычно комбинируются. В этом случае можно говорить о смешанном подходе проектирования.