БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ


Биполярным транзистором называют полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и предназначеный для усиления сигнала.

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

Биполярные транзисторы можно классифицировать по материалу: германиевые и кремниевые; по виду проводимости: типа р- n -р и n - p - n ; по мощности: малая (Р мах < 0,3Вт), средняя (Р мах = 1,5Вт) и большая (Р мах > 1,5Вт); по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В таких транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок. Отсюда пошло их название: биполярные.

Биполярный транзистор представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n -р- n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р- n -р имеют среднюю область с электронной, а крайние - с дырочной проводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, вторая – коллектором. Таким образом в транзисторе имеются два р- n - перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором.

Эмиттером - это область транзистора для инжекции носителей заряда в базу. Коллектором - область, назначением которой является извлечение носителей заряда из базы. Базой называется область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера гораздо выше проводимости базы, а проводимость коллектора меньше проводимости эмиттера.

В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Принцип действия транзистора на примере транзистора р- n -р –типа, включенного по схеме с общей базой (ОБ).

Внешние напряжения двух источников питания ЕЭ и Е к подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении, а коллекторного перехода П2 – в обратном направлении.

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток I ко . Он возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Е к , база-коллектор, −Е к .

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Е к . Дырки, рекомбинировавшие с электронами в базе, создают ток базы I Б.

Под воздействием обратного напряжения Е к, потенциальный барьер коллекторного перехода повышается, а толщина перехода П2 увеличивается. Вошедшие в область коллекторного перехода дырки попадают в ускоряющее поле, созданное на переходе коллекторным напряжением, и втягиваются коллектором, создавая коллекторный ток I к . Коллекторный ток протекает по цепи: +Е к , база-коллектор, -Е к .

Таким образом, в б иполярном транзисторе протекает три вида тока: эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Ток базы равен разности токов эмиттера и коллектора: I Б = I Э − I К.

Физические процессы в транзисторе типа n -р- n протекают аналогично процессам в транзисторе типа р- n -р.

Полный ток эмиттера I Э определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток I к . Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы I Б. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. I Э = I Б + I к .

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Е к значительно больше, чем эмиттерного Е э , то и мощность, потребляемая в цепи коллектора Р к , будет значительно больше мощности в цепи эмиттера Р э . Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

Схемы включения биполярных транзисторов

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК . Для транзистора n -р- n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме ОБ

I Э = f (U ЭБ) при U КБ = const (а).

I К = f (U КБ) при I Э = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость I к от U КБ; 2 – слабая зависимость I к от U КБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения U КБ.

Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

I Б = f (U БЭ) при U КЭ = const (б).

Выходной характеристикой является зависимость:

I К = f (U КЭ) при I Б = const (а).


Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р- n - перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р- n - перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы - усиление, генерирация.

усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Е к , управляемый элемент – транзистор VT и резистор R к . Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор С р является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Е к .

Резистор R Б, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя I Б = Е к / R Б. С помощью резистора R к создается выходное напряжение. R к выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Е к = U кэ + I к R к ,

сумма падения напряжения на резисторе R к и напряжения коллектор-эмиттер U кэ транзистора всегда равна постоянной величине – ЭДС источника питания Е к .

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Е к в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

Биполярный транзистор - полупроводниковый элемент с двумя p-n переходами и тремя выводами, который служит для усиления или переключения сигналов. Они бывают p-n-p и n-p-n типа. На рис.7.1, а и б показаны их условные обозначения.

Рис.7.1. Биполярные транзисторы и их диодные эквивалентные схемы: а) p-n-p, б) n-p-n транзистор

Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим p- или n- слоем. Электрод, связанный с ним, называется базой Б. Два других электрода называются эмиттером Э и коллектором К. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер - база смещен в прямом направлении (открыт), а переход база - коллектор - в обратном (заперт). Поэтому источники напряжения должны быть включены, как показано на рис.7.2.

Рис.7.2. Полярность включения: а) n-p-n, б) p-n-p транзистора

Транзисторы n-p-n типа подчиняются следующим правилам (для транзисторов p-n-p типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

1. Коллектор имеет более положительный потенциал, чем эмиттер.

2. Цепи база-эмиттер и база-коллектор работают как диоды (рис.7.1). Обычно переход база-эмиттер открыт, а переход база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него. Из этого правила следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как потенциал базы будет превышать потенциал эмиттера более чем на 0,6 - 0,8 В (прямое напряжение диода), при этом возникает очень большой ток. Следовательно, в работающем транзисторе напряжение на базе и эмиттере связаны следующим соотношением: UБ ≈ UЭ+0,6В; (UБ = UЭ + UБЭ).

3. Каждый транзистор характеризуется максимальными значениями IК, IБ, UКЭ. В случае превышения этих параметров необходимо использовать еще один транзистор. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности РК, температуры, UБЭ и др.

4. Если правила 1-3 соблюдены, то ток коллектора прямо пропорционален току базы. Соотношение токов коллектора и эмиттера приблизительно равно

IК = αIЭ, где α=0,95…0,99 - коэффициент передачи тока эмиттера. Разность между эмиттерным и коллекторным токами в соответствии с первым законом Кирхгофа (и как видно из рис. 7.2, а) представляет собой базовый ток IБ = IЭ - IК. Ток коллектора зависит от тока базы в соответствии с выражением: IК = βIБ, где β=α/(1-α) - коэффициент передачи тока базы, β >>1.

Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Режимы работы транзистора. Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора.

Усилительный или активный режим - на эмиттерный переход подано прямое напряжение, а на коллекторный - обратное. Именно этот режим работы транзистора соответствует максимальному значению коэффициента передачи тока эмиттера. Ток коллектора пропорционален току базы, обеспечиваются минимальные искажения усиливаемого сигнала.

Инверсный режим - к коллекторному переходу подведено прямое напряжение, а к эмиттерному - обратное. Инверсный режим приводит к значительному уменьшению коэффициента передачи тока базы транзистора по сравнению с работой транзистора в активном режиме и поэтому на практике используется только в ключевых схемах.

Режим насыщения - оба перехода (эмиттерный и коллекторный) находятся под прямым напряжением. Выходной ток в этом случае не зависит от входного и определяется только параметрами нагрузки. Из-за малого напряжения между выводами коллектора и эмиттера режим насыщения используется для замыкания цепей передачи сигнала.

Режим отсечки - к обоим переходам подведены обратные напряжения. Так как выходной ток транзистора в режиме отсечки практически равен нулю, этот режим используется для размыкания цепей передачи сигналов.

Основным режимом работы биполярных транзисторов в аналоговых устройствах является активный режим. В цифровых схемах транзистор работает в ключевом режиме, т.е. он находится только в режиме отсечки или насыщения, минуя активный режим.

Биполярные транзисторы это полупроводниковые приборы с тремя электродами, подключенными к трем последовательно находящимся слоям, с различной проводимости. В отличие от других транзисторов, которые переносят один тип заряда, он способен переносить сразу два типа.

Схемы подключения, использующие биполярные транзисторы, зависят от производимой работы и типа проводимости. Проводимость может быть электронной, дырочной.

Разновидности биполярных транзисторов

Биполярные транзисторы разделяют по различным признакам на виды по:

  • Материалу изготовления : кремний или арсенид галлия.
  • Величине частоты : до 3 МГц – низкая, до 30 МГц – средняя, до 300 МГц – высокая, более 300 МГц – сверхвысокая.
  • Наибольшей рассеиваемой мощности : 0-0,3 Вт, 0,3-3 Вт, свыше 3 Вт.
  • Типу прибора : 3 слоя полупроводника с последовательной очередностью типа проводимости.

Устройство и работа

Слои транзистора, как внутренний, так и наружный, объединены с встроенными электродами, которые имеют свои названия в виде базы, эмиттера и коллектора.

Особых отличий по видам проводимости у коллектора и эмиттера не наблюдается, однако процент включения примесей у коллектора намного меньше, что позволяет повысить допустимое напряжение на выходе.

Средний слой полупроводника (база) имеет большую величину сопротивления, так как выполнена из слаболегированного материала. Она контактирует с коллектором на значительной площади. Это позволяет повысить теплоотвод, который необходим вследствие выделения тепла от смещения перехода в другую сторону. Хороший контакт базы с коллектором дает возможность легко проходить электронам, которые являются неосновными носителями.

Слои перехода выполнены по одному принципу. Однако биполярные транзисторы считаются несимметричными приборами. При чередовании крайних слоев местами с одной проводимостью нельзя образовать подобные параметры полупроводника.

Схемы подключения транзисторов выполнены таким образом, что могут обеспечить ему как закрытое, так и открытое состояние. При активной работе, когда полупроводник открыт, смещение эмиттера выполнено в прямом направлении. Для полного понимания этой конструкции, нужно подключить напряжение питания по изображенной схеме.

При этом граница на 2-м переходе коллектора закрыта, ток через нее не идет. Практически возникает обратное явление ввиду рядом расположенных переходов, их влияния друг на друга. Так как к эмиттеру подсоединен минусовой полюс батареи, то переход открытого вида дает возможность электронам проходить на базу, в которой осуществляется их рекомбинация с дырками, являющимися главными носителями. Появляется ток базы I б. Чем выше базовый ток, тем больше выходной ток. В этом заключается принцип действия усилителей.

По базе протекает только диффузионное движение электронов, так как нет работы электрического поля. Из-за малой толщины этого слоя и значительном градиенте частиц, практически все они поступают на коллектор, хотя база имеет большое сопротивление. На переходе имеется электрическое поле, которое способствует переносу и втягивает их. Токи эмиттера и коллектора одинаковые, если не считать малой потери заряда от перераспределения на базе: I э = I б + I к .

Характеристики

  • Коэффициент усиления тока β = I к / I б .
  • Коэффициент усиления напряжения U эк / U бэ .
  • Сопротивление на входе.
  • Характеристика частоты – возможность работы транзистора до определенной частоты, при выходе за границы которой процессы перехода опаздывают за изменением сигнала.

Режимы работ и схемы

Вид схемы влияет на режим действия биполярного транзистора. Сигнал может сниматься и отдаваться в двух местах для разных случаев, а электродов имеется три штуки. Следовательно, что один произвольный электрод должен быть сразу выходом и входом. По такому принципу подключаются все биполярные транзисторы, и имеют три вида схем, которые мы рассмотрим ниже.

Схема с общим коллектором

Сигнал проходит на сопротивление R L , которое также включено в цепь коллектора.

Такая схема подключения дает возможность создать всего лишь усилитель по току. Достоинством такого эмиттерного повторителя можно назвать образование значительного сопротивления на входе. Это дает возможность для согласования каскадов усиления.

Схема с общей базой

В схеме можно найти недостаток в виде малого входного сопротивления. Схема с общей базой используется чаще всего в качестве генератора колебаний.

Схема с общим эмиттером

Чаще всего при использовании биполярных транзисторов выполняют схему с общим эмиттером. Напряжение проходит по сопротивлению нагрузки R L , к эмиттеру питание подключается отрицательным полюсом.

Сигнал переменного значения приходит на базу и эмиттер. В цепи коллектора он становится по значению больше. Главными элементами схемы являются резистор, транзистор и выходная цепь усилителя с источником питания. Дополнительными элементами стали: емкость С 1 , которая не дает пройти току на вход, сопротивление R 1 , благодаря которому открывается транзистор.

В цепи коллектора напряжение транзистора и сопротивления равны значению ЭДС: E= Ik Rk +Vke .

Отсюда следует, что малым сигналом Ec определяется правило изменения разности потенциалов в переменное выходное транзисторного преобразователя. Такая схема дает возможность увеличению тока входа во много раз, так же, как напряжению и мощности.

Из недостатков такой схемы можно назвать малое сопротивление на входе (до 1 кОм). Как следствие, возникают проблемы в образовании каскадов. Сопротивление выхода равно от 2 до 20 кОм.

Рассмотренные схемы показывают действие биполярного транзистора. На его работу влияет частота сигнала и перегрев. Для решения этого вопроса применяют дополнительные отдельные меры. Эмиттерное заземление образует на выходе искажения. Для создания надежности схемы, выполняют подключение фильтров, обратных связей и т.д. После таких мер, схема работает лучше, но уменьшается усиление.

Режимы работы

На быстродействие транзистора оказывает влияние величина подключаемого напряжения. Рассмотрим разные режимы работы на примере схемы, в которой биполярные транзисторы подключаются с общим эмиттером.

Отсечка

Этот режим образуется при снижении напряжения V БЭ до 0,7 вольта. В таком случае переход эмиттера закрывается, и ток на коллекторе отсутствует, так как в базе отсутствуют электроны, и транзистор остается закрытым.

Активный режим

При подаче напряжения, достаточного для открытия транзистора, на базу, возникает малый ток входа и большой выходной ток. Это зависит от размера коэффициента усиления. В этом случае транзистор работает усилителем.

Режим насыщения

Эта работа имеет свои отличия от активного режима. Полупроводник открывается до конца, коллекторный ток достигает наибольшего значения. Его повышения можно добиться только путем изменения нагрузки, либо ЭДС выходной схемы. При корректировке тока базы ток коллектора не изменяется. Режим насыщения имеет особенности в том, что транзистор открыт полностью и работает переключателем. Если объединить режимы насыщения и отсечки биполярных транзисторов, то можно создать ключи.

Свойства характеристик выхода влияют на режимы. Это изображено на графике.

При отложении на осях координат отрезков, соответствующих наибольшему току коллектора и размеру напряжения, и далее, объединения концов друг с другом, образуется красная линия нагрузки. По графику видно: точка тока и напряжения сместится по линии нагрузки вверх при повышении базового тока.

Участок между заштрихованной характеристикой выхода и осью Vke является работа отсечки. В этом случае транзистор закрыт, а обратная величина тока мала. Характеристика в точке А вверху пересекается с нагрузкой, после которой при последующем повышении I В ток коллектора уже не меняется. На графике участком насыщения является закрашенная часть между осью Ik и наиболее крутым графиком.

Биполярные транзисторы в различных режимах

Транзистор взаимодействует с сигналами разных видов во входной цепи. В основном транзистор применяется в усилителях. Входной переменный сигнал изменяет ток на выходе. В этом случае используются схемы с общим эмиттером или коллектором. В цепи выхода для сигнала необходима нагрузка.

Чаще всего для этого применяют сопротивление, установленное в цепи выхода коллектора. При его правильном выборе, значение напряжения на выходе будет намного больше, чем на входе.

Во время преобразования сигнала импульсов режим сохраняется таким же, как для синусоидальных сигналов. Качество изменения гармоник определяется характеристиками частоты полупроводников.

Режим переключения

Транзисторные ключи служат для бесконтактных переключений в электрических цепях. Эта работа заключается в прерывистой регулировке величины сопротивления полупроводника. Биполярные транзисторы наиболее применимы в устройствах переключения.

Полупроводники применяются в схемах изменения сигналов. Их универсальная работа и широкая классификация дает возможность использовать транзисторы в различных цепях, которые определяют их возможности работы. Основными применяемыми схемами являются усиливающие, а также переключающие цепи.

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор - электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» - дважды). А в полевом (он же униполярный) - или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые - в цифровой.

И, напоследок: основная область применения любых транзисторов - усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики


Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.


Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой - слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй - с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны - неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем - ток коллектора, а управляющий ток базы - то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) - соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора - коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая - очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
  1. Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности - до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор - обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное - не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке - VT1), который управляет энергией питания более мощного собрата (на рисунке - VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления - то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка

Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

Теги: Добавить метки

Транзисторы подразделяются на биполярные и полевые. Каждый из этих типов имеет свой принцип работы и конструктивное исполнение, однако, общим для них является наличие полупроводниковых p-n структур.

Условные графические обозначения (УГО) транзисторов приведены в таблице:


Тип прибора Условное графическое обозначение
(УГО)
Биполярные Биполярный p-n-p типа
Биполярный n-p-n типа
Полевые С управляющим
p-n переходом
С каналом p-типа
С каналом n-типа
С изолированным
затвором
МОП транзисторы
С встроенным
каналом
Встроенный канал
p-типа
Встроенный канал
n-типа
С индуцированным
каналом
Индуцированный канал
p-типа
Индуцированный канал
n-типа

Биполярные транзисторы

Определение "биполярный" указывает на то, что работа транзистора связана с процессами, в которых принимают участие носители заряда двух типов - электроны и дырки.

Транзистором называется полупроводниковый прибор с двумя электронно-дырочными переходами, предназначенный для усиления и генерирования электрических сигналов. В транзисторе используются оба типа носителей – основные и неосновные, поэтому его называют биполярным.

Биполярный транзистор состоит из трех областей монокристаллического полупроводника с разным типом проводимости: эмиттера, базы и коллектора.

  • Э - эмиттер,
  • Б - база,
  • К - коллектор,
  • ЭП - эмиттерный переход,
  • КП - коллекторный переход,
  • W - толщина базы.

Каждый из переходов транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:

  1. Режим отсечки – оба p-n перехода закрыты, при этом через транзистор обычно идет сравнительно небольшой ток
  2. Режим насыщения – оба p-n перехода открыты
  3. Активный режим – один из p-n переходов открыт, а другой закрыт

В режиме отсечки и режиме насыщения управление транзистором невозможно. Эффективное управление транзистором осуществляется только в активном режиме. Этот режим является основным. Если на эмиттерном переходе напряжение прямое, а на коллекторном – обратное, то включение транзистора считают нормальным, при противоположной полярности – инверсным.

В нормальном режиме коллекторный p-n переход закрыт, эмиттерный – открыт. Ток коллектора пропорционален току базы.

Движение носителей заряда в транзисторе n-p-n типа показано на рисунке:

При подключении эмиттера к отрицательному зажиму источника питания возникает эмиттерный ток Iэ . Так как внешнее напряжение приложено к эмиттерному переходу в прямом направлении, электроны преодолевают переход и попадают в область базы. База выполнена из p-полупроводника, поэтому электроны являются для неё неосновными носителями заряда.

Электроны, попавшие в область базы, частично рекомбинируют с дырками базы. Однако базу обычно выполняют очень тонкой из p-проводника с большим удельным сопротивлением (малым содержанием примеси), поэтому концентрация дырок в базе низкая и лишь немногие электроны, попавшие в базу, рекомбинируют с её дырками, образуя базовый ток Iб . Большинство же электронов вследствие теплового движения (диффузия) и под действием поля коллектора (дрейф) достигают коллектора, образуя составляющую коллекторного тока Iк .

Связь между приращениями эмиттерного и коллекторного токов характеризуется коэффициентом передачи тока

Как следует из качественного рассмотрения процессов, происходящих в биполярном транзисторе, коэффициент передачи тока всегда меньше единицы. Для современных биполярных транзисторов α = 0,9 ÷ 0,95

При Iэ ≠ 0 ток коллектора транзистора равен:

В рассмотренной схеме включения базовый электрод является общим для эмиттерной и коллекторной цепей. Такую схему включения биполярного транзистора называют схемой с общей базой, при этом эмиттерную цепь называют входной, а коллекторную – выходной. Однако такую схему включения биполярного транзистора применяют очень редко.

Три схемы включения биполярного транзистора

Различают схему включения с общей базой, общим эмиттером, общим коллектором. Схемы для p-n-p транзистора показаны на рисунках а, б, в:

В схеме с общей базой (рис. а) электрод база является общим для входной и выходной цепи, в схеме с общим эмиттером (рис. б) общим является эмиттер, в схеме с общим коллектором (рис. в) общим является коллектор.

На рисунке показаны: Е1 – питание входной цепи, Е2 – питание выходной цепи, Uвх – источник усиливаемого сигнала.

В качестве основной принята схема включения, в которой общим электродом для входной и выходной цепи является эмиттер (схема включения биполярного транзистора с общим эмиттером). Для такой схемы входной контур проходит через переход база-эмиттер и в нем возникает ток базы:

Малое значение тока базы во входном контуре обусловило широкое применение схемы с общим эмиттером.

Биполярный транзистор в схеме с общим эмиттером (ОЭ)

В транзисторе, включенном по схеме ОЭ, зависимость между током и напряжением во входной цепи транзистора Iб = f1 (Uбэ ) называют входной или базовой вольт-амперной характеристикой (ВАХ) транзистора. Зависимость тока коллектора от напряжения между коллектором и эмиттером при фиксированных значениях тока базы Iк = f2 (Uкэ ), Iб – const называют семейством выходных (коллекторных) характеристик транзистора.

Входная и выходная ВАХ биполярного транзистора средней мощности типа n-p-n приведены на рисунке:

Как видно из рисунка, входная характеристика практически не зависит от напряжения Uкэ . Выходные характеристики приблизительно равноудалены друг от друга и почти прямолинейны в широком диапазоне изменения напряжения Uкэ .

Зависимость Iб = f(Uбэ ) представляет собой экспоненциальную зависимость, характерную для тока прямосмещённого p-n перехода. Поскольку ток базы – рекомбинационный, то его Iб величина в β раз меньше, чем инжектированный ток эмиттера Iэ . При росте коллекторного напряжения Uк входная характеристика смещается в область больших напряжений Uб . Это связано с тем, что вследствие модуляции ширины базы (эффект Эрли) уменьшается доля рекомбинационного тока в базе биполярного транзистора. Напряжение Uбэ не превышает 0,6…0,8 В. Превышение этого значения приведет к резкому увеличению тока, протекающего через открытый эмиттерный переход.

Зависимость Iк = f(Uкэ ) показывает, что ток коллектора прямопропорционален току базы: Iк = B · Iб

Параметры биполярного транзистора

Представление транзистора в малосигнальном режиме работы четырехполюсником

В малосигнальном режиме работы транзистор может быть представлен четырехполюсником. Когда напряжения u1 , u2 и токи i1 , i2 изменяются по синусоидальному закону, связь между напряжениями и токами устанавливается при помощи Z, Y, h параметров.

Потенциалы 1", 2", 3 одинаковы. Транзистор удобно описывать, используя h-параметры.

Электрическое состояние транзистора, включенного по схеме с общим эмиттером, характеризуется четырьмя величинами: Iб , Uбэ , Iк и Uкэ . Две из этих величин можно считать независимыми, а две другие могут быть выражены через них. Из практических соображений в качестве независимых удобно выбирать величины Iб и Uкэ . Тогда Uбэ = f1 (Iб , Uкэ ) и Iк = f2 (Iб , Uкэ ).

В усилительных устройствах входными сигналами являются приращения входных напряжений и токов. В пределах линейной части характеристик для приращений Uбэ и Iк справедливы равенства:

Физический смысл параметров:

Для схемы с ОЭ коэффициенты записываются с индексом Э: h11э , h12э , h21э , h22э .

В паспортных данных указывают h21э = β , h21б = α. Эти параметры характеризуют качество транзистора. Для увеличения значения h21 нужно либо уменьшить ширину базы W, либо увеличить диффузионную длину, что достаточно трудно.

Составные транзисторы

Для увеличения значения h21 соединяют биполярные транзисторы по схеме Дарлингтона:

В составном транзисторе, имеющем характеристики, как одного, база VT1 соединена с эмиттером VT2 и ΔIэ2 = ΔIб1 . Коллекторы обоих транзисторов соединены и этот вывод является выводом составного транзистора. База VT2 играет роль базы составного транзистора ΔIб = ΔIб2 , а эмиттер VT1 – роль эмиттера составного транзистора ΔIэ = ΔI1 .

Получим выражение для коэффициента усиления по току β для схемы Дарлингтона. Выразим связь между изменением тока базы dIб и вызванным вследствие этого изменением тока коллектора dIк составного транзистора следующим образом:

Поскольку для биполярных транзисторов коэффициент усиления по току обычно составляет несколько десятков (β1 , β2 >> 1), то суммарный коэффициент усиления составного транзистора будет определяться произведением коэффициентов усиления каждого из транзисторов βΣ = β1 · β2 и может быть достаточно большим по величине.

Отметим особенности режима работы таких транзисторов. Поскольку эмиттерный ток VT2 Iэ2 является базовым током VT1 dIб1 , то, следовательно, транзистор VT2 должен работать в микромощном режиме, а транзистор VT1 – в режиме большой инжекции, их эмиттерные токи отличаются на 1-2 порядка. При таком неоптимальном выборе рабочих характеристик биполярных транзисторов VT1 и VT2 не удается в каждом из них достичь высоких значений усиления по току. Тем не менее даже при значениях коэффициентов усиления β1 , β2 ≈ 30 суммарный коэффициент усиления βΣ составит βΣ ≈ 1000.

Высокие значения коэффициента усиления в составных транзисторах реализуются только в статистическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ, наоборот, и граничная частота усиления по току, и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 , VT2 в отдельности.

Частотные свойства биполярных транзисторов

Процесс распространения инжектированных в базу неосновных носителей заряда от эмиттерного до коллекторного перехода идет диффузионным путем. Этот процесс достаточно медленный, и инжектированные из эмиттера носители достигнут коллектора не ранее чем за время диффузии носителей через базу. Такое запаздывание приведет к сдвигу фаз между током Iэ и током Iк . При низких частотах фазы токов Iэ , Iк и Iб совпадают.

Частота входного сигнала, при которой модуль коэффициента усиления уменьшается в раз по сравнению со статическим значением β0 , называется предельной частотой усиления по току биполярного транзистора в схеме с общим эмиттером

Fβ – предельная частота (частота среза)
fгр – граничная частота (частота единичного усиления)

Полевые транзисторы

Полевые, или униполярные, транзисторы в качестве основного физического принципа используют эффект поля. В отличие от биполярных транзисторов, у которых оба типа носителей, как основные, так и неосновные, являются ответственными за транзисторный эффект, в полевых транзисторах для реализации транзисторного эффекта применяется только один тип носителей. По этой причине полевые транзисторы называют униполярными. В зависимости от условий реализации эффекта поля полевые транзисторы делятся на два класса: полевые транзисторы с изолированным затвором и полевые транзисторы с управляющим p-n переходом.

Полевые транзисторы с управляющим p-n переходом

Схематически полевой транзистор с управляющим p-n переходом можно представить в виде пластины, к торцам которой подключены электроды, исток и сток. На рис. показана структура и схема включения полевого транзистора с каналом n-типа:

В транзисторе с n-каналом основными носителями заряда в канале являются электроны, которые движутся вдоль канала от истока с низким потенциалом к стоку с более высоким потенциалом, образуя ток стока Ic . Между затвором и истоком приложено напряжение, запирающее p-n переход, образованный n-областью канала и p-областью затвора.

При подаче запирающего напряжения на p-n-переход Uзи на границах канала возникает равномерный слой, обедненный носителями заряда и обладающий высоким удельным сопротивлением. Это приводит к уменьшению проводящей ширины канала.

Изменяя величину этого напряжения, можно изменить сечение канала и, следовательно, изменять величину электрического сопротивления канала. Для полевого n-канального транзистора потенциал стока положителен по отношению к потенциалу истока. При заземленном затворе от стока к истоку протекает ток. Поэтому для прекращения тока на затвор нужно подать обратное напряжение в несколько вольт.

Значение напряжения Uзи , при котором ток через канал становится практически равен нулю, называется напряжением отсечки Uзап

Таким образом, полевой транзистор с затвором в виде p-n-перехода представляет собой сопротивление, величина которого регулируется внешним напряжением.

Полевой транзистор характеризуется следующей ВАХ:

Здесь зависимости тока стока Iс от напряжения при постоянном напряжении на затворе Uзи определяют выходные, или стоковые, характеристики полевого транзистора. На начальном участке характеристик Uси + |Uзи | < Uзап ток стока Iс возрастает с увеличением Uси . При повышении напряжения сток - исток до Uси = Uзап - |Uзи | происходит перекрытие канала и дальнейший рост тока Iс прекращается (участок насыщения). Отрицательное напряжение Uзи между затвором и истоком смещает момент перекрытия канала в сторону меньших значений напряжения Uси и тока стока Iс . Участок насыщения является рабочей областью выходных характеристик полевого транзистора. Дальнейшее увеличение напряжения Uси приводит к пробою р-n-перехода между затвором и каналом и выводит транзистор из строя.

На ВАХ Iс = f(Uзи ) показано напряжение Uзап . Так как Uзи ≤ 0 p-n-переход закрыт и ток затвора очень мал, порядка 10-8 …10-9 А , поэтому к основным преимуществам полевого транзистора, по сравнению с биполярным, относится высокое входное сопротивление, порядка 1010 …1013 Ом . Кроме того, они отличаются малыми шумами и технологичностью изготовления.

Практическое применение имеют две основные схемы включения. Схема с общим истоком (рис. а) и схема с общим стоком (рис. б) , которые показаны на рисунке:

Полевые транзисторы с изолированным затвором
(МДП-транзисторы)

Термин "МДП-транзистор" используется для обозначения полевых транзисторов, в которых управляющий электрод – затвор – отделен от активной области полевого транзистора диэлектрической прослойкой – изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник (М-Д-П).

Технология МДП-транзистора с встроенным затвором приведена на рисунке:

Исходный полупроводник, на котором изготовлен МДП-транзистор, называется подложкой (вывод П). Две сильнолегированные области n+ называется истоком (И) и стоком (С). Область подложки под затвором (З) называется встроенным каналом (n-канал).

Физической основой работы полевого транзистора со структурой металл-диэлектрик-полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод-затвор. В зависимости от знака и величины приложенного напряжения могут быть два состояния области пространственного заряда (ОПЗ) в канале – обогащение, обеднение.

Режиму обеднения соответствует отрицательное напряжение Uзи , при котором концентрация электронов в канале уменьшается, что приводит к уменьшению тока стока. Режиму обогащения соответствует положительное напряжение Uзи и увеличение тока стока.

ВАХ представлена на рисунке:

Топология МДП-транзистора с индуцированным (наведенным) каналом р-типа приведена на рисунке:

При Uзи = 0 канал отсутствует и Ic = 0. Транзистор может работать только в режиме обогащения Uзи < 0. Если отрицательное напряжение Uзи превысит пороговое Uзи.пор , то происходит формирование инверсионного канала. Изменяя величину напряжения на затворе Uзи в области выше порогового Uзи.пор , можно менять концентрацию свободных носителей в инверсионном канале и сопротивление канала. Источник напряжения в стоковой цепи Uси вызовет ток стока Iс .

ВАХ представлена на рисунке:

В МДП-транзисторах затвор отделен от полупроводника слоем окисла SiO2 . Поэтому входное сопротивление таких транзисторов порядка 1013 …1015 Ом.

К основным параметрам полевых транзисторов относятся:

  • Крутизна характеристики при Uсп = const, Uпи = const. Типичные значения параметра (0,1...500) мА/В;
  • Крутизна характеристики по подложке при Uсп = const, Uзи = const. Типичные значения параметра (0.1...1) мА/В;
  • Начальный ток стока Iс.нач. – ток стока при нулевом значении напряжения Uзи . Типичные значения параметра: (0,2...600) мА – для транзисторов с управляющим каналом p-n переходом; (0,1...100) мА – для транзисторов со встроенным каналом; (0,01...0,5) мкА – для транзисторов с индуцированным каналом;
  • Напряжение отсечки Uзи.отс. . Типичные значения (0,2...10) В; пороговое напряжение Uп . Типичные значения (1...6) В;
  • Сопротивление сток-исток в открытом состоянии. Типичные значения (2..300) Ом
  • Дифференциальное сопротивление (внутреннее): при Uзи = const;
  • Статистический коэффициент усиления: μ = S · ri
  • Тиристоры

    Тиристор является полупроводниковым прибором с тремя и более электронно-дырочными p-n-переходами. Они, в основном, применяются в качестве электронных ключей. В зависимости от числа внешних выводов они подразделяются на тиристоры с двумя внешними выводами – динисторы и тиристоры с тремя выводами – тринисторы. Для обозначения тиристоров принят буквенный символ VS.

    Устройство и принцип работы динистора

    Структура, УГО и ВАХ динистора приведены на рисунке:

    Внешняя p-область называется анодом (А), внешняя n-область называется катодом (К). Три p-n перехода обозначены цифрами 1, 2, 3. Структура динистора 4-х-слойная – p-n-p-n.

    Питающие напряжение Е подаётся на динистор таким образом, что 1 из 3 переходы открыты и их сопротивления незначительны, а переход 2 закрыт и все питающие напряжение Uпр приложено к нему. Через динистор протекает небольшой обратный ток, нагрузка R отключена от источника тока питания Е.

    При достижении критического напряжения, равному напряжению включения Uвкл переход 2 открывается, при этом все три перехода 1, 2, 3 будут находится в открытом (включенном) состоянии. Сопротивления динистора падает до десятых долей Ома.

    Напряжение включения составляет величину нескольких сотен вольт. Динистор открывается, и через него протекают значительные по величине токи. Падение напряжения на динисторе в открытом состояние составляет 1-2 вольта и мало зависит от величины протекающего тока, величина которого равна τa ≈ E / R, а UR ≈ E, т.е. нагрузка подключена к источнику питания Е. Напряжение на динисторе, соответствующее предельно допустимую точку Iоткр.max , называется напряжением открытого состояния Uокр . Предельный допустимый ток составляет величины от сотен мА до сотен А. Динистор находится в открытом состоянии, пока протекающий через него ток не станет меньше тока удержания Iуд . Динистор закрывается при уменьшении внешнего напряжения до величины порядка 1В или при перемене полярности внешнего источника. Поэтому такой прибор используется в цепях переходного тока. Точки В и Г соответствуют граничным значениям токов и напряжений динистора. Время восстановления сопротивления перехода 2 после снятия питающего напряжения составляет порядка 10-30 мкс.

    Динисторы по своему принципу – приборы ключевого действия. Во включенном состоянии (участок БВ) он подобен замкнутому ключу, а в выключенном (участок ОГ) - разомкнутому ключу.

    Устройство и принцип работы тиристора (тринистора)

    Тринистор является управляемым прибором. Он содержит управляющий электрод (УЭ), подключаемый к полупроводнику р-типа или полупроводнику n-типа среднего перехода 2.

    Структура, УГО и ВАХ тринистора (обычно называют тиристором) приведены на рисунке:

    Напряжение Uвыкл , при котором начинается лавинообразное нарастание тока, может быть снижено введением неосновных носителей заряда в любой из слоев, прилегающих к переходу 2. В какой мере снижается Uвкл показано на ВАХ. Важным параметром является отпирающий ток управления Iу.от , который обеспечивает переключение тиристора в открытое состояние при напряжениях, меньших напряжения Uвкл . На рисунке показаны три значения напряжение включения UI вкл < Un вкл < Um вкл соответствует трем значениям управляющего тока UI у.от > Un у.от > Um у.от .

    Рассмотрим простейшую схему с тиристором, нагруженным на резисторную нагрузку Rн


    • Iа – ток анода (силовой ток в цепи анод-катод тиристора);
    • Uак – напряжение между анодом и катодом;
    • Iу – ток управляющего электрода (в реальных схемах используют импульсы тока);
    • Uук – напряжение между управляющим электродом и катодом;
    • Uпит – напряжение питания.

    Для перевода тиристора в открытое состояние не управляющий электрод подается от схемы формирования импульсов кратковременный (порядка нескольких микросекунд) управляющий импульс.

    Характерной особенностью рассматриваемого незапираемого тиристора, который очень широко используется на практике, является то, что его нельзя выключить с помощью тока управления.

    Для выключения тиристора на практике на него подают обратное напряжение Uак < 0 и поддерживают это напряжение в течении времени, большего так называемого времени выключения tвыкл . Оно обычно составляет единицы или десятки микросекунд.

    Устройство и принцип работы симистора

    Широко используется так называемые симметричные тиристоры (симисторы, триаки). Каждый симистор подобен паре рассмотренных тиристоров, включенных встречно-параллельно. Симметричные тринисторы являются управляемым прибором с симметричной вольт-амперной характеристикой. Для получения симметричной характеристики используются двухсторонние полупроводниковые структуры типа p-n-p-n-p.

    Структура симистора, его УГО и ВАХ приведены на рисунке:

    Симистор (триак) содержит два тиристора p1-n1-p2-n2 и p2-n2-p1-n4, включенных встречно-параллельно. Симистор содержит 5 переходов П1-П2-П3-П4-П5. При отсутствии управляющего электрона УЭ симистор называется диаком.

    При положительной полярности на электроде Э1 осуществляется тиристорный эффект в p1-n1-p2-n2, а при противоположной полярности в p2-n1-p1-n4.

    При подачи управляющего напряжения на УЭ в зависимости от его полярности и величины изменяется напряжение переключателя Uвкл

    Тиристоры (динисторы, тринисторы, симисторы) являются основными элементами в силовых устройствах электроники. Существует тиристоры, для которых напряжение переключения больше, чем 1 кВ, а максимально допустимый ток больше, чем 1 кА

    Электронные ключи

    Для повышения коэффициента полезного действия устройств силовой электроники широко используется импульсный режим работы диодов, транзисторов и тиристоров. Импульсный режим характерен резкими изменениями токов и напряжений. В импульсном режиме диоды, транзисторы и тиристоры используются как ключи.

    При помощи электронных ключей выполняется коммутация электронных схем: подключение/отключение схемы к/от источникам(-ов) электрической энергии или сигнала, подключение или отключение элементов схем, изменение параметров элементов схем, изменение вида воздействующего источника сигнала.

    УГО идеальных ключей показаны на рисунке:

    Ключи, работающие на замыкание и размыкание соответственно.


    Ключевой режим характеризуется двумя состояниями: "включено"/"выключено".

    Идеальные ключи характеризуются мгновенным изменением сопротивления, которое может принимать значение 0 или ∞. Падение напряжения на идеальном замкнутом ключе равно 0. При разомкнутом ключе ток равен 0.

    Реальные ключи также характеризуются двумя крайними значениями сопротивления Rmax и Rmin . Переход от одного значения сопротивления к другому в реальных ключах происходит за конечное время. Падение напряжения на реальном замкнутом ключе не равно нулю.

    Ключи подразделяются на ключи, используемые в маломощных схемах, и ключи, используемые в силовых схемах. Каждый из этих классов имеет свои характеристики.

    Ключи, используемые в маломощных схемах, характеризуются:

  1. Сопротивлениями ключа в открытом и закрытом состояниях;
  2. Быстродействием – временем перехода ключа из одного состояния в другое;
  3. Падением напряжения на замкнутом ключе и током утечки разомкнутого ключа;
  4. Помехоустойчивостью – способностью ключа оставаться в одном из состояний при воздействии помех;
  5. Чувствительностью ключа – величиной управляющего сигнала, переводящего ключ из одного состояния в другое;
  6. Пороговым напряжением – значением управляющего напряжения, в окрестности которого происходит резкое изменение сопротивления электронного ключа.

Диодные электронные ключи

Простейший тип электронных ключей – диодные ключи. Схема диодного ключа, статическая передаточная характеристика, ВАХ и зависимость дифференциального сопротивления от напряжения на диоде показаны на рисунке:


Принцип работы диодного электронного ключа основан на изменении величины дифференциального сопротивления полупроводникового диода в окрестностях порогового значения напряжения на диоде Uпор . На рисунке "в" показана вольт-амперная характеристика полупроводникового диода, на которой показано значение Uпор . Это значение находится на пересечении оси напряжений с касательной, проведенной к восходящему участнику вольт-амперной характеристики.

На рисунке "г" показана зависимость дифференциального сопротивления от напряжения на диоде. Из рисунка следует, что в окрестности порогового напряжения 0,3 В происходит резкое изменение дифференциального сопротивления диода с крайними значениями 900 и 35 Ом (Rmin = 35 Ом, Rmax = 900 Ом).

В состоянии "включено" диод открыт и , Uвых ≈ Uвх .

В состоянии "выключено" диод закрыт и , Uвых ≈ Uвх · Rн / Rmax <

С целью уменьшения времени переключения используемые диоды с малой емкостью перехода порядка 0,5-2 пФ, при этом обеспечивается время выключения порядка 0,5-0,05 мкс.

Диодные ключи не позволяют электрически разделить управляющею и управляемую цепи, что часто требуется в практических схемах.

Транзисторные ключи

В основе большинства схем, используемых в вычислительных машинах, устройствах телеуправления, системах автоматического управления и т.п., лежат транзисторные ключи.

Схемах ключа на биполярном транзисторе и ВАХ показаны на рисунке:

Первое состояние «выключено» (транзистор закрыт) определяется точкой А1 на выходных характеристиках транзистора; его называют режимом отсечки. В режиме отсечки ток базы Iб = 0, коллекторный ток Iк1 равен начальному коллекторному току, а коллекторное напряжение Uк = Uк1 ≈ Ек . Режим отсечки реализуется при Uвх = 0 или при отрицательных потенциалах базы. В этом состоянии сопротивление ключа достигает максимального значения: Rmax = , где RT - сопротивление транзистора в закрытом состоянии, более 1 МОм.

Второе состояние «включено» (транзистор открыт) определяется точкой А2 на ВАХ и называется режимом насыщения. Из режима отсечки (А1) в режиме насыщения (А2) транзистор переводится положительным входным напряжением Uвх . При этом напряжение Uвых принимает минимальное значение Uк2 = Uк.э.нас порядка 0,2-1,0 B, ток коллектора Iк2 = Iк.нас ≈ Ек /Rк . Ток базы в режиме насыщения определяется из условия: Iб > Iб.нас = Iк.нас / h21 .

Входное напряжение, необходимое для перевода транзистора в открытое состояние, определяется из условия: Uвх > Iб.нас · Rб + Uк.э.нас

Хорошая помехозащищенность и малая мощность, рассеиваемая в транзисторе, объясняется тем, что транзистор большую часть времени либо насыщен (А2), либо закрыт (А1), а время перехода из одного состояния в другое составляет малую часть от длительности этих состояний. Время переключения ключей на биполярных транзисторах определяется барьерными емкостями р-n-переходов и процессами накопления и рассасывания неосновных носителей заряда в базе.

Для повышения быстродействия и входного сопротивления применяются ключи на полевых транзисторах.

Схемы ключей на полевых транзисторах с управляющим p-n-переходом и с индуцированным каналом с общим истоком и общим стоком показаны на рисунке:

Для любого ключа на полевом транзисторе Rн > 10-100 кОм.

Управляющий сигнал Uвх на затворе порядка 10-15 В. Сопротивление полевого транзистора в закрытом состоянии велико, порядка 108 -109 Ом.

Сопротивление полевого транзистора в открытом состоянии может составлять 7-30 Ом. Сопротивление полевого транзистора по цепи управления может составлять 108 -109 Ом. (схемы "а" и "б") и 1012 -1014 Ом (схемы "в" и "г").

Силовые (мощные) полупроводниковые приборы

Мощные полупроводниковые приборы находят применение в энергетической электронике, наиболее интенсивно развивающейся и перспективной области техники. Они предназначены для управления токами в десятки, сотни ампер, напряжениями в десятки, сотни вольт.

К мощным полупроводниковым приборам относятся тиристоры (динисторы, тринисторы, симисторы), транзисторы (биполярные и полевые) и биполярные статически индуцированные транзисторы (IGBT). Они используются в качестве электронных ключей, выполняющих коммутацию электронных схем. Их характеристики стараются приблизить к характеристикам идеальных ключей.

По принципу действия, характеристикам и параметрам мощные транзисторы подобны маломощным, однако имеются определенные особенности.

Силовые полевые транзисторы

В настоящее время полевой транзистор является одним из наиболее перспективных силовых приборов. Наиболее широко используются транзисторы с изолированным затвором и индуцированным каналом. Для уменьшения сопротивления канала уменьшают его длину. Для увеличения тока стока в транзисторе выполняют сотни и тысячи каналов, причем каналы соединяют параллельно. Вероятность саморазогрева полевого транзистора мала, т.к. сопротивление канала увеличивается при увеличении температуры.

Силовые полевые транзисторы имеют вертикальную структуру. Каналы могут располагаться как вертикально, так и горизонтально.

ДМДП-транзистор

Этот транзистор МДП-типа, изготовленный методом двойной диффузии, имеет горизонтальный канал. На рисунке показан элемент структуры, содержащий канал.

VМДП-транзистор

Этот V-образный МДП-транзистор имеет вертикальный канал. На рисунке показан один элемент структуры, содержащий два канала.

Легко заметить, что структуры VМДП-транзистора и ДМДП-транзистора подобны.

IGBT-транзистор

IGBT – гибридный полупроводниковый прибор. В нем совмещены два способа управления электрическим током, один из которых характерен для полевых транзисторов (управление электрическим полем), а второй – для биполярных (управление инжекцией носителей электричества).

Обычно в IGBT используется структура МДП-транзистора с индуцированным каналом n-типа. Структура этого транзистора отличается от структуры ДМДП-транзистора дополнительным слоем полупроводника р-типа.

Обратим внимание на то, что для обозначения электродов IGBT принято использовать термины "эмиттер", "коллектор" и "затвор".

Добавления слоя р-типа приводит к образованию второй структуры биполярного транзистора (типа p-n-p). Таким образом, в IGBT имеется две биполярные структуры – типа n-p-n и типа p-n-p.

УГО и схема выключения IGBT показаны на рисунке:

Типичный вид выходных характеристик показаны на рисунке:

SIT-транзистор

SIT – полевой транзистор с управляющим p-n переходом со статической индукцией. Является многоканальным и имеет вертикальную структуру. Схематическое изображение SIT и схема включения с общим истоком показаны на рисунке:

Области полупроводника р-типа имеют форму цилиндров, диаметр которых составляет единицы микрометров и более. Эта система цилиндров играет роль затвора. Каждый цилиндр подсоединен к электроду затвора (на рисунке "а" электрод затвора условно не показан).

Пунктиром обозначены области p-n-переходов. Реальное число каналов может составлять тысячи. Обычно SIT используется в схемах с общим истоком.

Каждый из рассмотренных приборов имеет свою область применения. Ключи на тиристорах применяются в устройствах, работающих на низких частотах (килогерцы и ниже). Основным недостатком таких ключей являются низкое быстродействие.

Основной областью применения тиристоров являются низкочастотные устройства с большой коммутируемой мощностью вплоть до нескольких мегаватт, не предъявляющих серьезных требований к быстродействию.

Мощные биполярные транзисторы применяются в качестве высоковольтных ключей в устройствах с частотой коммутации или преобразования, находящейся в диапазоне 10-100 кГц, при уровне выходной мощности от единиц Вт до нескольких кВт. Оптимальный диапазон коммутируемых напряжений 200-2000 В.

Полевые транзисторы (MOSFET) применяются в качестве электронных ключей для коммутации низковольтных высокочастотных устройств. Оптимальные значения коммутируемых напряжений не превышают 200 В (максимальное значение до 1000 В), при этом частота коммутации может находится в пределах от единиц кГц до 105 кГц. Диапазон коммутируемых токов составляет 1,5-100 А. Положительным свойствами этого прибора является управляемость напряжением, а не током, и меньшая зависимость от температуры по сравнению с другими приборами.

Биполярные транзисторы с изолированным затвором (IGBT) применяются на частотах менее 20 кГц (некоторые типы приборов применяются на частотах более 100 кГц) при коммутируемых мощностях выше 1 кВт. Коммутируемые напряжения не ниже 300-400 В.Оптимальные значения коммутируемых напряжений свыше 2000 В. IGBT и MOSFET требуют для полного включения напряжения не выше 12-15 В, для закрытия приборов не требуется подавать отрицательное напряжение. Они характеризуются высокими скоростями переключения.

Материал для подготовки к аттестации