В этой статье мы рассмотрим принципы работы сенсоров оптических мышей, прольем свет на историю их технологического развития, а также развенчаем некоторые мифы, связанные с оптическими «грызунами».

Кто тебя выдумал…

Привычные для нас сегодня оптические мыши ведут свою родословную с 1999 года, когда в массовой продаже появились первые экземпляры таких манипуляторов от Microsoft, а через некоторое время и от других производителей. До появления этих мышей, да и еще долго после этого, большинство массовых компьютерных «грызунов» были оптомеханическими (перемещения манипулятора отслеживались оптической системой, связанной с механической частью - двумя роликами, отвечавшими за отслеживание перемещения мыши вдоль осей × и Y; эти ролики, в свою очередь, вращались от шарика, перекатывающегося при перемещении мыши пользователем). Хотя встречались и чисто оптические модели мышей, требовавшие для своей работы специального коврика. Впрочем, такие устройства встречались не часто, да и сама идея развития подобных манипуляторов постепенно сошла на нет.

«Вид» знакомых нам нынче массовых оптических мышек, базирующихся на общих принципах работы, был «выведен» в исследовательских лабораториях всемирно известной корпорации Hewlett-Packard. Точнее, в ее подразделении Agilent Technologies, которое только сравнительно недавно полностью выделилось в структуре корпорации НР в отдельную компанию. На сегодняшний день Agilent Technologies, Inc. - монополист на рынке оптических сенсоров для мышей, никакие другие компании такие сенсоры не разрабатывают, кто бы и что не говорил вам об эксклюзивных технологиях IntelliEye или MX Optical Engine . Впрочем, предприимчивые китайцы уже научились «клонировать» сенсоры Agilent Technologies, поэтому, покупая недорогую оптическую мышь, вы вполне можете стать владельцем «левого» сенсора.

Откуда берутся видимые отличия в работе манипуляторов, мы выясним чуть позднее, а пока позвольте приступить к рассмотрению базовых принципов работы оптических мышей, точнее их систем слежения за перемещением.

Как «видят» компьютерные мыши

В этом разделе мы изучим базовые принципы работы оптических систем слежения за перемещением, которые используются в современных манипуляторах типа мышь.

Итак, «зрение» оптическая компьютерная мышь получает благодаря следующему процессу. С помощью светодиода, и системы фокусирующих его свет линз, под мышью подсвечивается участок поверхности. Отраженный от этой поверхности свет, в свою очередь, собирается другой линзой и попадает на приемный сенсор микросхемы - процессора обработки изображений. Этот чип, в свою очередь, делает снимки поверхности под мышью с высокой частотой (кГц). Причем микросхема (назовем ее оптический сенсор) не только делает снимки, но сама же их и обрабатывает, так как содержит две ключевых части: систему получения изображения Image Acquisition System (IAS) и интегрированный DSP процессор обработки снимков.

На основании анализа череды последовательных снимков (представляющих собой квадратную матрицу из пикселей разной яркости), интегрированный DSP процессор высчитывает результирующие показатели, свидетельствующие о направлении перемещения мыши вдоль осей × и Y, и передает результаты своей работы вовне по последовательному порту.

Если мы посмотрим на блок-схему одного из оптических сенсоров, то увидим, что микросхема состоит из нескольких блоков, а именно:

  • основной блок, это, конечно же, Image Processor - процессор обработки изображений (DSP) со встроенным приемником светового сигнала (IAS);
  • Voltage Regulator And Power Control - блок регулировки вольтажа и контроля энергопотребления (в этот блок подается питание и к нему же подсоединен дополнительный внешний фильтр напряжения);
  • Oscillator - на этот блок чипа подается внешний сигнал с задающего кварцевого генератора, частота входящего сигнала порядка пары десятков МГц;
  • Led Cоntrоl - это блок управления светодиодом, с помощью которого подсвечивается поверхность под мышью;
  • Serial Port - блок передающий данные о направлении перемещения мыши вовне микросхемы.

Некоторые детали работы микросхемы оптического сенсора мы рассмотрим чуть далее, когда доберемся к самому совершенному из современных сенсоров, а пока вернемся к базовым принципам работы оптических систем слежения за перемещением манипуляторов.

Нужно уточнить, что информацию о перемещении мыши микросхема оптического сенсора передает через Serial Port не напрямую в компьютер. Данные поступают к еще одной микросхеме-контроллеру, установленной в мыши. Эта вторая «главная» микросхема в устройстве отвечает за реакцию на нажатие кнопок мыши, вращение колеса прокрутки и т.д. Данный чип, в том числе, уже непосредственно передает в ПК информацию о направлении перемещения мыши, конвертируя данные, поступающие с оптического сенсора, в передаваемые по интерфейсам PS/2 или USB сигналы. А уже компьютер, используя драйвер мыши, на основании поступившей по этим интерфейсам информации, перемещает курсор-указатель по экрану монитора.

Именно по причине наличия этой «второй» микросхемы-контроллера, точнее благодаря разным типам таких микросхем, довольно заметно отличались между собой уже первые модели оптических мышей. Если о дорогих устройствах от Microsoft и Logitech слишком плохо отозваться я не могу (хотя и они не были вовсе «безгрешны»), то масса появившихся вслед за ними недорогих манипуляторов вела себя не вполне адекватно. При движении этих мышей по обычным коврикам курсоры на экране совершали странные кульбиты, скакали чуть ли не на пол Рабочего стола, а иногда… иногда они даже отправлялись в самостоятельное путешествие по экрану, когда пользователь совершенно не трогал мышь. Доходило и до того, что мышь могла запросто выводить компьютер из режима ожидания, ошибочно регистрируя перемещение, когда манипулятор на самом деле никто не трогал.

Кстати, если вы до сих пор боретесь с подобной проблемой, то она решается одним махом вот так: выбираем Мой Компьютер > Свойства > Оборудование > Диспетчер устройств > выбираем установленную мышь > заходим в ее «Свойства» > в появившемся окне переходим на закладку «Управление электропитанием» и снимаем галочку с пункта «Разрешить устройству вывод компьютера из ждущего режима» (рис. 4). После этого мышь уже не сможет вывести компьютер из режима ожидания ни под каким предлогом, даже если вы будете пинать ее ногами:)

Итак, причина столь разительного отличия в поведении оптических мышей была вовсе не в «плохих» или «хороших» установленных сенсорах, как до сих пор думают многие. Не верьте, это не более чем бытующий миф. Или фантастика, если вам так больше нравится:) В ведущие себя совершенно по-разному мыши часто устанавливались совершенно одинаковые микросхемы оптических сенсоров (благо, моделей этих чипов было не так уж много, как мы увидим далее). Однако вот, благодаря несовершенным чипам контроллеров, устанавливаемых в оптические мыши, мы имели возможность сильно поругать первые поколения оптических грызунов.

Однако, мы несколько отвлеклись от темы. Возвращаемся. В целом система оптического слежения мышей, помимо микросхемы-сенсора, включает еще несколько базовых элементов. Конструкция включает держатель (Clip) в который устанавливаются светодиод (LED) и непосредственно сама микросхема сенсора (Sensor). Эта система элементов крепится на печатную плату (PCB), между которой и нижней поверхностью мыши (Base Plate) закрепляется пластиковый элемент (Lens), содержащий две линзы (о назначении которых было написано выше).

В собранном виде оптический элемент слежения выглядит как показано выше. Схема работы оптики этой системы представлена ниже.

Оптимальное расстояние от элемента Lens до отражающей поверхности под мышью должно попадать в диапазон от 2.3 до 2.5 мм. Это рекомендации производителя сенсоров. Вот вам и первая причина, почему оптические мыши плохо себя чувствуют «ползая» по оргстеклу на столе, всевозможным «полупрозрачным» коврикам и т. п. И не стоит клеить на оптические мыши «толстые» ножки, когда отваливаются или стираются старые. Мышь из-за чрезмерного «возвышения» над поверхностью может впадать в состояние ступора, когда «расшевелить» курсор после пребывания мыши в состоянии покоя становится довольно проблематично. Это не теоретические измышления, это личный опыт:)

Кстати, о проблеме долговечности оптических мышей. Помниться, некоторые их производители утверждали что, дескать «они будут служить вечно». Да надежность оптической системы слежения высока, она не идет ни в какое сравнение с оптомеханической. В то же время в оптических мышах остается много чисто механических элементов, подверженных износу точно так же, как и при господстве старой доброй «оптомеханики». Например, у моей старой оптической мыши стерлись и поотваливались ножки, сломалось колесо прокрутки (дважды, в последний раз безвозвратно:(), перетерся провод в соединительном кабеле, с манипулятора слезло покрытие корпуса… зато вот оптический сенсор нормально работает, как ни в чем не бывало. Исходя из этого, мы смело можем констатировать, что слухи о якобы впечатляющей долговечности оптических мышей не нашли своего подтверждения на практике. Да и зачем, скажите на милость, оптическим мышам «жить» слишком долго? Ведь на рынке постоянно появляются новые, более совершенные модели, созданные на новой элементной базе. Они заведомо совершеннее и удобнее в использовании. Прогресс, знаете ли, штука непрерывная. Каким он был в области эволюции интересующих нас оптических сенсоров, давайте сейчас и посмотрим.

Из истории мышиного зрения

Инженеры-разработчики компании Agilent Technologies, Inc. не зря едят свой хлеб. За пять лет оптические сенсоры этой компании претерпели существенные технологические усовершенствования и последние их модели обладают весьма впечатляющими характеристиками.

Но давайте обо всем по порядку. Первыми массово выпускаемыми оптическими сенсорами стали микросхемы HDNS-2000 (рис. 8). Эти сенсоры имели разрешение 400 cpi (counts per inch), то бишь точек (пикселей) на дюйм, и были рассчитаны на максимальную скорость перемещения мыши в 12 дюймов/с (около 30 см/с) при частоте осуществления снимков оптическим сенсором в 1500 кадров за секунду. Допустимое (с сохранением стабильной работы сенсора) ускорение при перемещении мыши «в рывке» для чипа HDNS-2000 - не более 0.15 g (примерно 1.5 м/с 2).

Затем на рынке появились микросхемы оптических сенсоров ADNS-2610 и ADNS-2620 . Оптический сенсор ADNS-2620 уже поддерживал программируемую частоту «съемки» поверхности под мышью, с частотой в 1500 либо 2300 снимков/с. Каждый снимок делался с разрешением 18х18 пикселей. Для сенсора максимальная рабочая скорость перемещения по прежнему была ограничена 12 дюймами в секунду, зато ограничение по допустимому ускорению возросло до 0.25 g, при частоте «фотографирования» поверхности в 1500 кадров/с. Данный чип (ADNS-2620) также имел всего 8 ножек, что позволило существенно сократить его размеры по сравнению с микросхемой ADNS-2610 (16 контактов), внешне похожей на HDNS-2000. В Agilent Technologies, Inc. задались целью «минимизировать» свои микросхемы, желая сделать последние компактнее, экономнее в энергопотреблении, а потому и удобнее для установки в «мобильные» и беспроводные манипуляторы.

Микросхема ADNS-2610 хотя и являлась «большим» аналогом 2620-й, но была лишена поддержки «продвинутого» режима 2300 снимков/с. Кроме того, этот вариант требовал 5В питания, тогда как чип ADNS-2620 обходился всего 3.3 В.

Вышедший вскоре чип ADNS-2051 представлял собой гораздо более мощное решение, чем микросхемы HDNS-2000 или ADNS-2610, хотя внешне (упаковкой) был также на них похож. Этот сенсор уже позволял программируемо управлять «разрешением» оптического датчика, изменяя таковое с 400 до 800 сpi. Вариант микросхемы также допускал регулировку частоты снимков поверхности, причем позволял менять ее в очень широком диапазоне: 500, 1000,1500, 2000 или 2300 снимков/с. А вот величина этих самых снимков составляла всего 16х16 пикселей. При 1500 снимках/с предельно допустимое ускорение мыши при «рывке» составляло по прежнему 0.15 g, максимально возможная скорость перемещения - 14 дюймов/с (т. е. 35.5 см/с). Данный чип был рассчитан на напряжение питания 5 В.

Сенсор ADNS-2030 разрабатывался для беспроводных устройств, а потому имел малое энергопотребление, требуя всего 3.3 В питания. Чип также поддерживал энергосберегающие функции, например функцию снижения потребления энергии при нахождении мыши в состоянии покоя (power conservation mode during times of no movement), переход в режим «сна», в том числе при подключении мыши по USB интерфейсу, и т.д.. Мышь, впрочем, могла работать и не в энергосберегающем режиме: значение «1» в бите Sleep одного из регистров чипа заставляло сенсор «всегда бодрствовать», а значение по умолчанию «0» соответствовало режиму работы микросхемы, когда по прошествии одной секунды, если мышь не перемещалась (точнее после получения 1500 совершенно одинаковых снимков поверхности) сенсор, напару с мышью, переходил в режим энергосбережения. Что касается остальных ключевых характеристик сенсора, то они не отличались от таковых у ADNS-2051: тот же 16-и контактный корпус, скорость перемещения до 14 дюймов/с при максимальном ускорении 0.15 g, программируемое разрешение 400 и 800 cpi соответственно, частоты осуществления снимков могли быть точно такими же, как и у вышерассмотренного варианта микросхемы.

Такими были первые оптические сенсоры. К сожалению, им были свойственны недостатки. Большой проблемой, возникающей при передвижением оптической мыши по поверхностям, особенно с повторяющимся мелким рисунком, являлось то, что процессор обработки изображений порой путал отдельные похожие участки монохромного изображения, получаемые сенсором и неверно определял направление перемещения мыши.

В итоге и курсор на экране перемещался не так, как требовалось. Указатель на экране даже становился способен на экспромт:) - на непредсказуемые перемещения в произвольном направлении. Кроме того, легко догадаться, что при слишком быстром перемещении мыши сенсор мог вообще утратить всякую «связь» между несколькими последующими снимками поверхности. Что порождало еще одну проблему: курсор при слишком резком перемещении мыши либо дергался на одном месте, либо происходили вообще «сверхъестественные»:) явления, например, с быстрым вращением окружающего мира в игрушках. Было совершенно ясно, что для человеческой руки ограничений в 12-14 дюймов/с по предельной скорости перемещения мыши явно мало. Также не вызывало сомнений, что 0.24 с (почти четверть секунды), отведенные для разгона мыши от 0 до 35.5 см/с (14 дюймов/с - предельная скорость) это очень большой промежуток времени, человек способен двигать кистью значительно быстрее. И потому при резких движениях мыши в динамичных игровых приложениях с оптическим манипулятором может придтись несладко…

Понимали это и в Agilent Technologies. Разработчики осознавали, что характеристики сенсоров надо кардинально улучшать. В своих изысканиях они придерживались простой, но правильной аксиомы: чем больше снимков в секунду сделает сенсор, тем меньше вероятность того, что он потеряет «след» перемещения мыши во время совершения пользователем компьютера резких телодвижений:)

Хотя, как мы видим из вышеизложенного, оптические сенсоры и развивались, постоянно выпускались новые решения, однако развитие в этой области можно смело назвать «очень постепенным». По большому счету, кардинальных изменений в свойствах сенсоров так и не происходило. Но техническому прогрессу в любой области порой свойственны резкие скачки. Случился такой «прорыв» и в области создания оптических сенсоров для мышей. Появление оптического сенсора ADNS-3060 можно считать действительно революционным!

Лучший из

Оптический сенсор ADNS-3060 , по сравнению со своими «предками», обладает поистине впечатляющим набором характеристик. Использование этой микросхемы, упакованной в корпус с 20-ю контактами, обеспечивает оптическим мышам невиданные ранее возможности. Допустимая максимальная скорость перемещения манипулятора выросла до 40 дюймов/с (то есть почти в 3 раза!), т.е. достигла «знаковой» скорости в 1 м/с. Это уже очень хорошо - вряд ли хоть один пользователь двигает мышь с превышающей данное ограничение скоростью столь часто, чтобы постоянно чувствовать дискомфорт от использования оптического манипулятора, в том числе это касается и игровых приложений. Допустимое же ускорение выросло, страшно сказать, во сто раз (!), и достигло величины 15 g (почти 150 м/с 2). Теперь на разгон мыши с 0 до предельных 1 м/с пользователю отводится 7 сотых секунды - думаю, теперь очень немногие сумеют превзойти это ограничение, да и то, вероятно, в мечтах:) Программируемая скорость осуществления снимков поверхности оптическим сенсором у новой модели чипа превышает 6400 кадров/с, т.е. «бьет» предыдущий «рекорд» почти в три раза. Причем чип ADNS-3060 может сам осуществлять подстройку частоты следования снимков для достижения наиболее оптимальных параметров работы, в зависимости от поверхности, над которой перемещается мышь. «Разрешение» оптического сенсора по прежнему может составлять 400 или 800 cpi. Давайте на примере микросхемы ADNS-3060 рассмотрим общие принципы работы именно чипов оптических сенсоров.

Общая схема анализа перемещений мыши не изменилась по сравнению с более ранними моделями - полученные блоком IAS сенсора микроснимки поверхности под мышью обрабатываются затем интегрированным в этой же микросхеме DSP (процессором), который определяет направление и дистанцию перемещения манипулятора. DSP вычисляет относительные величины смещения по координатам × и Y, относительно исходной позиции мыши. Затем внешняя микросхема контролера мыши (для чего он нужен, мы говорили ранее) считывает информацию о перемещении манипулятора с последовательного порта микросхемы оптического сенсора. Затем уже этот внешний контроллер транслирует полученные данные о направлении и скорости перемещения мыши в передаваемые по стандартным интерфейсам PS/2 или USB сигналы, которые уже от него поступают к компьютеру.

Но вникнем чуть глубже в особенности работы сенсора. Блок-схема чипа ADNS-3060 представлена выше. Как видим, принципиально его структура не изменилась, по сравнению с далекими «предками». 3.3 В питание к сенсору поступает через блок Voltage Regulator And Power Control, на этот же блок возложена функции фильтрации напряжения, для чего используется подключение к внешнему конденсатору. Поступающий с внешнего кварцевого резонатора в блок Oscillator сигнал(номинальная частота которого 24 МГц, для предыдущих моделей микросхем использовались более низкочастотные задающие генераторы) служит для синхронизации всех вычислительных процессов, протекающих внутри микросхемы оптического сенсора. Например, частота снимков оптического сенсора привязана к частоте этого внешнего генератора (кстати, на последний наложены не весьма жесткие ограничения по допустимым отклонениям от номинальной частоты - до +/- 1 МГц). В зависимости от значения, занесенного по определенному адресу (регистру) памяти чипа, возможны следующие рабочие частоты осуществления снимков сенсором ADNS-3060.

Значение регистра, шестнадцатеричное Десятичное значение Частота снимков сенсора, кадров/с
OE7E 3710 6469
12C0 4800 5000
1F40 8000 3000
2EE0 12000 2000
3E80 16000 1500
BB80 48000 500

Как нетрудно догадаться, исходя из данных в таблице, определение частоты снимков сенсора осуществляется по простой формуле: Частота кадров = (Задающая частота генератора (24 МГц)/Значение регистра отвечающего за частоту кадров).

Осуществляемые сенсором ADNS-3060 снимки поверхности (кадры) имеют разрешение 30х30 и представляют собой все ту же матрицу пикселей, цвет каждого из которых закодирован 8-ю битами, т.е. одним байтом (соответствует 256 градациям серого для каждого пикселя). Таким образом, каждый поступающий в DSP процессор кадр (фрейм) представляет собой последовательность из 900 байт данных. Но «хитрый» процессор не обрабатывает эти 900 байт кадра сразу по поступлении, он ждет, пока в соответствующем буфере (памяти) накопится 1536 байт сведений о пикселях (то есть добавится информация еще о 2/3 последующего кадра). И только после этого чип приступает к анализу информации о перемещении манипулятора, путем сравнения изменений в последовательных снимках поверхности.

С разрешением 400 или 800 пикселей на дюйм их осуществлять, указывается в бите RES регистров памяти микроконтроллера. Нулевое значение этого бита соответствует 400 cpi, а логическая единица в RES переводит сенсор в режим 800 cpi.

После того как интегрированный DSP процессор обработает данные снимков, он вычисляет относительные значения смещения манипулятора вдоль осей × и Y, занося конкретные данные об этом в память микросхемы ADNS-3060. В свою очередь микросхема внешнего контроллера (мыши) через Serial Port может «черпать» эти сведения из памяти оптического сенсора с частой примерно раз в миллисекунду. Заметьте, только внешний микроконтроллер может инициализировать передачу таких данных, сам оптический сенсор никогда не инициирует такую передачу. Поэтому вопрос оперативности (частоты) слежения за перемещением мыши во многом лежит на «плечах» микросхемы внешнего контроллера. Данные от оптического сенсора передаются пакетами по 56 бит.

Ну а блок Led Cотtrоl, которым оборудован сенсор, ответственен за управление диодом подсветки - путем изменения значения бита 6 (LED_MODE) по адресу 0x0a микропроцессор оптосенсора может переводить светодиод в два режима работы: логический «0» соответствует состоянию «диод всегда включен», логическая «1» переводит диод в режим «включен только при необходимости». Это важно, скажем, при работе беспроводных мышей, так как позволяет экономить заряд их автономных источников питания. Кроме того, сам диод может иметь несколько режимов яркости свечения.

На этом, собственно, все с базовыми принципами работы оптического сенсора. Что еще можно добавить? Рекомендуемая рабочая температура микросхемы ADNS-3060, впрочем как и всех остальных чипов этого рода, - от 0 0С до +40 0С. Хотя сохранение рабочих свойств своих чипов Agilent Technologies гарантирует в диапазоне температур от -40 до +85 °С.

Лазерное будущее?

Недавно сеть наполнили хвалебные статьи о мыши Logitech MX1000 Laser Cordless Mouse, в которой для подсветки поверхности под мышью использовался инфракрасный лазер. Обещалась чуть ли не революция в сфере оптических мышей. Увы, лично попользовавшись этой мышью, я убедился, что революции не произошло. Но речь не об этом.

Я не разбирал мышь Logitech MX1000 (не имел возможности), но уверен, что за «новой революционной лазерной технологией» стоит наш старый знакомый - сенсор ADNS-3060. Ибо, по имеющимся у меня сведениям, характеристики сенсора этой мыши ничем не отличаются от таковых у, скажем, модели Logitech МХ510 . Вся «шумиха» возникла вокруг утверждения на сайте компании Logitech о том, что с помощью лазерной системы оптического слежения выявляется в двадцать раз (!) больше деталей, чем с помощью светодиодной технологии. На этой почве даже некоторые уважаемые сайты опубликовали фотографии неких поверхностей, дескать, как видят их обычные светодиодные и лазерные мыши:)

Конечно, эти фото (и на том спасибо) были не теми разноцветными яркими цветочками, с помощью которых нас пыталась убедить на сайте Logitech в превосходстве лазерной подсветки системы оптического слежения. Нет, конечно же, оптические мыши не стали «видеть» ничего подобного на приведенные цветные фотографии с разной степенью детализации - сенсоры по-прежнему «фотографируют» не более чем квадратную матрицу серых пикселей, отличающихся между собой лишь разной яркостью (обработка информации о расширенной цветовой палитре пикселей непомерным грузом легла бы на DSP).

Давайте прикинем, для получения в 20 раз более детализированной картинки, нужно, извините за тавтологию, в двадцать раз больше деталей, передать которые могут только дополнительные пиксели изображения, и ни что иное. Известно, что Logitech MX 1000 Laser Cordless Mouse делает снимки 30х30 пикселей и имеет предельное разрешение 800 cpi. Следовательно, ни о каком двадцатикратном росте детализации снимков речи быть не может. Где же собака порылась:), и не являются ли подобные утверждения вообще голословными? Давайте попробуем разобраться, что послужило причиной появления подобного рода информации.

Как известно, лазер излучает узконаправленный (с малым расхождением) пучок света. Следовательно, освещенность поверхности под мышью при применении лазера гораздо лучше, чем при использовании светодиода. Лазер, работающий в инфракрасном диапазоне, был выбран, вероятно, чтобы не слепить глаза возможным все-таки отражением света из-под мыши в видимом спектре. То, что оптический сенсор нормально работает в инфракрасном диапазоне не должно удивлять - от красного диапазона спектра, в котором работает большинство светодиодных оптических мышей, до инфракрасного -«рукой подать», и вряд ли для сенсора переход на новый оптический диапазон был труден. Например, в манипуляторе Logitech MediaPlay используется светодиод, однако также дающий инфракрасную подсветку. Нынешние сенсоры без проблем работают даже с голубым светом (существуют манипуляторы и с такой подсветкой), так что спектр области освещения - для сенсоров не проблема. Так вот, благодаря более сильной освещенности поверхности под мышью, мы вправе предположить, что разница между местами, поглощающими излучение (темными) и отражающими лучи (светлыми) будет более значительной, чем при использовании обычного светодиода - т.е. изображение будет более контрастными.

И действительно, если мы посмотрим на реальные снимки поверхности, сделанные обычной светодиодной оптической системой, и системой с использованием лазера, то увидим, что «лазерный» вариант куда более контрастен - отличия между темными и яркими участками снимка более значительны. Безусловно, это может существенно облегчить работу оптическому сенсору и, возможно, будущее именно за мышами с лазерной системой подсветки. Но назвать подобные «лазерные» снимки в двадцать раз более детализированными вряд ли можно. Так что это еще один «новорожденный» миф.

Какими будут оптические сенсоры ближайшего будущего? Сказать трудно. Вероятно, они перейдут таки на лазерную подсветку, а в Сети уже ходят слухи о разрабатываемом сенсоре с «разрешением» 1600 cpi. Нам остается только ждать.

Практически все пользователи стационарных компьютеров в повседневной работе для выполнения каких-либо операций используют мышь. Владельцы ноутбуков тоже частенько обращаются к этому устройству, считая тачпад несколько неудобным. Но давайте посмотрим, что такое мышь в общем понимании и какие типы таких устройств были разработаны изначально и сегодня представлены на рынке. И для начала обратимся к уважаемым информационным источникам, которые представляют описание с задействованием технических терминов, а потом перейдем к более простому рассмотрению вопроса.

Что такое мышь

Исходя из официальной информации, предоставляемой множеством компьютерных изданий, мышь представляет собой универсальный манипулятор указывающего типа, который предназначен для управления графическим интерфейсом операционной системы и выполнения практически всех известных операций на основе привязки устройства к курсору на экране компьютерного монитора.

Принцип управления состоит в перемещении по коврику для мыши, по столу или по любой другой поверхности (это могут делать устройства, для которых коврик не требуется). Информация о смещении или текущем местоположении передается операционной системе или программе, что вызывает ответную реакцию на выполнение каких-то действий (например, отображение дополнительных разворачиваемых меню или списков). Но в конструкции устройства предусмотрено еще и наличие специальных кнопок, которые отвечают за выбор определенного действия. При использовании стандартных настроек для открытия файлов или программ предусмотрен двойной клик левой кнопкой, для выделения объекта или активации элементов интерфейса - одинарный, для доступа к контекстным меню - одинарный клик правой кнопкой. Но это применимо только к классическим конструкциям. Сегодня на рынке такого оборудования можно найти множество моделей, кардинально отличающихся и по конструктивным решениям, и по принципам действия. На них остановимся отдельно.

Немного истории

Впервые о том, что такое мышь, заговорили в 1968 году, когда она была представлена на выставке интерактивных устройств в Калифорнии. Чуть позже, в 1981 году, мышь официально вошла в стандартный набор устройств, которыми комплектовались мини-компьютеры Xerox серии 8010.

Еще несколько позже она стала неотъемлемой частью периферии компьютеров Apple, и только потом мышью начали комплектоваться IBM-совместимые компьютерные системы. С тех пор манипулятор прочно вошел в жизнь всех пользователей, хотя и претерпел множество изменений и постоянно вводимых новшеств в плане конструктивных решений, принципов работы, управления, выполняемых действий, а также расширенных возможностей.

Основные виды манипуляторов по принципу действия

Изначально мышь подразумевала конструкцию на основе прямого привода, который состоял из двух перпендикулярно расположенных колес, что позволяло производить перемещение в разные стороны независимо от угла.

Чуть позже появились устройства на основе шарового привода, в котором главную роль играл вмонтированный металлический шарик с резиновым покрытием, которое обеспечивало улучшенное сцепление с поверхностью коврика для мыши. Следующим поколением стали устройства, оснащенные контактным энкодером (текстолитовым диском) с тремя контактами на лучевидных металлических дорожках. Наконец, были созданы оптические мыши на основе одного свето- и двух фотодиодов.

Именно оптические устройства стали самыми распространенным и востребованными среди пользователей. В их классификации можно выделить следующие модели:

  • мыши с матричным сенсором;
  • лазерные мыши;
  • индукционные мыши;
  • гироскопические мыши.

Из этого набора особого внимания заслуживают устройства гироскопического типа. Они способны осуществлять управление не только при перемещении по поверхности, но и в вертикальном положении в пространстве.

Типы мышек по подключению

Что такое мышь, немного разобрались. Теперь посмотрим, как такие манипуляторы подключаются к компьютерным системам. Изначально для соединения с компьютером на материнской плате был предусмотрен специальный вход, а мышь подключалась посредством шнура со специальным штекером тюльпанного типа.

С появлением интерфейсов USB стали использоваться манипуляторы, которые соединялись с компьютерами именно через них. Наконец, появились беспроводные устройства, которые, правда, тоже, по сути, представляют собой USB-мышь, поскольку для них используется специальный датчик или планшетный коврик, подключаемый как раз через USB-порт. Еще несколько позднее стали использоваться устройства на основе радиомодулей Bluetooth. А это уже точно беспроводные мыши.

Основные и дополнительные кнопки мыши

Теперь несколько слов об основных элементах любого такого манипулятора. В свое время компания Apple посчитала, что для управления интерфейсом достаточно всего одной кнопки, поэтому долгое время ориентировалась именно на такие устройства. Потом выяснилось, что одной кнопки явно недостаточно, и компьютерный мир перешел на устройства с двумя и тремя клавишами. Однако вскоре стало понятно, что и этого не хватает. Так, например, особой популярностью стали пользоваться модели, в которых присутствовали дополнительные кнопки управления громкостью. И, конечно же, появилось колесико прокрутки, которое упрощало перемещение по экрану.

Дополнительные элементы управления

Конструкция что USB-мыши, что любого другого типа постоянно совершенствуется. И тут на первый план выходит специфика использования манипулятора.

Так, например, игровые мыши, кроме того, что обладают дополнительными кнопками, могут оснащаться еще и мини-джойстиками, трекболами, кнопками программирования и сенсорными полосками, которые в некотором смысле являются аналогами самых обычных тачпадов, которые устанавливаются на ноутбуках.

Да и само колесико прокрутки стало выполнять двойную функцию. Кроме того что им можно осуществлять перемещение вверх/вниз, при нажатии на него оно срабатывает как средняя клавиша трехкнопочной мыши.

Основные настройки мыши в Windows

Это важный вопрос. Теперь посмотрим, как осуществляется настройка мыши в Windows-системах. Для этого необходимо использовать соответствующий раздел «Панели управления».

Настроек здесь хватает. Все зависит от типа подключаемого устройства. Но мышь в Windows, как правило, настраивается на трех основных вкладках, содержащих параметры кнопок, колесика и выбора указателей. Можно настроить чувствительность, скорость перемещения по экрану, сменить ориентацию кнопок, выбрать типы указателей для любой выполняемой операции, указать число строк, на которые должно производиться перемещение при прокрутке, использовать дополнительные визуальные эффекты вроде остаточного следа и многое другое. В общем, настройка мыши даже у неподготовленного пользователя особых сложностей вызывать не должна. По большому счету, параметры, установленные по умолчанию, обычно можно не изменять.

Вместо послесловия

Вот вкратце и все о мыши как одной из составляющих компьютерной системы. Что же касается ее практического использования, на стационарных ПК без нее не обойтись, но владельцы ноутбуков, имеющих тачпад или оснащенных экранами типа тачскрин, вполне могут отказаться от ее подключения к компьютерной системе. И все равно, несмотря на такие инновации, мышь как управляющий элемент остается востребованной и популярной.

Если в свое время большую часть действий пользователь производил только с помощью клавиатуры и это считалось нормальным, то сегодня очень сложно представить себе домашний компьютер без мышки. Можно далеко не ходить. Просто попробуйте без мышки открыть браузер и немного побродить по интернету, вы быстро заметите насколько это неудобно, сколько бы горячих клавиш не содержал браузер. И так как каждый из нас имеет дело с мышкой чуть ли не каждый день, то в рамках данной небольшой статьи я в общих чертах рассмотрю что такое компьютерная мышь, из чего она состоит, какие бывают виды и когда она появилась.

Начну с определения. Компьютерная мышь - это устройство ввода, которое преобразует данные о движении по плоскости в информационный сигнал. Для компьютерной мыши так же характерно наличие хотя бы одной кнопки (в Mac OS X мышки идут с одной кнопкой).

Мышка появилась в далеком 1968 году и была запатентована в 1970. Входить в комплект компьютера мышка стала в 1981 году в составе Xerox-8010 Star Information.

Базовое устройство мышки представляет собой - датчик перемещения и кнопки, ничего изысканного. Однако, могут так же присутствовать дополнительные элементы управления, такие как колесо прокрутки и трекбол. В целом, тут все зависит от фантазии производителей.

В основном мыши делят именно по принципу построения датчика перемещения и вот они:

1. Прямой привод - самые первый вариант датчика. У таких мышек использовалось два колеса в нижней части, для горизонтальной и вертикальной оси.

2. Шаровой привод - следующий вариант построения датчика перемещения. В данном случае использовались не колесики, а один шар, который примыкает к небольшим валам внутри самой мышки. Такой механизм сделал более удобным использование мышки, так как шар в отличии от колес никогда не зацепится за поверхность.

3. Оптический привод - в данном датчике используется оптический механизм отслеживания положения мышки. Таких датчиков было несколько поколений, последний из которых представляет собой неприхотливую лазерную мышь. Как факт, в первых вариациях требовались специальные коврики, так как датчики были очень чувствительны к качеству поверхности.

4. Гироскопические мыши - содержат в себе гироскоп, что позволяет определять движения мыши даже в трехмерном пространстве.

5. Индукционные мыши - требуют специального коврика, так как определение положения определяется за счет индукционных процессов.

Если говорить о кнопках, то они бывают однокнопочными, двухкнопочными и трехкнопочными. В данном случае речь идет о кнопках, которые расположены сверху и являются самыми массивными (основными). Как уже говорилось, каждый производитель может дополнять мышки элементами управления. Так, например, игровые мышки могут содержать десяток боковых небольших кнопок, значительно сокращающих время для вызова частых операций. Однако, стоит знать, что такие дополнительные кнопки можно использовать только при наличии установленного специального программного обеспечения от тех же производителей. В противном случае, операционная система будет их игнорировать.

По типу соединения мышки бывают:

1. Проводные. Такие мышки раньше подключались через COM-порты и PS/2. Сегодня же, практически все мышки используют интерфейс USB.

2. Беспроводные инфракрасные - к компьютеру подключается специальный приемник ИК сигналов. Такие мышки слабо прижились, так как между приемником и мышкой не должно быть препятствий.

3. Беспроводные с радиосвязью - такие мышки используют радиосвязь в качестве механизма передачи информации. Они быстро вытеснили ИК мышки, в связи с отсутствием проблем с преградами.

4. Беспроводные индукционные - такие мышки используются вместе со специальным ковриком. Плюс в том, что их не нужно заряжать, они питаются прямо от коврика. Минус в том, что без коврика они бесполезны.

5. Беспроводные с блютузом - по сравнению с аналогами, такие мышки выигрывают в том, что компьютеру достаточно иметь блютуз приемник. Так что такую мышку очень легко подключать к ноутбукам и не нужно заботится о выпирающем приемнике, занятом usb слоте и прочих вещах.

Как видите, разнообразие хоть и достаточно большое, но все же в основном связано именно с внутренними особенностями и условиями использования. Поэтому если вам нужна мышка, то необходимо трезво оценивать ее реальное применение. Так, например, дешевые лазерные мышки - это лидеры для домашних компьютеров.

Сегодня хочу Вам рассказать, мои уважаемые читатели, как я выбирал компьютерную мышь моей любимой жене. Надеюсь ход моих мыслей будет Вам интересен, а всё то, что я узнал о этих «грызунах» во время своих изысканий — полезно.

Итак, компьютерная мышь — какие бывают, чем отличаются и какую лучше выбрать. Как всегда — подробно и человеческим языком…

Начну с интерфейса или проще говоря — способа подключения мышки к компьютеру…

Проводная или беспроводная мышь?

Тут очень важно определиться, для каких целей выбирается мышь, как она будет использоваться. Если Вы любите поиграть в компьютерные игры (погонять на авто, пострелять, побегать в джунглях…) и будете этим заниматься каждый день — покупайте проводную мышку.

Во время динамических сцен в беспроводном манипуляторе могут возникать подтормаживания курсора (отражение радиосигнала, различные помехи…), что будет очень нервировать Вас. А ещё в играх нужно очень интенсивно работать мышью, что сильно повлияет на расход энергии в батарейках или аккумуляторах — Вы утомитесь их менять (покупать) или заряжать.

Если же Вас не интересуют игры и Вы предпочитаете спокойный серфинг в интернете или просто работаете в офисных приложениях, то Ваш выбор — беспроводная компьютерная мышь, однозначно! Этот интерфейс гораздо удобнее, мобильнее и комфортнее проводного. Чего только стоит само ощущение «непривязанности». Ещё можно использовать её как пульт дистанционного управления при просмотре фильма или фотографий (лёжа на диване). Скажите нет лишним проводам на рабочем месте.

Подведём первый итог. Проводная мышь шустрее и безотказнее в играх, а также не требует обслуживания (замена батареек или зарядка аккумуляторов) и дальнейших вложений (покупка батареек или аккумуляторов). Беспроводная мышь удобна своей мобильностью и практичностью.

По цене эти два интерфейса сегодня практически не отличаются — можно найти беспроводную или проводную мышь за 10$, а можно и за 200$.



В свою очередь беспроводные мышки делятся по типу подключения — радиочастотный, инфракрасный, индукционный, Bluetooth и Wi-Fi. Самый оптимальный по цене, практичности и качеству — радиочастотный.

Моя жена не играет в «Кризис» и «Сталкер», у нас дома есть отличное зарядное устройство и два комплекта аккумуляторов, поэтому я выбрал беспроводной интерфейс для её будущей мышки.

Оптическая или лазерная?

Эти две технологии очень часто путают или вообще объединяют, а зря. Оптическая мышь это манипулятор, оснащенный очень маленькой видеокамерой, которая делает приблизительно тысячу фотоснимков за секунду, они обрабатываются процессором и поступают на компьютер. Такая мышь использует световой диод, который выдаёт луч света в видимом диапазоне. Ещё такие мышки называют светодиодными.

Оптические мышки хуже работают на глянцевых или зеркальных поверхностях, также они менее чувствительны к перемещению, но об этом ниже. Технология оптического сенсора более старая и цена ее ниже.

Лазерная мышьустроена аналогично, единственным отличием является использование полупроводникового лазера вместо диода. При работе с лазерной мышью не наблюдается видимого свечения сенсора, она не имеет видимой подсветки…

Лазерные мыши отличаются более высоким разрешением сенсора и соответственно точностью перемещения курсора (игроки, это Ваш выбор). В случае использования беспроводной мыши, лазерные экономичней по энергозатратам (заметно дольше работают без замены батареек).

Разрешение компьютерной мыши

Чем больше разрешение, тем чувствительнее мышка к перемещению. Меньше движения по столу — больше движения на экране. Максимальное разрешение оптической мышки на сегодняшний день 1800 dpi, а для лазерной мышки максимальное разрешение — 5700 dpi.

Для чего нужно большое разрешение мышки? Для компьютерных игр. Высокий показатель dpi дает возможность прицелиться с высокой точностью, быстрее поворачиваться и делать точные прыжки. Делайте вывод, геймеры.

В тоже время, чтобы компьютерная мышь не вызывала задержек и трудностей в управлении, достаточно уже 800 dpi (именно такой показатель был у шариковых мышек). В большинстве современных мышек этот параметр можно переключать.

Часто путают разрешение мышки с параметром чувствительности её в панели инструментов операционной системы. В настройках мышки через панель управления Вы искусственно меняете масштаб поверхности под сенсором, а разрешение мыши — это реальная, физическая величина.

Форма и дизайн мышки

Как-то давно читал про специальные форму и покрытие рукояток оружия, которое дают по требованию бандитам захватившим заложников. Так вот, их делают дискомфортными, вызывающими неудобство, благодаря чему реакция преступников замедляется аж до двух секунд!

Это я к тому, что не стоит пренебрегать дизайном мышки, качеством сборки и материалов покрытия её. Очень желательно пощупать мышку перед покупкой — Вы сразу почувствуете свою мышку, уверяю Вас.

Дополнительные критерии выбора компьютерной мышки

Часто, качественные, фирменные мышки можно отрегулировать по весу путём подбора грузиков внутри корпуса — одним нравятся лёгкие, а другим тяжёлые мышки. Мне лично импонируют вторые.

Совсем недавно появилась новая разновидность компьютерных мышек — сенсорные…

Рабочая поверхность у них сенсорная и полностью гладкая (нет колёсика, кнопок). Такие мышки понимают определённые жесты с помощью которых можно листать фотографии в просмотрщике графики или серфить в браузере (вперёд-назад по страницам). А ещё можно назначить на определённый жест какое-либо действие в системе или программе.

Добрый день, друзья!

Сегодня мы поговорим об одном очень удобном устройстве, к которому мы так привыкли и без которого уже не представляем работы на компьютере.

Что такое «мышь»?

«Мышь» — это кнопочный манипулятор, предназначенный вместе с клавиатурой для ввода информации в .

Действительно, он похож на мышь с хвостиком. Современный компьютер уже немыслим без этой штуковины.

«Мышью» пользоваться гораздо удобнее, чем, например, встроенным манипулятором ноутбука.

Поэтому частенько пользователи отключают это ноутбучный «коврик» и подключают «мышь».

Как же устроена эта удобная штука?

Первые конструкции манипуляторов

Первые манипуляторы включали в себя шарик, который касался двух валиков с дисками.

Внешний обод каждого диска имел перфорацию . Валы были расположены перпендикулярно друг к другу.

Один вал отвечал за координату Х (горизонтальное перемещение), другой – за координату Y (вертикальное перемещение).

При перемещении манипулятора по столу шарик вращался, передавая крутящий момент на валы.

Если перемещение манипулятора выполнялось в направлении «вправо-влево», то вращался преимущественно вал, отвечающий за координату Х. Курсор на экране монитора перемещался также вправо-влево. Если мышь перемещалась в направлении «к себе-от себя», вращался преимущественно вал, отвечающий за координату Y. Курсор на экране монитора перемещался вверх-вниз.

Если манипулятор перемешался в произвольном направлении, вращались оба вала, соответственно перемещался и курсор.

Оптические датчики в старых «мышах»

Такие устройства содержали в себе два оптических датчика – оптопары . Оптопара включает в себя излучатель (светодиод, излучающий в ИК диапазоне) и приемник – (фотодиод или фототранзистор). Излучатель и приемник расположены на близком расстоянии друг от друга.

При движении манипулятора вращаются валы с жестко закрепленными на них дисками. Перфорированный край диска периодически пересекает поток излучения от излучателя к приемнику. В итоге на выходе приемника получается серия импульсов, которая поступает на микросхему-контроллер. Чем быстрее будет перемещаться мышь, тем быстрее будут вращаться валы. Будет большей частота импульсов, и быстрее будет перемещаться курсор по экрану монитора.

Кнопки и колесо прокрутки

Любой манипулятор имеет, как минимум, две кнопки.

Двойной «клик» (нажатие) на одну из них (обычно левую) запускает исполнение программы или файла, нажатие на другую – запускает контекстное меню для соответствующей ситуации.

Устройства, предназначенные для компьютерных игр, могут иметь 5-8 кнопок.

Нажав на одну из них, можно пальнуть в монстра из гранатомета, на другую – пустить ракету, на третью – разрядить в него добрый старый винчестер.

Современные мыши имеют в себе и scroll – колесико прокрутки, что очень удобно при просмотре объемного документа. Просматривать такой документ можно, только вращая колесико и не используя кнопки. Некоторые модели имеют два колеса прокрутки, при этом можно просматривать текст или графическое изображение перемещаясь как вверх-вниз, так и влево-вправо.

Под колесиком прокрутки обычно имеется еще одна кнопка. Если, просматривать документ, вращая колесико и одновременно нажать на него, драйвер манипулятора подключает такой режим, что документ сам начинает перемещаться вверх по экрану. Скорость перемещения зависит от того, с какой скорость пользователь вращал колесико до нажатия на него.

В таком режиме курсор изменяет свое начертание. Это еще более повышает удобство… Короче говоря, добыли, приготовили, разжевали, осталось только проглотить. Повторное нажатие на колесико осуществляет переход от «автопросмотра» в обычный режим.

Оптические «мыши»

В дальнейшем манипулятор был усовершенствован.

Появились так называемые оптические «мыши».

Такие устройства содержат излучающий светодиод (обычно красного цвета), прозрачную отражающую призму из пластика, светочувствительный сенсор и управляющий контроллер.

Светодиод испускает лучи, которые, отражаясь от поверхности, улавливаются сенсором.

При движении манипулятора поток принятого излучения меняется, что улавливается сенсором и передается контроллеру, который вырабатывает стандартные сигналы для конкретного интерфейса. Оптическая мышь более чувствительна к перемещению и не требует для себя коврика, как старый манипулятор с шариком.

В оптической «мыши» нет трущихся частей (за исключением потенциометра, вращение на который передается с колеса прокрутки), которые изнашиваются или загрязняются. Это также является преимуществом.

Возможные проблемы с манипуляторами

Манипулятор «мышь», как и любая техника, имеет ограниченный срок службы. Ни для кого не секрет, что основная часть компьютерной техники делается в Китае. Цель любого бизнеса – это прибыль, поэтому китайские товарищи экономят даже на кабелях для «мышей», максимально утончая их.

Поэтому первое слабое место у манипуляторов – именно кабель.

Чаще всего внутренний обрыв одной или нескольких жил бывает в месте входа кабеля в мышь.

В кабеле имеется 4 провода, два из них – питание, третий – тактовая частота, четвертый – информационный.

Если мышь не видится компьютером, первым делом надо «позвонить» кабель .

Если обнаружен обрыв, следует отрезать часть кабеля с разъемом (за местом входа кабеля в корпус «мыши» ближе к разъему) и оставшийся кусок к печатной плате манипулятора, соблюдая, естественно, расцветку.

Мыши с разъемом PS/2 нельзя переключать «на ходу» .

В противном случае ее контроллер (крохотный ее «мозг») может выйти из строя. И хорошо еще, если дело ограничится только этим. Может выйти из строя и контроллер интерфейса PS/2 на материнской плате, что гораздо хуже.

Если кабель цел, а мышь не опознается контроллером, то, скорее всего, вышел из строя ее контроллер, и она подлежит замене. Обрыв кабеля у оптических мышей можно заподозрить и по отсутствию свечения светодиода (который расположен вблизи поверхности, которая ездит по столу). В других случаях свечения может не быть из-за неисправности светодиода или контроллера, но такое бывает редко.

Манипуляторы с интерфейсом COM или USB можно переключать «на ходу». Впрочем, в настоящее время устройства с интерфейсом COM практически не встречаются.

«Кликать» мышкой приходится многие тысячи раз, и кнопки после длительной работы могут отказывать. Чтобы заменить кнопку, надо разобрать манипулятор и припаять другую. Не обязательно использовать такую же, какая была. Главное здесь – соблюсти высоту, чтобы сохранить длину хода клавиши. Впрочем, манипуляторы давно уже весьма доступны, и большинство пользователей не заморачиваются с их ремонтом.

Скажем «спасибо» добрым старым «мышкам» с шариком в брюхе – они хорошо нам послужили…

Заканчивая статью, отметим, что существуют разновидности манипуляторов с лазерным излучателем вместо светодиода, которые обеспечивают более точное и быстрое позиционирование курсора. Эти скорость и точность особенно востребованы в играх.

Существуют и wireless (радио) «мыши», в которых обмен информацией с компьютером осуществляется не по проводу, а по радиоканалу. Поэтому они содержат собственный источник питания – пару пальчиковых гальванических элементов типоразмера АА или ААА. Напомним еще раз, что разъем манипулятора вставляется в один из портов .

На сегодня все.

С вами был Виктор Геронда.

До встречи на блоге!