Большие часы на светодиодах

Вступление.

Началось всё так. На даче у меня был старый механический будильник (made in USSR), у которого были проблемы с механикой. Я решил собрать электронные часы. Первая проблема - какой индикатор выбрать. ВЛИ и ГРИ не подходать из-за больших перепадов температур на даче. ЖКИ отпадает по той же причине. Остаётся светодиодный индикатор. Мне надоело разглядывать мелкие цифры на индикаторах, а большие семисегментники редкие и дорогие. Решено было сделать индикатор с высотой цифры 50мм из отдельных зелёных светодиодов.

С индикатором разобрались, но им нужно как-то управлять. При этом часы должны идти даже при длительном отсутсвии питания. Будем делать на МК ATTiny2313 и микросхеме RTC DS1307, которая так же имеет встоенный контроллер питания и позволяет подключить батарейку.

1. Индикатор.

Делать будем, как я уже сказал, из отдельных зелёных светодиодов диаметром 5мм. Вот схема индикатора:

Пояснять тут особо нечего. Резисторы токоограничивающие, диоды нужны для красивого рисования цифр. В каждом прямоугольнике на схеме должен быть один разряд (схема у всех одинаковая), по середине - разделительное двоеточие.

2. Основная часть.

Схема, как я уже говорил, на ATTiny2313 и DS1307. Вот она:

Тут уже пояснения требуются. Справа два сдвоенных семисегментника и два светодиода - внутренняя схема маленького индикатора с ОА. Зачем два индикатора? Ночью большой индикатор ярким свечением может мешать спать (часы будут около кровати), по этому индикацию можно переключить на маленький индикатор переключателем SW1. В положении "Ночн." работает маленький индикатор, в положении "Дневн." - большой. Этот маленький индикатор я достал из стиральной машины, распиновка есть на печетке. Батрейка на 3В, CR2032. Транзисторы Q1-Q4 можно заменить на любые другие маломощные PNP транзисторы, например на КТ315. Q6-Q9 - на PNP током КЭ не менее 1А, Q5 - на NPN с током коллектора не менее 0,4А. Блок питания может быть любой с напряжением 9-20В, полярность не важна, можно даже переменку пускать. Ток не менее 1А. Стабилизатор U4 нужно установить на радиатор. Кстати, чем меньше входное напряжение - тем легче живётся стабилизатору. У меня БП такой:

Теперь переходим к сборке.

3. Сборка.

Идём в магазин и покупаем детали.

Делаем платы и начинаем паять. Запаять 88 светодиодов, столько же резисторов и 44 диода - не легко, но оно того стоит.

Теперь соединяем всё проводами. Я использовать шлейфы и разъёмы PLS/PBS. Вам помогут эти картинки:

Теперь прошиваем МК. Вот фьюзы:

И включаем:

Кнопки и разъёмы я использовал такие:

4. Корпус.

Корпус я сделал из фанеры и бруска 20*40, зашкурил и покрыл лаком. Сзади поставил два крепежа для крепления на стену.

Кстати, для заклеивания окошек для индикаторов я использовал плёнку от зелёных бутылок, выглядит красиво и защищает от засветки солнцем.

Теперь несколько фотографий:

Часы со светодиодным семисегментным индикатором на микросхеме К145ИК1911

История этих часов появления на сайте немного иная, от других схем на сайте.

Обычный выходной, захожу на почту,роюсь, и на хожу наш читатель Федоренко Евгений, прислал схему часов,с описанием и со всеми фотографиями.

Кратко о схеме.Это схема электронных часов своими руками выполненная на микросхеме К145ИК1911 , и время выводится на семи сегментные светодиодные индикаторы.И так его статья.Смотрим все.

Схема часов:


Для увеличения снимка, его просто стоит увеличить нажатием.И сохранить компьютер.

Не так давно передо мной встала задача – либо купить новые часы, либо собрать новые самостоятельно. Требования к часам выдвигались простые – на дисплее должны отображаться часы и минуты, должен быть будильник, причём, в качестве устройства отображения должны использоваться светодиодные семисегментные индикаторы. Не хотелось нагромождать кучу логических микросхем, а с программированием контроллеров связываться не было желания. Выбор остановил на разработке советской электронной промышленности – микросхеме К145ИК1901 .

В магазине на тот момент её не оказалось, но был аналог, в 40 выводном корпусе – К145ИК1911. Наименование выводов данной микросхемы ничем не отличается от предыдущей, различие – в нумерации.



Минусом этих микросхем является то, что они работают только с вакуумными люминесцентными индикаторами. Для обеспечения стыковки со светодиодным индикатором потребовалось построить схему согласования на полупроводниковых ключах.

В качестве драйверов строк – J1-J7 можно применить транзисторы КТ3107 с буквенным индексом И, А, Б. Для драйверов выбора сегментов D1-D4 пойдут КТ3102И, либо КТ3117А, КТ660А, а также любые другие с максимальным напряжением коллектор-эмиттер не менее 35 В и током коллектора не менее 100 мА. Ток сегментов индикаторов регулируется резисторами в коллекторных цепях драйверов строк.



Для разделения разрядов часов и минут используется точка, мигающая с частотой 1 Гц.

Эта частота присутствует на выводе микросхемы Y4, после того, как начался отсчёт времени. В данной схеме также предусмотрена возможность отображения на дисплее вместо часов и минут – минут и секунд соответственно. Переход в данный режим осуществляется нажатием на кнопку «Сек.». Возврат к индикации времени часов и минут осуществляется после нажатия кнопки «Возврат». Данная микросхема обеспечивает возможность установки двух будильников одновременно, но в данной схеме второй будильник не используется за ненадобностью. В качестве звукоизлучателя использована пьезо-пищалка со встроенным генератором, с напряжением питания 12В. Сигнал включения будильника снимается с вывода Y5 микросхемы. Для обеспечения прерывистого звучания, сигнал модулируется частотой 1 Гц, используемой для индикации секундного ритма (точки). Для более подробного изучения функционала микросхемы К145ИК1901(11) можно обратиться к документации, которую в последнее время можно без труда найти в сети. Питание микросхемы должно осуществляться отрицательным напряжением -­27В±10%. Согласно проведённым экспериментам, микросхема сохраняет работоспособность даже при напряжении -19В, причём точность хода часов при этом ничуть не пострадала.

Схема часов приведена на рисунке выше. В схеме были применены чип-резисторы типоразмера 1206, что позволяет существенно уменьшить габариты устройства. В качестве семисегментных индикаторов подойдут любые, с общим анодом.

Ну вот кончилась статься на данный момент.Которая будет еще дорабатываться и пополняться.А я выражаю благодарность ее автору-Федоренко Евгений,по всем вопросам а так же дать его почту.Пишите на Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

В продаже можно встретить много различных моделей и вариантов электронных цифровых часов, но большинство из них расчитаны на использование внутри помещений, так как цифры маленькие. Однако иногда требуется разместить часы на улице - например на стене дома, или на стадионе, площади, то есть там, где они будут видны на большом расстоянии многими людьми. Для этого и была разработана и успешно собрана данная схема больших светодиодных часов, к которым можно подключить (через внутренние транзисторные ключи) LED индикаторы сколь угодно большого размера. Увеличить принципиальную схему можно кликнув по ней:

Описание работы часов

  1. Часы. В данном режиме идёт стандартный вид отображения времени. Имеется цифровая коррекция точности хода часов.
  2. Термометр. В этом случае устройство производит измерение температуры комнаты либо воздуха на улице, с одного датчика. Диапазон от -55 до +125 градусов.
  3. Предусмотрен контроль источника питания.
  4. Вывод информации на индикатор попеременно - часов и термометра.
  5. Для сохранения настроек и установок при пропадании 220В, применена энергонезависимая память.


Основой устройства является МК ATMega8, который прошивают выставляя фузы согласно таблице:

Работа и управление часами

Включив часы в первый раз, на экране появится рекламная заставка, после чего переключится на отображение времени. Нажимая на кнопку SET_TIME индикатор пойдёт по кругу из основного режима:

  • режим отображения минут и секунд. Если в этом режиме одновременно нажать на кнопку PLUS и MINUS , то произойдет обнуление секунд;
  • установка минут текущего времени;
  • установка часов текущего времени;
  • символ t . Настройка продолжительности отображения часов;
  • символ o . Время отображения символов индикации внешней температуры (out);
  • величина ежесуточной коррекции точности хода часов. Символ c и значение коррекции. Пределы установки от -25 до 25 сек. Выбранная величина будет ежесуточно в 0 часов 0 минут и 30 секунд прибавлена или вычтена из текущего времени. Более подробно читайте в инструкции, что в архиве с файлами прошивки и печатных плат.

Настройка часов

Удерживая кнопки PLUS /MINUS делаем ускоренную установку значений. После изменения каких-либо настроек, через 10 секунд новые значения запишутся в энергонезависимую память и будут считаны оттуда при повторном включении питания. Новые настройки вступают в силу по ходу установки. Микроконтроллер отслеживает наличие основного питания. При его отключении питание прибора осуществляется от внутреннего источника. Схема резервного модуля питания показана ниже:


Для уменьшения тока потребления отключаются индикатор, датчики и кнопки, но сами часы продолжают отсчитывать время. Как только напряжение сети 220В появится - все функции индикации восстанавливаются.


Так как устройство задумывалось как большие светодиодные часы, в них есть два дисплея: большой светодиодный - для улицы, и маленький ЖКИ - для удобства настройки основного дисплея. Большой дисплей расположен на расстоянии несколько метров от блока управления и соединен двумя кабелями по 8 проводов. В управление анодами внешнего индикатора индикаторов, применены транзисторные ключи по приведенной в архиве схеме. Авторы проекта: Александрович & SOIR.

Часы со светодиодной подсветкой и пульсирующей минутной стрелкой на микроконтроллере Arduino
Эти уникальные часы со светодиодной подсветкой и пульсирующей минутной стрелкой удалось изготовить благодаря использованию микросхемы ШИМ-контроллера TLC5940. Его главной задачей является расширить количество контактов с ШИМ-модуляцией. Еще одной особенностью данных часов является переделанный аналоговый вольтметр в прибор измеряющий минуты. Для этого на стандартном принтере была распечатана новая шкала и наклеена поверх старой. Как таковая, 5-я минута не отсчитывается, просто в течение пятой минуты счетчик времени показывает стрелку, упершуюся в конец шкалы (зашкаливает). Основное управление реализовано на микроконтроллере Arduino Uno.

Для того чтобы подсветка часов не светилась слишком ярко в темной комнате, была реализована схема автоматической подстройки яркости в зависимости от освещенности (использовался фоторезистор).

Шаг 1: Необходимые компоненты



Вот что потребуется:

  • Модуль аналогового вольтметра на 5V DC;
  • Микроконтроллер Arduino UNO или другой подходящий Arduino;
  • Монтажная плата Arduino (прото плата);
  • Модуль часов реального времени DS1307 (RTC);
  • Модуль с ШИМ-контроллером TLC5940;
  • Лепестковые светодиоды подсветки – 12 шт.;
  • Компоненты для сборки схемы автоматического регулирования яркости (LDR).

Также, для изготовления некоторых других компонентов проекта желательно иметь доступ к 3D-принтеру и станку лазерной резки. Предполагается, что этот доступ у вас есть, поэтому в инструкции на соответствующих этапах будут прилагаться чертежи для изготовления.

Шаг 2: Циферблат




Циферблат состоит из трех деталей (слоев) вырезанных на станке лазерной резки из 3 мм листа МДФ, которые скрепляются между собой с помощью болтов. Пластина без прорезей (внизу справа на картинке) помещается под другой пластиной для позиционирования светодиодов (внизу слева). Затем, отдельные светодиоды помещаются в соответствующие пазы, и сверху одевается лицевая панель (сверху на рисунке). По краю циферблата просверлены четыре отверстия, через которые все три детали скрепляются вместе с помощью болтов.

  • Для проверки работоспособности светодиодов на этом этапе, использовалась плоская батарейка CR2032;
  • Для фиксации светодиодов использовались небольшие полоски липкой ленты, которые приклеивались с задней стороны светодиодов;
  • Все ножки светодиодов были предварительно согнуты соответствующим образом;
  • Отверстия по краям были просверлены заново, через которые и выполнялось скрепление болтами. Оказалось, что это намного удобнее.

Технический чертеж деталей для циферблата доступен по :

Шаг 3: Разработка схемы



На этом этапе была разработана электрическая схема. Для этого использовались различные учебники и руководства. Не будем сильно углубляться в этот процесс, в двух файлах ниже представлена готовая электрическая схема, которая была использована в этом проекте.

Шаг 4: Подключение монтажной платы Arduino





  1. Первым делом надо распаять все игольчатые контакты на монтажных и секционных платах;
  2. Далее, ввиду того, что питание 5V и GND используют очень много плат и периферийных устройств, для надежности, было припаяно по два провода на 5V и GND на монтажной плате;
  3. Далее был установлен ШИМ-контроллер TLC5940 рядом с используемыми контактами;
  4. После выполняется подключение контроллера TLC5940, согласно схеме подключения;
  5. Для того чтобы была возможность использовать батарею, был установлен модуль RTC на краю монтажной платы. Если припаять его посередине платы, то не будет видно обозначение контактов;
  6. Выполнено подключение модуля RTC, согласно схеме подключения;
  7. Собрана схема автоматического контроля яркости (LDR), ознакомиться можно по ссылке
  8. Выполнено подключение проводов для вольтметра, путем подключения проводов к выводу 6 и GND.
  9. В конце были припаяны 13 проводов для светодиодов (На практике оказалось, что это было лучше сделать до того, как приступать к шагу 3).

Шаг 5: Программный код

Программный код, приложенный ниже, был собран из различных кусков для компонентов часов, найденных в интернете. Он был полностью отлажен и в настоящее время полностью работоспособен, к тому же были добавлены довольно подробные комментарии. Но перед загрузкой в микроконтроллер учтите следующие пункты:

  • Перед прошивкой Arduino, нужно раскомментировать строку, которая устанавливает время:
    rtc.adjust(DateTime(__DATE__, __TIME__))
    После прошивки контроллера с этой строкой (время задано), нужно опять ее закомментировать и прошить контроллер заново. Это позволяет модулю RTC использовать батарею, для запоминания времени, если пропадет основное питание.
  • Каждый раз, когда вы используете "Tlc.set ()", вам нужно использовать "Tlc.update"

Шаг 6: Внешнее кольцо

Внешнее кольцо для часов было напечатано на 3D-принтере Replicator Z18. Оно прикрепляется к часам с помощью винтов на лицевой стороне часов. Ниже прилагается файл с 3D-моделью кольца для печати на 3D-принтере.

Шаг 7: Сборка часов


Микроконтроллер Arduino со всей остальной электроникой был закреплен на задней стороне часов с помощью саморезов и гаек в качестве распорок. Затем подключены все светодиоды, аналоговый вольтметр и LDR к проводам, которые ранее были подпаяны к монтажной плате. Все светодиоды соединены между собой одной ножкой и подключены к контакту VCC на контроллере TLC5940 (по кругу просто припаян кусок проволоки).

Пока все это не очень хорошо изолировано от коротких замыканий, но работа над этим будет продолжена в следующих версиях.

Наручные самодельные часы на вакуумном индикаторе, сделанные в стиле стимпанк. Материал взят с сайта www.johngineer.com. Эти наручные часы собраны на основе ИВЛ-2 дисплея. Изначально купил несколько таких индикаторов, чтобы создать стандартные настольные часы, но после размышлений понял, что можно построить стильные наручные часы тоже. Индикатор имеет ряд особенностей, которые делают его более подходящим для этой цели, чем большинство других советских дисплеев. Вот параметры:

  • Номинальный ток накала 60mA 2.4V, но работает и с 35mA 1.2V.
  • Небольшой размер - всего 1.25 x 2.25"
  • Может работать с относительно низким напряжением сетки 12V (до 24)
  • Потребляет только 2,5 мА/сегмент при 12.5V

Все фотки можно сделать по-больше кликнув на них. Самым крупным препятствием на пути к успешному завершению проекта было питание. Поскольку эти часы задумывались как часть костюма, не беда что аккумулятор работает всего 10 часов. Остановился на AA и AAA.

Схема довольно проста. Микроконтроллер Atmel AVR ATMega88, и часы реального времени - DS3231. Но есть и другие микросхемы, намного дешевле, которые будут работать так же хорошо в генераторе.

VFD-дисплей управляется MAX6920 - 12-разрядный регистр сдвига с высоким напряжением (до 70V) выходов. Он прост в использовании, очень надежный и компактный. Также возможно для драйвера дисплея спаять кучу дискретных компонентов, но это было непрактично из-за нехватки места.

Напряжение аккумулятора питает также повышающий преобразователь на 5 В (MCP1640 SOT23-6), который нужен для нормальной работы AVR, DS3231, и MAX6920, а также выступает в качестве входного напряжения для второго повышающего преобразователя (NCP1403 SOT23-5), который производит 13V для напряжения сетки вакуумного индикатора.

В часах есть три датчика: один аналоговый и два цифровых. Аналоговый датчик - это фототранзистор, он используется для выявления уровня освещения (Q2). Цифровые датчики: BMP180 - давления и температуры, и MMA8653 - акселерометр для обнаружения движения. Оба цифровых датчика связаны по шине I2C с DS3231.

Латунные трубочки припаяны для красоты и защиты стеклянного дисплея наручных часов, а медные толстые проволоки 2 мм - для крепления кожаного ремешка. Полная принципиальная схема в оригинальной статье не приводится - смотрите подключение по даташитам к указанным микросхемам.