Практически каждый современный телефон уже имеет встроенный модуль GPS -приемника, с помощью которого имеется возможность достаточно точно определить свое местоположение на планете Земля. Для работы и точного определения местоположения GPS не требуется интернет и вышки мобильных сетей. Система может работать даже посреди пустыни вдалеке от цивилизации. Мы знаем, что это возможно благодаря спутникам, - но как именно это работает?

Основой системы GPS являются навигационные спутники, движущиеся вокруг Земли по 6 круговым орбитальным траекториям (по 4 спутника в каждой), на высоте 20180 км. Спутники GPS обращаются вокруг Земли за 12 часов, их вес на орбите составляет около 840 кг, размеры – 1.52 м. в ширину и 5.33 м. в длину, включая солнечные панели, вырабатывающие мощность 800 Ватт.

24 спутника обеспечивают 100 % работоспособность системы навигации GPS в любой точке земного шара. Максимальное возможное число одновременно работающих спутников в системе NAVSTAR ограничено числом 37. Практически всегда на орбите находится 32 спутника, 24 основных и 8 резервных на случай сбоев.


Поскольку известно, что каждый из спутников делает по два оборота вокруг планеты за сутки, то становиться нетрудно вычислить, что скорость их движения составляет приблизительно 14 000 км/ч. Само расположение спутников, так же как и наклон их орбит, отнюдь не случайно: они расположены так, чтобы из любой открытой точки планеты было видно хотя бы четыре спутника - именно таково минимальное количество, необходимое для определения местоположения объекта на Земле. Почему именно четыре и как это работает?

Чтобы измерить какое-то очень длинное расстояние, мы можем послать сигнал и замерить время, за которое он достигнет нужной точки либо отразится от нее и дойдет до нас снова (главное при этом точно знать скорость движения сигнала). Во втором случае время придется делить на два, поскольку сигнал прошел удвоенное расстояние. Этот способ носит название эхолокация, и спектр его применения весьма широк: начиная от изучения формы морского дна (здесь сигналом выступает ультразвук) и заканчивая радарами (сигнал - электромагнитные волны).

Проблема в том, что при использовании этого способа мы должны заранее знать, где находится приемник. В случае с системой GPS приемником сигнала являетесь именно вы, стоящий на Земле. Спутник не имеет никакого представления о вашем местоположении, он не знает, где вы, и никогда не узнает, поэтому отправляет сигнал сразу на всю поверхность планеты под ним. В этом сигнале он кодирует информацию о том, где расположен сам, а также в какое время по его собственным часам сигнал был отправлен, и на этом его работа заканчивается.

GPS -модуль у вас в руках получил координаты спутника и информацию о времени отправки сигнала. Программа в вашем телефоне умножает скорость распространения сигнала (то есть скорость света) на разницу между временем получения и временем отправки, высчитывая таким образом расстояние до каждого спутника. Если бы часы модуля были в точности синхронизированы с часами всех сателлитов, то понадобилось бы еще два спутника, чтобы определить местоположение с помощью так называемой триангуляции.

Чтобы понять принцип действия триангуляции, давайте на секунду перейдем в двухмерное пространство. Представьте себе две точки на плоскости, расположенные на известном расстоянии друг от друга, допустим 5 метров. Вы также знаете, что какая-то новая точка находится, в свою очередь, на известных расстояниях от первых двух - например 3 и 4 метра соответственно. Чтобы найти эту новую точку, вы можете провести две окружности с радиусами 3 и 4 метра и центрами в первой и второй точках соответственно. Две полученные окружности пересекутся ровно в двух точках, одна из которых и будет искомой.

Вернемся в трехмерное пространство. Теперь нам уже нужны три опорные точки, которыми являются наши спутники, и «чертить» вокруг них мы будем не окружности, а сферы. Все три сферы сразу в общем случае будут иметь две точки пересечения, но одна из них находится «над» местом расположения спутников, очень высоко в космосе - она нам явно не нужна. А вот вторая - это как раз ваше местоположение.

Для измерения местоположения в пространстве необходимо знать точное время и иметь точный инструмент для его измерения.

Реальная задача осложняется тем обстоятельством, что время на часах вашего телефона не совпадает с тем, что показывают часы спутников, и ваши часы являются на несколько порядков менее точными. Вообще говоря, время создает несколько дополнительных сложностей в решении этой проблемы. Так, например, спутники подвержены эффектам релятивистского и гравитационного искажения времени. На самом деле скорость хода часов, согласно теории относительности, зависит в том числе от силы гравитации в той точке, где эти часы расположены, а также от скорости их движения.

На высоте 20 000 километров над Землей гравитация достаточно слаба, а спутники летают, как мы уже разобрались, довольно быстро. Из-за суммы этих эффектов часы приходится корректировать в общей сложности на 38 миллисекунд за сутки. Если кажется, что это мало, напомню, что электромагнитный сигнал, движущийся со скоростью света, пройдет за это время приблизительно 11 000 км - примерно такой и может быть погрешность при определении координат.

Вторая проблема - точность самих часов. При указанных скоростях сигналов каждая миллионная доля секунды, измеренная с погрешностью, может спровоцировать большие ошибки. Из-за этого спутники старого формата позволяют определить местоположение не очень точно и могут «обмануть» на целых 10 метров. Начиная с 2010-го на замену старым запускают новые спутники, оснащенные атомными часами, и их погрешность уменьшилась до 1 метра.

Другой путь решения проблемы - специальные наземные станции коррекции. Они используются на территории некоторых стран и принцип их работы таков: принимая данные о расположении того или иного объекта, они корректируют их, и в результате пользователь гаджета получает более достоверную информацию о собственном местоположении.

Чем больше источников сигнала, тем точнее результат измерения, вот почему в мегаполисе ориентироваться по навигатору будет проще, чем в пустыне.

Однако атомные часы – устройство громоздкое и дорогостоящее, поэтому, чтобы решить проблему времени приемника, нужен еще один спутник. Он тоже передает информацию о своем местоположении и моменте отправки сигнала. И теперь наше пространство становится не трех-, а четырехмерным. Неизвестными являются широта, долгота, высота и время приемника в момент отправки сигналов. Положение в этих четырех измерениях нам и нужно определить, для чего по аналогии с двухмерным и трехмерным пространствами нам нужны именно четыре спутника.

Конечно же, в реальности хорошо, когда удается «поймать» сигнал от большего числа источников, и в крупных городах и населенных районах с этим проблемы нет: можно легко увидеть одновременно десяток сателлитов, которые обеспечат достаточно высокую для бытового использования точность.

Однако начальный поиск спутников тоже не самая простая задача. В старых аппаратах устройству могло потребоваться немало времени, вплоть до нескольких минут, чтобы уловить и разобрать сигнал от нужного числа космических объектов. Тогда это называлось «холодный старт», и для того, чтобы ускорить процесс, придумали получать данные о текущем местоположении небесных тел из интернета. Но при перемещении приемника на большое расстояние (десятки километров) или при очень долгом бездействии «холодный старт» приходилось производить заново. В современных устройствах модуль периодически включается сам, обновляя информацию, поэтому подобной проблемы больше нет.

Кстати говоря, до 2000 года точность для гражданских лиц была искусственно занижена, и узнать свое местоположение позволялось не ближе, чем в 100 метрах от реального. Поскольку GPS создавалась, финансируется и поддерживается министерством обороны США , военные хотели иметь определенное преимущество. С развитием и все более активным внедрением технологии в жизнь гражданского населения это искусственное ограничение было убрано.

Спутник не получает данных ни о каких GPS -устройствах на поверхности Земли и в воздушном пространстве, поэтому услуга бесплатная. Мы просто не сможем узнать, кто конкретно ей пользуется. Выходит, рецепт решения общечеловеческой проблемы под кодовым названием «А где я нахожусь?» чрезвычайно прост: односторонняя связь и нехитрые математические расчеты.

Сегодня область применения системы глобального позиционирования GPS достаточно обширна. Всё чаще GPS -приемники встраивают в мобильные телефоны и коммуникаторы, в автомобили, часы и даже в собачьи ошейники. Люди привыкают к такому благу как GPS навигация, и пройдет совсем немного времени как они уже не смогут обойтись без нее. Именно поэтому стоит сказать пару слов о недостатках GPS .

Недостатками GPS навигации является то, что при определенных условиях сигнал может не доходить до GPS -приемника, поэтому практически невозможно определить свое точное местонахождение в глубине квартиры внутри железобетонного здания, в подвале или в тоннеле.

Рабочая частота GPS находится в дециметровом диапазоне радиоволн, поэтому уровень приема сигнала от спутников может ухудшиться под плотной листвой деревьев, в районах с плотной городской застройкой или из-за большой облачности, а это скажется на точности позиционирования.

Магнитные бури и наземные радиоисточники тоже способны помешать нормальному приему сигналов GPS .

Карты, предназначенные для GPS навигации, быстро устаревают и могут быть не точными, поэтому нужно верить не только данным GPS -приемника, но и своим собственным глазам.

Особенно стоит отметить, что работа глобальной системы навигации GPS полностью зависима от министерства обороны США и нельзя быть уверенным, что в любой момент времени США не включит помеху (SA – selective availability) или вообще полностью отключит гражданский сектор GPS как в отдельно взятом регионе, так и вообще. Прецеденты уже были.

У системы GPS есть менее популярная и известная альтернатива в виде навигационных систем ГЛОНАСС (Россия) и Galileo (ЕС), и каждая из этих систем стремится получить широкое распространение.

Как нередко бывает с высокотехнологичными проектами, инициаторами разработки и реализации системы GPS (Global Positioning System - система глобального позиционирования) стали военные. Проект спутниковой сети для определения координат в режиме реального времени в любой точке земного шара был назван Navstar (Navigation system with timing and ranging - навигационная система определения времени и дальности), тогда как аббревиатура GPS появилась позднее, когда система стала использоваться не только в оборонных, но и в гражданских целях.

Первые шаги по развертыванию навигационной сети были предприняты в середине семидесятых, коммерческая же эксплуатация системы в сегодняшнем виде началась с 1995 года. В настоящий момент в работе находятся 28 спутников, равномерно распределенных по орбитам с высотой 20350 км (для полнофункциональной работы достаточно 24 спутников).

Несколько забегая вперед, скажу, что поистине ключевым моментом в истории GPS стало решение президента США об отмене с 1 мая 2000 года режима так называемого селективного доступа (SA - selective availability) - погрешности, искусственно вносимой в спутниковые сигналы для неточной работы гражданских GPS-приемников. С этого момента любительский терминал может определять координаты с точностью в несколько метров (ранее погрешность составляла десятки метров)! На рис.1 представлены ошибки в навигации до и после отключения режима селективного доступа (данные ).Рис1.

Попробуем разобраться в общих чертах, как устроена система глобального позиционирования, а потом коснемся ряда пользовательских аспектов. Рассмотрение же начнем с принципа определения дальности, лежащего в основе работы космической навигационной системы.

Алгоритм измерения расстояния от точки наблюдения до спутника.

Дальнометрия основана на вычислении расстояния по временной задержке распространения радиосигнала от спутника к приемнику. Если знать время распространения радиосигнала, то пройденный им путь легко вычислить, просто умножив время на скорость света.

Каждый спутник системы GPS непрерывно генерирует радиоволны двух частот - L1=1575.42МГц и L2=1227.60МГц. Мощность передатчика составляет 50 и 8 Ватт соответственно. Навигационный сигнал представляет собой фазовоманипулированный псевдослучайный код PRN (Pseudo Random Number code). PRN бывает двух типов: первый, C/A-код (Coarse Acquisition code - грубый код) используется в гражданских приемниках, второй Р-код (Precision code - точный код), используется в военных целях, а также, иногда, для решения задач геодезии и картографии. Частота L1 модулируется как С/А, так и Р-кодом, частота L2 существует только для передачи Р-кода. Кроме описанных, существует еще и Y-код, представляющий собой зашифрованный Р-код (в военное время система шифровки может меняться).

Период повторения кода довольно велик (например, для P-кода он равен 267 дням). Каждый GPS-приемник имеет собственный генератор, работающий на той же частоте и модулирующий сигнал по тому же закону, что и генератор спутника. Таким образом, по времени задержки между одинаковыми участками кода, принятого со спутника и сгенерированного самостоятельно, можно вычислить время распространения сигнала, а, следовательно, и расстояние до спутника.

Одной из основных технических сложностей описанного выше метода является синхронизация часов на спутнике и в приемнике. Даже мизерная по обычным меркам погрешность может привести к огромной ошибке в определении расстояния. Каждый спутник несет на борту высокоточные атомные часы. Понятно, что устанавливать подобную штуку в каждый приемник невозможно. Поэтому для коррекции ошибок в определении координат из-за погрешностей встроенных в приемник часов используется некоторая избыточность в данных, необходимых для однозначной привязки к местности (подробней об этом чуть позже).

Кроме самих навигационных сигналов, спутник непрерывно передает разного рода служебную информацию. Приемник получает, например, эфемериды (точные данные об орбите спутника), прогноз задержки распространения радиосигнала в ионосфере (так как скорость света меняется при прохождении разных слоев атмосферы), а также сведения о работоспособности спутника (так называемых "альманах", содержащий обновляемые каждые 12.5 минут сведения о состоянии и орбитах всех спутников). Эти данные передаются со скоростью 50 бит/с на частотах L1 или L2.

Общие принципы определения координат с помощью GPS.

Основой идеи определения координат GPS-приемника является вычисление расстояния от него до нескольких спутников, расположение которых считается известным (эти данные содержатся в принятом со спутника альманахе). В геодезии метод вычисления положения объекта по измерению его удаленности от точек с заданными координатами называется трилатерацией. Рис2.

Если известно расстояние А до одного спутника, то координаты приемника определить нельзя (он может находится в любой точке сферы радиусом А, описанной вокруг спутника). Пусть известна удаленность В приемника от второго спутника. В этом случае определение координат также не представляется возможным - объект находится где-то на окружности (она показана синим цветом на рис.2), которая является пересечением двух сфер. Расстояние С до третьего спутника сокращает неопределенность в координатах до двух точек (обозначены двумя жирными синими точками на рис.2). Этого уже достаточно для однозначного определения координат - дело в том, что из двух возможных точек расположения приемника лишь одна находится на поверхности Земли (или в непосредственной близи от нее), а вторая, ложная, оказывается либо глубоко внутри Земли, либо очень высоко над ее поверхностью. Таким образом, теоретически для трехмерной навигации достаточно знать расстояния от приемника до трех спутников.

Однако в жизни все не так просто. Приведенные выше рассуждения были сделаны для случая, когда расстояния от точки наблюдения до спутников известны с абсолютной точностью. Разумеется, как бы ни изощрялись инженеры, некоторая погрешность всегда имеет место (хотя бы по указанной в предыдущем разделе неточной синхронизации часов приемника и спутника, зависимости скорости света от состояния атмосферы и т.п.). Поэтому для определения трехмерных координат приемника привлекаются не три, а минимум четыре спутника.

Получив сигнал от четырех (или больше) спутников, приемник ищет точку пересечения соответствующих сфер. Если такой точки нет, процессор приемника начинает методом последовательных приближений корректировать свои часы до тех пор, пока не добьется пересечения всех сфер в одной точке.

Следует отметить, что точность определения координат связана не только с прецизионным расчетом расстояния от приемника до спутников, но и с величиной погрешности задания местоположения самих спутников. Для контроля орбит и координат спутников существуют четыре наземных станции слежения, системы связи и центр управления, подконтрольные Министерству Обороны США. Станции слежения постоянно ведут наблюдения за всеми спутниками системы и передают данные об их орбитах в центр управления, где вычисляются уточнённые элементы траекторий и поправки спутниковых часов. Указанные параметры вносятся в альманах и передаются на спутники, а те, в свою очередь, отсылают эту информацию всем работающим приемникам.

Кроме перечисленных, существует еще масса специальных систем, увеличивающих точность навигации, - например, особые схемы обработки сигнала снижают ошибки от интерференции (взаимодействия прямого спутникового сигнала с отраженным, например, от зданий). Мы не будем углубляться в особенности функционирования этих устройств, чтобы излишне не осложнять текст.

После отмены описанного выше режима селективного доступа гражданские приемники "привязываются к местности" с погрешностью 3-5 метров (высота определяется с точностью около 10 метров). Приведенные цифры соответствуют одновременному приему сигнала с 6-8 спутников (большинство современных аппаратов имеют 12-канальный приемник, позволяющий одновременно обрабатывать информацию от 12 спутников).

Качественно уменьшить ошибку (до нескольких сантиметров) в измерении координат позволяет режим так называемой дифференциальной коррекции (DGPS - Differential GPS). Дифференциальный режим состоит в использовании двух приемников - один неподвижно находится в точке с известными координатами и называется "базовым", а второй, как и раньше, является мобильным. Данные, полученные базовым приемником, используются для коррекции информации, собранной передвижным аппаратом. Коррекция может осуществляться как в режиме реального времени, так и при "оффлайновой" обработке данных, например, на компьютере.

Обычно в качестве базового используется профессиональный приемник, принадлежащий какой-либо компании, специализирующейся на оказании услуг навигации или занимающейся геодезией. Например, в феврале 1998 года недалеко от Санкт-Петербурга компания "НавГеоКом" установила первую в России наземную станцию дифференциального GPS. Мощность передатчика станции - 100 Ватт (частота 298,5 кГц), что позволяет пользоваться DGPS при удалении от станции на расстояния до 300 км по морю и до 150 км по суше. Кроме наземных базовых приемников, для дифференциальной коррекции GPS-данных можно использовать спутниковую систему дифференциального сервиса компании OmniStar. Данные для коррекции передаются с нескольких геостационарных спутников компании.

Следует заметить, что основными заказчиками дифференциальной коррекции являются геодезические и топографические службы - для частного пользователя DGPS не представляет интереса из-за высокой стоимости (пакет услуг OmniStar на территории Европы стоит более 1500 долларов в год) и громоздкости оборудования. Да и вряд ли в повседневной жизни возникают ситуации, когда надо знать свои абсолютные географические координаты с погрешностью 10-30 см.

В заключение части, повествующей о "теоретических" аспектах функционирования GPS, скажу, что Россия и в случае с космической навигацией пошла своим путем и развивает собственную систему ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система). Но из-за отсутствия должных инвестиций в настоящее время на орбите находятся лишь семь спутников из двадцати четырех, необходимых для нормального функционирования системы…

Краткие субъективные заметки пользователя GPS.

Так уж получилось, что о возможности определять свое местоположение с помощью носимого приборчика размерами с сотовый телефон я узнал году в девяносто седьмом из какого-то журнала. Однако замечательные перспективы, нарисованные авторами статьи, были безжалостно разбиты заявленной в тексте ценой навигационного аппарата - почти 400 долларов!

Года через полтора (в августе 1998) судьба занесла меня в маленький спортивный магазинчик в американском городе Бостон. Какого же было мое удивление и радость, когда на одной из витрин я случайно заметил несколько разных навигаторов, самый дорогой из которых стоил 250 долларов (простенькие же модели предлагались за $99). Конечно, уйти из магазина без прибора я уже не мог, поэтому принялся пытать продавцов о характеристиках, преимуществах и недостатках каждой модели. Ничего вразумительного от них я не услышал (и отнюдь не из-за того, что плохо знаю английский), так что пришлось разбираться во всем самому. И в результате, как это нередко бывает, была приобретена самая продвинутая и дорогая модель - Garmin GPS II+, а также специальный чехол к ней и шнур для питания от гнезда прикуривателя автомобиля. В магазине имелось еще два аксессуара для теперь уже моего аппарата - устройство для крепления навигатора на велосипедном руле и шнур для соединения с РС. Последний я долго крутил в руках, но, в конце концов, все же решил не покупать из-за немалой цены (немногим более 30 долларов). Как потом оказалось, шнур я не купил совершенно правильно, ибо все взаимодействие прибора с компьютером сводится к "сливке" в ЭВМ пройденного маршрута (а также, думаю, координат в режиме реального времени, но насчет этого есть определенные сомнения), да и то при условии покупки софта от Garmin. Возможность загружать в прибор карты, к сожалению, отсутствует.

Давать подробное описание своего прибора я не буду хотя бы потому, что он уже снят с производства (желающие ознакомиться с подробной технической характеристикой могут сделать это ). Замечу лишь, что вес навигатора - 255 гр., размеры - 59х127х41 мм. Благодаря своему треугольному сечению аппарат исключительно устойчиво располагается на столе или панели приборов автомобиля (для более прочной фиксации в комплект входит липучка Velcro). Питание осуществляется от четырех пальчиковых батареек АА (их хватает лишь на 24 часа непрерывной работы) или внешнего источника. Попробую рассказать об основных возможностях моего прибора, которые, думаю, имеет подавляющее большинство присутствующих на рынке навигаторов.

С первого взгляда GPS II+ можно принять за мобильный телефон, выпущенный пару лет назад. Лишь только присмотревшись, замечаешь необычно толстую антенну, огромный дисплей (56х38 мм!) и малое, по телефонным меркам, количество клавиш.

При включении прибора начинается процесс сбора информации со спутников, а на экране появляется простенькая мультипликация (вращающийся земной шар). После первоначальной инициализации (которая в открытом месте занимает пару минут) на дисплее возникает примитивная карта неба с номерами видимых спутников, а рядом - гистограмма, свидетельствующая об уровне сигнала от каждого спутника. Кроме того, указывается погрешность навигации (в метрах) - чем больше спутников видит прибор, тем, разумеется, точнее будет определение координат.

Интерфейс GPS II+ построен по принципу "перелистываемых" страниц (для этого даже есть специальная кнопка PAGE). Выше была описана "страница спутников", а кроме нее, есть "страница навигации", "карта", "страница возврата", "страница меню" и ряд других. Следует заметить, что описываемый аппарат не русифицирован, однако даже с плохим знанием английского можно понять его работу.

На странице навигации отображаются: абсолютные географические координаты, пройденный путь, мгновенная и средняя скорости движения, высота над уровнем моря, время движения и, в верхней части экрана, электронный компас. Надо сказать, что высота определяется с гораздо большей погрешностью, чем две горизонтальные координаты (на этот счет есть даже специальная ремарка в руководстве пользователя), что не позволяет использовать GPS, например, для определения высоты парапланеристами. Зато мгновенная скорость вычисляется исключительно точно (особенно для быстродвижущихся объектов), что дает возможность использовать прибор для определения скорости снегоходов (спидометры которых имеют обыкновение значительно врать). Могу дать "вредный совет" - взяв напрокат автомобиль, отключите его спидометр (чтобы он насчитал поменьше километров - ведь оплата зачастую пропорциональна пробегу), а скорость и пройденное расстояние определяйте по GPS (благо он может вести измерения как в милях, так и в километрах).

Средняя скорость движения определяется по несколько странному алгоритму - время простоя (когда мгновенная скорость равна нулю) в вычислениях не учитывается (более логично, на мой взгляд, было бы просто делить пройденное расстояние на общее время поездки, но создатели GPS II+ руководствовались каким-то иными соображениями).

Пройденный путь отображается на "карте" (памяти аппарата хватает километров на 800 - при большем пробеге автоматически стираются самые старые метки), так что при желании можно посмотреть схему своих блужданий. Масштаб карты меняется от десятков метров до сотен километров, что, несомненно, исключительно удобно. Самое же замечательное состоит в том, что в памяти прибора имеются координаты основных населенных пункты всего мира! США, конечно, представлено более подробно (например, все районы Бостона присутствуют на карте с названиями), чем Россия (тут указано расположение лишь таких городов как Москва, Тверь, Подольск и т.п.). Представьте, например, что Вы направляетесь из Москвы в Брест. Находите в памяти навигатора "Брест", жмете специальную кнопку "GO TO", и на экране появляется локальное направление Вашего движения; глобальное направление на Брест; количество километров (по прямой, разумеется), оставшееся до точки назначения; средняя скорость и расчетное время прибытия. И так в любой точке мира - хоть в Чехии, хоть в Австралии, хоть в Таиланде…

Не менее полезной является так называемая функция возврата. Память аппарата позволяет записывать до 500 ключевых точек (waypoints). Каждую точку пользователь может называть по своему усмотрению (например, DOM, DACHA и т.п.), также предусмотрены различные пиктрограммки для отображения информации на дисплее. Включив функцию возврата к точке (любой из заранее записанных), владелец навигатора получает те же возможности, что и в описанном выше случае с Брестом (т.е. расстояние до точки, расчетное время прибытия и все остальное). У меня, например, был такой случай. Приехав в Прагу на автомобиле и устроившись в гостинице, мы с приятелем отправились в центр города. Оставив машину на стоянке, пошли побродить. После бесцельной трехчасовой прогулки и ужина в ресторане мы поняли, что совершенно не помним, где оставили машину. На улице ночь, мы - на одной из маленьких улочек незнакомого города… К счастью, прежде чем покинуть автомобиль, я записал его местоположение в навигатор. Теперь же, нажав пару кнопок на аппарате, я узнал, что машина стоит в 500 метрах от нас и через 15 минут мы уже слушали тихую музыку, направляясь на автомобиле в гостиницу.

Кроме движения к записанной метке по прямой, что не всегда удобно в условиях города, Garmin предлагает функцию TrackBack - возврат по своему пути. Грубо говоря, кривая движения аппроксимируется рядом прямолинейных участков, а в точках излома ставятся метки. На каждом прямолинейном участке навигатор ведет пользователя к ближайшей метке, по достижении же ее осуществляется автоматическое переключение на следующую метку. Исключительно удобная функция при езде на автомобиле по незнакомой местности (сигнал со спутников сквозь здания, конечно, не проходит, поэтому, чтобы получить данные о своих координатах в условиях плотной застройки, приходится искать более-менее открытое место).

Я не буду дальше углубляться в описание возможностей прибора - поверьте, что кроме описанных, в нем есть еще масса приятных и нужных примочек. Одна смена ориентации дисплея чего стоит - можно использовать аппарат как в горизонтальном (автомобильном), так и в вертикальном (пешеходном) положении (см. рис.3).

Одной из основных же прелестей GPS для пользователя я считаю отсутствие какой-либо платы за пользование системой. Купил один раз прибор - и наслаждайся!

Заключение.

Я думаю, нет нужды перечислять области применения рассмотренной системы глобального позиционирования. GPS-приемники встраивают в автомобили, сотовые телефоны и даже наручные часы! Недавно я встретил сообщение о разработке чипа, совмещающего в себе миниатюрный GPS-приемник и модуль GSM - устройствами на его базе предлагается оснащать собачьи ошейники, чтобы хозяин мог без труда обнаружить потерявшегося пса посредством сотовой сети.

Но в любой бочке меда есть ложка дегтя. В данном случае в роли последнего выступают российские законы. Я не буду подробно рассуждать о юридических аспектах использования GPS-навигаторов в России (кое-что об этом можно найти ), замечу лишь, что теоретически высокоточные навигационные приборы (коими, без сомнения являются даже любительские GPS-приемники) у нас запрещены, а их владельцев ждет конфискация аппарата и немалый штраф.

К счастью для пользователей, в России строгость законов компенсируется необязательностью их выполнения - например, по Москве разъезжает огромное количество лимузинов с шайбой-антенной GPS-приемников на крышке багажника. Все более-менее серьезные морские суда оборудованы GPS (и уже выросло целое поколение яхтсменов, с трудом ориентирующихся в пространстве по компасу и прочим традиционным средствам навигации). Надеюсь, власти не будут вставлять палки в колеса техническому прогрессу и в ближайшее время легализуют пользование GPS-приемниками в нашей стране (отменили же разрешения на сотовые телефоны), а также дадут добро на рассекречивание и тиражирование подробных карт местности, необходимых для полноценного использования автомобильных навигационных систем.

Это компьютер и приемник, заключенные в общий корпус. Приемник получает сигналы от спутников, находящихся на орбите, а компьютер, в свою очередь, расшифровывает эти сигналы и указывает местоположение приемника. В 1977 году был запущен GPS. Его запустили разработчики самой программы - американцы. Система GPS использовалась до 1983 года только военными, а уже после стала доступна для пользования обычных людей.

Многие владельцы GPS-навигаторов замечали, что в местах нахождения большого количества высоких сооружений и зданий устройство ищет спутники довольно продолжительное время. Решением этой проблемы стала система A-GPS.

Рассмотрим, что такое A-GPS и когда она необходима.

Учитывая то, что эта система достаточно молодая (ее дебют пришелся на 2001 год), вопрос о том, что такое A-GPS, в настоящее время актуален. Она, как и GPS, была разработана в США. A-GPS представляет собой систему, ускоряющую работу GPS-приемника в определении координат. Эта система пользуется сигналом, исходящим от вышек сотовой связи, соответственно, чем в видимости устройства этих вышек больше, тем выше точность определения расстояния. При каждом стартовом поиске спутников A-GPS предоставляет навигатору расположение наиболее близких спутников через специальные серверы. Узнав, что такое A-GPS, становится понятно, что с ее помощью работа GPS-навигатора станет гораздо эффективнее. Ведь благодаря совместной работе двух устройств определение местоположения ускоряется в разы.

Определившись, что такое A-GPS и GPS-навигатор, стоит уделить внимание GPS-трекеру. Это устройство предназначено для наблюдения через спутник за передвижением объекта, на котором «установлено» это маленькое электронное устройство. GPS-трекер представляет своеобразный «жучок», который без проблем можно спрятать, например, в салоне автомобиля, и таким образом отследить все дальнейшие перемещения данного объекта.

В основном, GPS-трекер включает в себя 2 устройства: GPS-приемник и GSM-модем. При помощи он имеет возможность определить координаты движения и скорость, а затем передать эти данные наблюдателю посредством GPRS-канала (через сотовую связь).

Узнав из нашей статьи все о навигаторах, можно смело приобретать это устройство, ведь в современном городе, особенно если просто невозможно обойтись без этой техники.

Навигация сегодня – услуга простая, нужная и невероятно популярная. Мало того, что навигаторы – почти что самый ходовой товар на мобильном рынке (обгоняют их только вездесущие телефоны), так еще и множество смартфонов за последние пару лет обзавелись собственными GPS и A-GPS чипами – и пользователи так к этому привыкли, что «смартфон без навигации» вызывает у них теперь, по меньшей мере, удивление. Все это, конечно, весьма радует (прогресс! цивилизация!), да только есть одна беда: производители так стараются продать свой товар, что часто выдают желаемое за действительное, заманивая покупателей не спецификациями своих товаров, а громкими словами на коробочках. О том, что эти слова значат, и какая на самом деле бывает навигация, мы и расскажем вам в этой статье.

Технология: как это работает?

На сегодняшний день существуют, по сути, всего две технологии, позволяющие пользователям мобильной техники не заблудиться в каменных джунглях: спутниковая и сотовая навигация. Первая – это собственно GPS, глобальная спутниковая система позиционирования, придуманная американскими учеными для американских военных, а потом подаренная ко дню Благодарения всему остальному миру. Вторая – AGPS (не путать с A-GPS), технология сотовой связи, позволяющая определить ваше примерное местоположение (с точностью до 500 метров), если вы находитесь в зоне покрытия сотовой сети.

GPS хорош прежде всего тем, что он точный (определяет ваше положение с точностью до пяти метров) и абсолютно бесплатный (добрые американцы позволяют пользоваться своими спутниками всем желающим). За конкретные навигационные программы и карты, конечно, придется заплатить – но плата эта будет единовременной, и никакой подписки на GPS-услуги не существует в природе. Плох же GPS тем, что он работает только на улице, и в основном в ясную погоду – если на небе пасмурно, найти нужное для работы количество спутников довольно сложно. Для того, чтобы бороться с тучами, была придумана специальная технология A-GPS (Assisted GPS): по этой технологии вместо того, чтобы посылать сигналы в небеса, навигатор просто подключался к некоему серверу, где скачивал информацию о местоположении спутников, и, пользуясь этими координатами, находил их куда быстрее. Сегодня A-GPS – непременный спутник любого GPS-приемника автомобильного навигатора. Наиболее популярные карты, работающие с сервисом GPS: iGo, «Автоспутник», «Навител», Be-On-Road.

Сотовая система AGPS (Alternative Global Position System) дает, конечно, куда менее точное определение положения объекта на карте, но зато абсолютно никак не зависит от погоды и степени углубленности в здание. Главное, чтобы ваш смартфон ловил сеть, у вашего номера была подключена услуга GPRS, а на вашем счету еще оставались деньги. Принцип работы AGPS аналогичен принципу работы спутниковой системы навигации: смартфон принимает сигналы от нескольких (минимум трех) базовых станций и, основываясь на силе сигнала каждой из них и принимая в расчет их местоположение, рассчитывает ваши координаты. Дешево и сердито: доехать с AGPS вы, конечно, никуда не сможете, но зато на карте точно не потеряетесь. Наиболее популярные карты, работающие с сервисом AGPS: Google Maps, «Яндекс.Карты».

Устройства: что бывает?

Самое простое из всех существующих в природе навигационных GPS-устройств – это внешний GPS-приемник. Сам по себе он только общается со спутниками, и никакой навигации, собственно, не обеспечивает. Но подсоединить его можно практически к любому устройству – ноутбуку, карманному компьютеру, телефону или смартфону – и тогда, при наличии правильного программного обеспечения, вы сможете ориентироваться в пространстве и прокладывать маршруты до места назначения. Приемники особенно полезны туристам, предпочитающим наезженным дорогам узкие горные или лесные тропки: приемники, в отличие от большинства других устройств, к карте не привязаны, и при большом желании могут водить вас даже по отсканированной миллиметровке с наложенной на нее навигационной сеткой. Если вы, конечно, найдете таковую для нужного вам региона.

Самое популярное из навигационных устройств на сегодняшний день – это автомобильный GPS-навигатор. Это, по сути, небольшой компьютер с сенсорным экраном, работающий на базе закрытой операционной системы. В навигаторе уже установлена производителем навигационная программа, сменить которую, не нарушая лицензий, обычно нельзя. Помимо собственно навигации, автонавигаторы часто умеют много чего еще: играть музыку, показывать фильмы, работать с электронными книгами и изображениями, и даже подключаться к интернету.

В последнее время на рынке появился новый класс устройств – смартфоны со встроенным GPS-приемником. С одной стороны, это устройства крайне удобные: и позвонить могут, и дорогу подскажут, и много чего еще умеют. С другой – программная составляющая у таких устройств пока еще очень слабая: в основном в качестве навигационных программ используются «онлайн-решения» вроде Nokia Maps или Google Maps, для работы с которыми нужно постоянное подключение к интернету (хотя на некоторые смартфоны можно поставить и настоящий навигационный софт). Да и подходят такие смартфоны скорее для пешеходной, нежели для автомобильной навигации – экранчик у них маленький, карту видно плохо, да и с картами нашей обширной родины все, мягко говоря, плохо. Только по городу и поездишь.

Последний тип навигационных устройств – смартфоны с сотовой навигацией (AGPS). У них нет встроенного GPS-чипа. Подходят они только тем, кто не хочет носить с собой бумажную карту – ни ведения по маршруту, ни даже точного определения вашего местоположения они не дают. Зато отлично помогают сориентироваться в пространстве во время длительной поездки или найти какой-нибудь особо незаметный переулок, про который слухом не слыхивал ни один из опрошенных вами прохожих.

К сожалению, идеальной карты в природе не существует (хотя бы просто потому, что у каждого свои представления об идеале), поэтому для начала придется понять, зачем вам в принципе нужен навигатор и что вы с ним будете делать: для туристических походов подойдет один тип устройств и карт, для автомобильной навигации – другой, для пешеходной навигации – третий. Кроме того, нужно обратить внимание на саму картографическую базу: у самой симпатичной на вид программы может вдруг не оказаться карты вашего города, а самая «городская» из карт будет показывать вам белые пятна сразу за окружной автодорогой. В общем, как ни крути, а придется все-таки уделить некоторое время процессу выбора. О том, как выбрать карту для навигатора, вы можете прочитать в статье «Какие бывают навигационные карты?»

Понравилось?
Расскажите друзьям!

Спутниковая навигация GPS давно уже является стандартом для создания систем позиционирования и активно применяется в различных трекерах и навигаторах. В проектах Arduino GPS интегрируется с помощью различных модулей, не требующих знания теоретических основ. Но настоящему инженеру должно быть интересно разобраться со принципом и схемой работы GPS, чтобы лучше понимать возможности и ограничения этой технологии.

Схема работы GPS

GPS – это спутниковая навигационная система, разработанная Министерством обороны США, которая определяет точные координаты и время. Работает в любой точке Земли в любых погодных условиях. GPS состоит из трех частей – спутников, станций на Земле и приемников сигнала.

Идея создания спутниковой навигационной системы зародилась еще в 50-е годы прошлого столетия. Американская группа ученых, наблюдающая за запуском советских спутников, заметила, что при приближении спутника частота сигнала увеличивается и уменьшается при его отдалении. Это позволило понять, что возможно измерить положение и скорость спутника, зная свои координаты на Земле, и наоборот. Огромную роль в развитии навигационной системы сыграл запуск спутников на низкую околоземную орбиту. А в 1973 году была создана программа «DNSS» («NavStar»), по этой программе спутники запускались на среднюю околоземную орбиту. Название GPS программа получила в том же 1973 году.

Система GPS на данный момент используется не только в военной области, но и в гражданских целях. Сфер применения GPS много:

  • Мобильная связь;
  • Тектоника плит – происходит слежение за колебаниями плит;
  • Определение сейсмической активности;
  • Спутниковое отслеживание транспорта – можно проводить мониторинг за положением, скоростью транспорта и контролировать их движение;
  • Геодезия – определение точных границ земельных участков;
  • Картография;
  • Навигация;
  • Игры, геотегинт и прочие развлекательные области.

Важнейшим недостатком системы можно считать невозможность получения сигнала при определенных условиях. Рабочие частоты GPS лежат в дециметровом диапазоне волн. Это приводит к тому, что уровень сигнала может снизиться из-за высокой облачности, плотной листвы деревьев. Радиоисточники, глушилки, а в редких случаях даже магнитные бури также могут мешать нормальной передаче сигнала. Точность определения данных будет ухудшаться в приполярных районах, так как спутники невысоко поднимаются над Землей.

Навигация без GPS

Основным конкурентом GPS является российская система ГЛОНАСС (глобальная навигационная спутниковая система). Свою полноценную работу система начала с 2010 года, попытки активно использовать ее предпринимались с 1995 года. Существует несколько отличий между двумя системами:

  • Разные кодировки – американцы используют CDMA, для российской системы используется FDMA;
  • Разные габариты устройств – ГЛОНАСС использует более сложную модель, поэтому повышается энергопотребление и размеры устройств;
  • Расстановка и движение спутников на орбите – российская система обеспечивает более широкий охват территории и более точное определение координат и времени.
  • Срок службы спутников – американские спутники делаются более качественными, поэтому они служат дольше.

Помимо ГЛОНАСС и GPS существуют и другие менее популярные навигационные системы – европейский Galileo и китайский Beidou.

Описание GPS

Принцип работы GPS

Работает система GPS следующим образом – приемник сигнала измеряет задержку распространения сигнала от спутника до приемника. Из полученного сигнала приемник получает данные о местонахождении спутника. Для определения расстояния от спутника до приемника задержка сигнала умножается на скорость света.

С точки зрения геометрии работу навигационной системы можно проиллюстрировать так: несколько сфер, в середине которых находятся спутники, пересекаются и в них находится пользователь. Радиус каждой из сфер соответственно равен расстоянию до этого видимого спутника. Сигналы от трех спутников позволяют получить данные о широте и долготе, четвертый спутник дает информацию о высоте объекта над поверхностью. Полученные значения можно свести в систему уравнений, из которых можно найти координату пользователя. Таким образом, для получения точного местоположения необходимо провести 4 измерения дальностей до спутника (если исключить неправдоподобные результаты, достаточно трех измерений).

Поправки в полученные уравнения вносит расхождение между расчетным и фактическим положением спутника. Погрешность, которая возникает в результате этого, называется эфемеридной и составляет от 1 до 5 метров. Также свой вклад вносят интерференция, атмосферное давление, влажность, температура, влияние ионосферы и атмосферы. Суммарно совокупность всех ошибок может довести погрешность до 100 метров. Некоторые ошибки можно устранить математически.

Чтобы уменьшить все погрешности, используют дифференциальный режим GPS. В нем приемник получает по радиоканалу все необходимые поправки к координатам от базовой станции. Итоговая точность измерения достигает 1-5 метров. При дифференциальном режиме существует 2 метода корректировки полученных данных – это коррекция самих координат и коррекция навигационных параметров. Первый метод использовать неудобно, так как все пользователи должны работать по одним и тем же спутникам. Во втором случае значительно увеличивается сложность самой аппаратуры для определения местоположения.

Существует новый класс систем, который увеличивает точность измерения до 1 см. Огромное влияние на точность оказывает угол между направлениями на спутники. При большом угле местоположение будет определяться с большей точностью.

Точность измерения может быть искусственно снижена Министерством обороны США. Для этого на устройствах навигации устанавливается специальный режим S/A – ограниченный доступ. Режим разработан в военных целях, чтобы не дать противнику преимущества в определении точных координат. С мая 2000 года режим ограниченного доступа был отменен.

Все источники ошибок можно разделить на несколько групп:

  • Погрешность в вычислении орбит;
  • Ошибки, связанные с приемником;
  • Ошибки, связанные с многократным отражением сигнала от препятствий;
  • Ионосфера, тропосферные задержки сигнала;
  • Геометрия расположения спутников.

Основные характеристики

В систему GPS входит 24 искусственных спутника Земли, сеть наземных станций слежения и навигационные приемники. Станции наблюдения требуются для определения и контроля параметров орбит, вычисления баллистических характеристик, регулировка отклонения от траекторий движения, контроль аппаратуры на бору космических аппаратов.

Характеристики навигационных систем GPS :

  • Количество спутников – 26, 21 основной, 5 запасных;
  • Количество орбитальных плоскостей – 6;
  • Высота орбиты – 20000 км;
  • Срок эксплуатации спутников – 7,5 лет;
  • Рабочие частоты – L1=1575,42 МГц; L2=12275,6МГц, мощность 50 Вт и 8 Вт соответственно;
  • Надежность навигационного определения – 95%.

Навигационные приемники бывают нескольких типов – портативные, стационарные и авиационные. Приемники также характеризуются рядом параметров:

  • Количество каналов – в современных приемников используется от 12 до 20 каналов;
  • Тип антенны;
  • Наличие картографической поддержки;
  • Тип дисплея;
  • Дополнительные функции;
  • Различные технические характеристики – материалы, прочность, защита от влаги, чувствительность, объем памяти и другие.

Принцип действия самого навигатора – в первую очередь устройство пытается связаться с навигационным спутником. Как только связь будет установлена, происходит передача альманаха, то есть информации об орбитах спутников, находящихся в рамках одной навигационной системы. Связи с одним только спутником недостаточно для получения точного местоположения, поэтому оставшиеся спутники передают навигатору свои эфемериды, необходимые для определения отклонений, коэффициентов возмущения и других параметров.

Холодный, теплый и горячий старт GPS навигатора

Включив навигатор впервые или после долгого перерыва, начинается долгое ожидание для получения данных. Долгое время ожидания связано с тем, что в памяти навигатора отсутствуют либо устарели альманах и эфемериды, поэтому устройство должно выполнить ряд действий по получению или обновлению данных. Время ожидания, или так называемое время холодного старта, зависит от различных показателей – качество приемника, состояние атмосферы, шумы, количество спутников в зоне видимости.

Чтобы начать свою работу, навигатор должен:

  • Найти спутник и установить с ним связь;
  • Получить альманах и сохранить его в памяти;
  • Получить эфемериды от спутника и сохранить их;
  • Найти еще три спутника и установить с ними связь, получить от них эфемериды;
  • Вычислить координаты при помощи эфемерид и местоположения спутников.

Только пройдя весь этот цикл, устройство начнет работать. Такой запуск и называется холодным стартом .

Горячий старт значительно отличается от холодного. В памяти навигатора уже имеется актуальный на данный момент альманах и эфемериды. Данные для альманаха действительны в течение 30 дней, эфемерид – в течение 30 минут. Из этого следует, что устройство выключалось на непродолжительное время. При горячем старте алгоритм будет проще – устройство устанавливает связь со спутником, при необходимости обновляет эфемериды и вычисляет местоположение.

Существует теплый старт – в этом случае альманах является актуальным, а эфемериды нужно обновить. Времени на это затрачивается немного больше, чем на горячий старт, но значительно меньше, чем на холодный.

Ограничения на покупку и использование самодельных модулей GPS

Российское законодательство требует от производителей уменьшать точность определения приемников. Работать с незагрубленной точностью может производиться только при наличии у пользователя специализированной лицензии.

Под запретом в Российской Федерации находятся специальные технические средства, предназначенные для негласного получения информации (СТС НПИ). К таковым относятся GPS трекеры, которые используются для негласного контроля над перемещением транспорта и прочих объектов. Основной признак незаконного технического средства – его скрытность. Поэтому перед приобретением устройства нужно внимательно изучить его характеристики, внешний вид, на наличие скрытых функций, а также просмотреть необходимые сертификаты соответствия.

Также важно, в каком виде продается устройство. В разобранном виде прибор может не относиться к СТС НПИ. Но при сборе готовое устройство уже может относиться к запрещенным.