Но и с покупки готового полноценного робота на базе этой платы. Для детей начальной школы или дошкольного возраста такое готовые проекты Arduino даже предпочтительней, т.к. «неожившая» плата выглядит скучновато. Такой способ подойдет и для тех, кого электрические схемы не особо привлекают.

Приобретая работающую модель робота, т.е. фактически готовую высокотехнологичную игрушку, можно разбудить интерес к самостоятельному проектированию и созданию роботов. Наигравшись в такую игрушку и разобравшись в том, как она работает, можно приступать к совершенствованию модели, разобрать все на части и начать собирать новые проекты на Arduino, используя высвободившиеся плату, приводы и датчики. Открытость платформы Arduino позволяет из одних и тех же составных частей мастерить себе новые игрушки.

Мы предлагаем небольшой обзор готовых роботов на плате Arduino.

Машинка на Arduino, управляемая через Bluetooth

Машинка, управляемая через Bluetooth , стоимостью чуть менее $100. Поставляется в разобранном виде. Помимо корпуса, мотора, колес, литиевой батарейки и зарядного устройства, получаем плату Arduino UNO328, контроллер мотора, Bluetooth адаптер, пульт дистанционного управления и прочее.

Видео с участием этого и еще одного робота:

Более подробное описание игрушки и возможность купить на сайте интернет-магазина DealExtreme .

Робот-черепаха Arduino

Комплект для сборки робота-черепахи стоимостью около $90. Не хватает только панциря, все остальное, необходимое для жизни этого героя, в комплекте: плата Arduino Uno, сервоприводы, датчики, модули слежения, ИК-приемник и пульт, батарея.

Черепаху можно купить на сайте DealExtreme , аналогичный более дешевый робот на Aliexpress .

Гусеничная машина на Arduino, управляемая с сотового телефона

Гусеничная машина, управляемая по Bluetooth с сотового телефона , стоимостью $94. Помимо гусеничной базы получаем плату Arduino Uno и плату расширения, Bluetooth плату, аккумулятор и зарядное устройство.

Гусеничную машину также можно купить на сайте DealExtreme , там же подробное описание. Может быть, более интересный железный Arduino-танк на Aliexpress .

Arduino-автомобиль, проезжающий лабиринты

Автомобиль, проезжающий лабиринты , стоимостью $83. Помимо моторов, платы Arduino Uno и прочего необходимого cодержит модули слежения и модули обхода препятствий.

Готовый робот или каркас для робота

Помимо рассмотренного в обзоре варианта использования готовых комплектов для создания роботов Arduino, можно купить отдельно каркас (корпус) робота — это может быть платформа на колесиках или гусенице, гуманоид, паук и другие модели. В этом случае начинку робота придется делать самостоятельно. Обзор таких корпусов приведен в нашей .

Где еще купить готовых роботов

В обзоре мы выбрали наиболее дешевых и интересных на наш взгляд готовых Arduino-роботов из китайских интернет-магазинов. Если нет времени ждать посылку из Китая — большой выбор готовых роботов в интернет-магазинах Амперка и DESSY . Низкие цены и быструю доставку предлагает интернет-магазин ROBstore . Список рекомендованных магазинов .

Возможно вас также заинтересуют наши обзоры проектов на Arduino:


Обучение Arduino

Не знаете, с чего начать изучение Arduino? Подумайте, что вам ближе — сборка собственных простых моделей и постепенное их усложнение или знакомство с более сложными, но готовыми решениями?

Это первый роботизированный проект, который я когда-либо делал, и если вы никогда не пробовали собрать робота, то, скорее всего, думаете что это сложно. Но Ардуино и шасси 2WD / 4WD сделают вашу сборку намного проще, и вы соберете своего первого робота с радиоуправлением на Ардуино без каких-либо мучений.


По пути ко мне пришла идея о создании радиоуправляемой машины своими руками, которая бы объезжала препятствия, поэтому я собрал и этот проект, видео и файл программы к которому прикладываю ниже.

Файлы

Шаг 1: Нужные части и инструмент

Я воспользовался готовыми решениями, и все запчасти и инструменты были приобретены через интернет.

Запчасти:

  1. Набор шасси 4WD для робота (GearBest)
  2. Arduino Nano (GearBest)
  3. Модуль H-моста LM298 (GearBest)
  4. Модуль bluetooth HC-06 (Amazon)
  5. Литий-ионные батарейки 2 x 18650 (GearBest)
  6. Отсек для батареек 2x 18650 (GearBest)
  7. Небольшая макетная плата (GearBest)
  8. Провода сечением 0.5 мм2
  9. Провода с джамперами папа-мама (Amazon)
  10. Провода с джамперами мама-мама (Amazon)
  11. Малярная лента, изолента или что-то подобное (Amazon)

Для робота, объезжающего препятствия:

Ультразвуковой модуль измерения расстояния HC — SR04 (GearBest)

Необходимый инструмент:

  1. Паяльник (Amazon)
  2. Кусачки (Amazon)
  3. Стриппер для провод (GearBest)
  4. Клеевой пистолет (GearBest)

Шаг 2: Что такое робот?

Робот – это электромеханическое устройство, которое способно каким-либо образом реагировать на окружающую обстановку и принимать самостоятельные решения или действия, чтобы достичь определенных целей.

Робот состоит из следующих компонентов:

  1. Структура / Шасси
  2. Привод / Мотор
  3. Контроллер
  4. Вводные устройства / Датчики
  5. Источник питания

В следующих шагах я опишу каждый из этих компонентов, и вы всё легко поймёте.

Шаг 3: Структура / Шасси



Структура состоит из физических компонентов. Робот имеет один или несколько физических компонентов, которые каким-либо образом двигаются для выполнения задания. В нашем случае структура робота – это шасси и колёса.

Шаг 4: Приводы



Под приводом можно понимать устройство, которое преобразовывает энергию (в робототехнике под энергией понимается электрическая энергия) в физическое движение. Большинство приводов производят вращательное или линейное движение.

В нашем случае привод – это DC-мотор, скорость которого равна 3000 оборотам в минуту, а вращающий момент 0.002 Н м. Теперь добавим к нему шестерню с передаточным числом 1:48. Новая скорость уменьшается на коэффициент 48 (в результате давая 3000/44 = 68 оборотов в минуту) и вращающий момент увеличивается на коэффициент 48 (в результате давая 0.002 x 48 = 0.096 Н м).

Шаг 5: Подготавливаем клеммы моторчиков




Отрежьте по 4 провода красного и черного цвета длиной примерно 12-15 см. Я использовал провода сечением 0.5 мм2. Оголите концы проводов. Припаяйте провода к клеммам моторчиков.

Вы можете проверить полярность моторчиков, соединив их с отсеком для батареек. Если он движется в прямом направлении (с красным проводом на позитивной и черным на негативной клеммах батареек), то с соединением все в порядке.

Шаг 6: Устанавливаем мотор




Прикрепите две акриловые распорки к каждому мотору при помощи двух длинных болтов и двух гаек. Для наглядности вы можете посмотреть видео .

Возьмите на заметку, что провода на каждом моторе ведут к центру шасси. Соедините оба красных и оба черных провода от моторов с каждой стороны шасси. После соединения у вас будет две клеммы на левой стороне и две на правой.

Шаг 7: Устанавливаем крышу

Послу установки 4 моторов нужно установить крышу. Приладьте 6 медных стоек при помощи гаек, клеммы проводов выведите сквозь отверстие в крыше.

Шаг 8: Контроллер

Теперь у нас установлены шасси и приводы, но нам не хватает контроллера. Шасси без контроллера никуда не поедут. Робот будет оставаться на месте, оставаясь безжизненным. Поэтому, для того чтобы робот перемещался, нам нужен мозг (контроллер).

Контроллер – программируемое устройство, способное работать по заданной программе и отвечающее за все вычисления, принятие решений и коммуникацию. В нашем случае в качестве контроллера мы используем микроконтроллер Ардуино Нано.

Контроллер принимает входные данные (с датчиков, удалённо и т.д.), обрабатывает их и затем даёт команду приводам (моторам) выполнить выбранное задание.

Если вы подключите позитивный провод от батарей на одну строну моторчика, затем подключите негативный провод от батарей на другой контакт моторчика, то он начнёт крутиться вперёд. Если вы поменяете провода местами, то мотор начнёт вращаться в другую сторону.

Микроконтроллер можно использовать, чтобы вращать мотор в одном направлении, но если вам хочется с помощью микроконтроллера вращать мотор и вперёд, и назад, то вам нужна дополнительная схема – H-мост. В следующем шаге я объясню, что это такое.

Шаг 9: Н-мост (модуль LM 298)




Что такое Н-мост?

Термин Н-мост произошел от типичного графического представления этой схемы. Это схема, которая может вращать мотор как в прямом, так и в обратном направлении.

Принцип работы:
Посмотрите приложенную картинку для понимания принципа работы схемы Н-моста. Мост состоит из 4 электронных выключателей S1, S2, S3, S4 (транзисторы / MOSFET/ IGBTS).

Когда выключатели S1 и S4 закрыты, а остальные два открыты, положительное напряжение будет проходить через мотор, и он будет вращаться в прямом направлении. Таким же образом, когда закрыты выключатели S2 и S3, а S1 и S4 открыты, обратное напряжение будет даваться на мотор и он начнёт вращаться в обратном направлении.

Заметка: выключатели на одной руке (то есть S1, S2 или S3, S4) никогда не закрываются одновременно – это создаст короткое замыкание.

Н-мосты доступны в виде интегральных схем, либо можно собрать свой мост при помощи 4 транзисторов или MOSFET. В моём случае используется интегральная схема Н-моста LM298, которая позволяет управлять скоростью и направлением моторов.

Описание распиновки:

Out 1: DC мотор 1 «+» или шаговый двигатель A+
Out 2: DC мотор 1 «-» или шаговый двигатель A-
Out 3: DC мотор 2 «+» или шаговый двигатель B+
Out 4: вывод мотора B
12v: вход 12V, но можно использовать от 7 до 35V
GND: Земля
5v: выход 5V, если джампер 12V стоит на месте, идеально для питания Arduino (и т.п.)
EnA: позволяет получать сигналы PWM для мотора A (Пожалуйста, прочитайте секцию «Arduino Sketch Considerations»)
IN1: включает мотор A
IN2: включает мотор A
IN3: включает мотор B
IN4: включает мотор B
BEnB: позволяет получать сигналы PWM для мотора B (Пожалуйста, прочитайте секцию «Arduino Sketch Considerations»)

Шаг 10: Входы / Датчики

В отличие от людей, роботы не ограничены лишь зрением, звуком, осязанием, обонянием и вкусом. Роботы используют различные датчики для взаимодействия с внешним миром.

Датчик – это устройство, которое выявляет и отвечает на определенные типы входящей информации из окружающего мира. Этой информацией может быть свет, тепло, движение, влажность, давление или любое другое явление окружающей среды.

Входящие сигналы могут идти от датчиков, удалённо, или со смартфона. В этом руководстве я использую смартфон в качестве девайса, отправляющего сигналы, управляющие роботом.

Шаг 11: Источник питания





Чтобы управлять приводами (моторами) и питать контроллер, роботу нужен источник питания. Большинство роботов питается от батарей. Когда мы говорим о батареях, то имеем в виду множество вариантов:

  1. Алкалиновые батарейки AA (не заряжаются)
  2. Никель-металгидридные или никель-кадмиевые батарейки AA (заряжаются)
  3. Литий-ионные батареи
  4. Литий-полимерные батареи

В зависимости от ваших нужд, нужно выбрать подходящий вид батарей. По-моему мнению, нужно всегда выбирать заряжаемые батареи достаточной ёмкости. Я использовал 2 литий-ионные батареи стандарта 18650 ёмкостью 2600mAh. Если для автономности вам нужно больше мощности, используйте большой комплект батарей, например 5A turnigy.

Отсек для батарей:
Отсек для батарей я заказал в Китае, он не подходил для батарей с плоским верхом, поэтому я использовал два неодимовых магнита для придания батарейкам нужной формы.

Зарядка:
Для зарядки батарей нужен хороший зарядник. По моему опыту, эти зарядники хорошо зарекомендовали себя:

  1. PowerEx AA Charger-Analyzer (Amazon)
  2. XTAR LiIon Battery Charger (Amazon)
  3. Turnigy LiPo Battery Charger (Amazon)

Шаг 12: Установка компонентов


Цельная схема устанавливается на крыше. Отсек для батарей, драйвер двигателей LM 298 и маленькую макетную плату я закрепил горячим клеем, но можно просто прикрутить их. Модуль bluetooth закрепляется скотчем. Ардуино нано вставьте в макетную плату.

Шаг 13: Электропроводка






Для соединения модулей понадобятся провода с джамперами.
Соедините красные провода двух моторов вместе (на каждой стороне) и затем черные провода. В итоге у вас выйдет по две клеммы с каждой стороны.

MOTORA отвечает за два правых мотора, соответственно два левых мотора соединены с MOTORB.
Для соединения всех компонентов следуйте инструкции:

Соединение моторов:

Out1 -> красный провод левостороннего мотора (+)
Out2 -> черный провод левостороннего мотора (—)
Out3 -> красный провод правостороннего мотора (+)
Out4 -> черный провод правостороннего мотора (—)
LM298 — > Arduino
IN1 -> D5
IN2-> D6
IN2 ->D9
IN2-> D10
Модуль Bluetooth -> Arduino
Rx-> Tx
Tx ->Rx
GND -> GND
Vcc -> 3.3V
Питание
12V — > красный провод батарей
GND -> черный провод батарей и пин GND на Arduino
5V -> соедините с пином 5V Arduino

Шаг 14: Логика управления

Чтобы понять принцип работы, я создал эту логическую таблицу. Она очень пригождается во время написания кода.

Шаг 16: Тестирование



Чтобы проверить робота-машину, я положил её на маленькую картонную коробку. Таким образом, колёса будут крутиться, но машинка будет оставаться на месте. Проверьте работоспособность, нажимая все доступные кнопки. Если всё работает, то можно по-настоящему управлять ей.

Заметка: если моторы вращаются в противоположном направлении, то просто поменяйте местами провода.

Шаг 17: Планы на будущее




В этом руководстве я объяснил, как создать простенькую машинку. Дальше я хочу добавить в неё некоторые улучшения. Вы можете присоединить к ней различные датчики, вот некоторые идеи:

  1. Добавление ультразвукового датчика для объезда препятствий
  2. Использование модуля WiFi, например ESP8266 или Node MCU вместо Bluetooth, для удлинения дистанции управления.
  3. Добавление солнечной панели для зарядки батарей.

Что нам понадобится:

1. Шасси для робота, =9,50$
2. Драйвер двигателя, =1,22$
3. Датчик, который будет определять препятствие, я остановился на самом популярном и дешевом варианте =0,94$
Однако, никто не мешает воспользоваться более дорогими или чем-то подобным
4. Крепление датчика, не самый лучший, но жизнеспособный вариант. =1,08$
В качестве аналогов: , еще существует неуловимый желтый, наиболее прошаренный, но ссылку так и не нашел. Кто будет искать на вид он похож на синий, но имеет нормальные отверстия под винт м3 и 4 шурупа для крепления дальномера.
5. Плата arduino, которая будет обрабатывать данные с датчика и выдавать решение, куда ехать дальше. Остановился на , как на самой удобной для моделирования на «лету» =5.88$
Эта плата выбрана из-за возможности заменить микроконтроллер в случае фатальной неудачи, так что можно купить версию

Итого я потратил примерно 19$ на самое основное

!!! терминалы, разъемы, клещи можно заменить

вышеперечисленное мне понадобится позже и не раз, не обязательно так разгоняться

Парочка фото на закуску

Провода и терминалы


Стойки, болты, гайки, шайбы

Сборка

Переходим к самому интересному - к созданию Франкенштейна!
Первым делом сверлим в синем кронштейне отверстие под болт м3, потому как иного варианта крепления я не нашел


на термоклей сажаем дальномер.


Собираем шасси и крепим наш датчик. Чтобы он располагался как можно ниже, пришлось закрепить его не сразу на шасси, а с помощью стойки опустить на несколько сантиметров вниз. Нижний край кронштейна получился на одном уровне с моторами.

Крепим драйвер двигателя, подключаем моторы.



Приспосабливаем повербанк вместо батарейного отсека.
Для этого делаем два отверстия под винты м3 для крепления на шасси, припаиваем два проводка "+" и "-" к USB на плате и выводим провода через еще одно просверленное отверстие. К сожалению у меня не было под руками подходящего выключателя, так что эту функцию будет выполнять отключение проводков от ардуины. Далее крепим это дело на шасси.





Ставим ардуину, подключаем провода




Удобно, что заряжается аккумулятор через повербанк.

Вставляем аккумулятор прошиваем (воспользовался средой atmel studio 6), переворачиваем, чтобы не убежала, и тестируем, что получилось.

На первый взгляд все норм, если появляется препятствие машинка отворачивает в сторону, проверяет наличие препятствия и в случае повторного обнаружения поворачивает в другую сторону. Что получилось на практике: препятствия обнаруживает на ура, поворачивает неплохо, опытным путем поставил нужные задержки, но практически не способна ехать по прямой из-за заднего направляющего колеса. Скорее всего это мне попался такой «тугой» вариант, но из-за этого машинка всегда едет по диагонали, мелочь, а неприятно.

Подведем итоги

Для начала, тем, кто решит делать что-то подобное, стоит обратить внимание на шасси с четырьмя моторами. Такой шаг, в теории, исключит вероятность движения по дуге, но может добавить головной боли при подборе драйвера двигателя. Но не спешите ломать голову, можно оставить этот, все должно отлично работать, по токам проходит впритык - два мотора на канал. А вот однобаночного повербанка не хватит точно. На мой взгляд это уже повод рискнуть. Так же придется покупать шайбы, т.к. при креплении к пластмассе могут быть неприятные вещи. Еще было бы отлично разделить питание ардуины и моторов, либо воспользоваться стабилизатором, на худой конец впаять конденсатор большой емкости, но это для истинных ценителей, у меня работает и так. На практике я уложился в цену примерно 2000 руб, можно было и дешевле, но это была моя зарядка для ума и первый опыт в программировании (для чего собственно все и затевалось), особо экономить не стал. Появится время прикручу радиоуправление и выключатель.

P.S. Проблему движения по дуге решала замена моторов, спасибо за совет. При покупке шасси не спешите подтверждать, сначала испытайте его в деле. Больше косяков нет, все работает.

Основная идея проекта - создать недорогую автономную четырехколесную подвижную платформу.

В проекте используется логика на базе Arduino, недорогая радиоуправляемая машина, источник питания 9 вольт. В качестве датчиков обратной связи используется инфракрасный передатчик.

Так как оборудование недорогое, можно расценивать эту статью исключительно как общую инструкцию и первый шаг для дальнейших модификаций вашей автономной четырехколесной платформы.

Необходимое оборудование и материалы

  • Arduino
  • Arduino Мотор шилд
  • Радиоуправляемая машина
  • Паяльник
  • Припой
  • Инфракрасный передатчик
  • Инфракрасный приемник
  • Батарейка 9 В с коннекторами
  • Переключатель

*Обратите внимание: если в вашей машине установлена большая плата контроллера, то это, скорее всего, чип TX2 или RX2. Если это так, то вы можете сэкономить немного денег и использовать для двигателей встроенные контроллеры. Хороший пример (на английском языке!) есть .

Разбираем машинку

Ваш первый шаг - разобрать машинку. Снимите корпус и извлеките все платы из машинки. Моторы не трогаем. В проекте нам понадобятся родные шасси, колеса и моторы.


Подготавливаем сенсоры

Подготавливаем электронику. Для начала припаяйте резистор на 100 Ом к одному из контактов на вашем ИК передатчике. Припаиваем провода к другой ноге резистора и ноге датчика. После этого припаиваем два провода к ногам вашего ИК приемника.


Устанавливаем Arduino и датчик

В корпусной части машинки надо сделать отверстия под крепеж вашего контроллера Arduino . Отверстия под крепеж зависят от габаритов подвижной платформы машинки. В данном конкретном случае плата была расположена "перпендикулярно" несущей системе. Подобное расположение удобно еще и тем, что расстояния от двигателей передней и задней подвески до пинов платы примерно одинаковое.

Над передней подвеской устанавливаем наши эмиттер и детектор. Их желательно установить повыше относительно земли. В дальнейшем можно предусмотреть сзади светодиоды, которые будут включаться во время заднего хода машинки.



Переходим к следующему шагу.

Питание

В проекте используется одна батарейка на 9 В (крона). В данном случае ее получилось установить под несущей системой платформы на колесах. Крепим пластиковыми стяжками. В принципе, для увеличения времени автономной работы нашего автомобиля, можно установить две кроны параллельно.



Подключение к Arduino

С подключением можно разобраться и на основании фото. Но на всякий случай, ниже приведена схема подключения в текстовой форме.



ИК светодиод

Позитивный контакт - 5v

Отрицательный контакт - Ground

Позитивный контакт - Analog pin 5

Негативный контакт - Ground

Двигатель

Негативный контакт - Мотор шилд Channel A -

Двигатель для поворота

Позитивный контакт - Мотор шилд Channel B +

Негативный контакт - Мотор шилд Channel B -

Позитивный контакт - Мотор шилд Vin

Негативный контакт - Мотор шилд Gnd

Программа Arduino

Учитывая специфику проекта, вам надо внести в приведенный ниже базовый скетч достаточно много изменений, которые зависят от размера машинки и колес, скорости вращения колес, веса авто, освещения окружающей среды.

int irsensor = A5;

int measure = 1;

int ambientir = 0;

//настройка канала A (Channel A)

pinMode(12, OUTPUT); //инициализация контакта Motor Channel A

pinMode(9, OUTPUT); //Инициализация контакта тормоза - Brake Channel A

pinMode(irsensor, INPUT);

digitalWrite(irsensor, HIGH);

Serial.begin(9600);

ambientir = ambientir + analogRead(irsensor);

measure = measure + 1;

ambientir = ambientir / 10;

distance = analogRead(irsensor);

digitalWrite(12, HIGH); //Обечпечиваем обратное направление вращения ротора на Channel A

digitalWrite(9, LOW); //Отключаем тормоз на Channel A

analogWrite(3, 100); //Вращаем ротор мотора на Channel A на половине максимальных оборотов

if(distance > ambientir - 50){

digitalWrite(12, LOW);

digitalWrite(9, LOW);

analogWrite(3, 100);

Serial.println(distance);

Приведенный выше костяк программы для Arduino можно (и даже нужно!) дорабатывать под вашу конкретную конструкцию, но общий концепт вы должны были уловить.

Результат, тестирование и дальнейшие варианты модификаций

Как видите на фото, оригинальный корпус машинки был окрашен в бежевый цвет и установлен на стойках на подвижную четырехколесную платформу.



После тестирования разработанной конструкции можно выделить следующие проблемы :

  • Ограниченный диапазон чувствительности сенсора;
  • Проблемы, связанные со скоростью машины, а именно - невозможность быстрой остановки;
  • Необходимость подстраивать датчик под разные условия освещения;
  • Ну и конечно же, дешевый китайский пластик никоим образом не придает автономной машинке на Arduino хорошей жесткости и надежности конструкции.

В принципе, внести компенсацию в зависимости от уровня освещения можно, но это отдельная история и модификация, которые не входили в задачи базового проекта.

Машинка не врезается в стены, но с 90% вероятностью соберет бампером все ножки стульев и столов в комнате. То есть, с обнаружением более мелких препятствий есть явные проблемы. Соответственно, надо либо увеличивать количество эмиттеров, либо использовать более дорогостоящие модели с большей чувствительностью.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Сейчас снова хочу предоставить вам интересный вариант «Управляем Arduino-машинкой при помощи G-сенсора на Android смартфоне»

В данной статье я вам расскажу, как при помощи данного сервиса RemoteXY очень легко настроить дистанционное управление платформой или машинкой. Робомашинкой мы будем управлять при помощи элемента управления «Джойстик», который умеет работать от G-сенсора вашего смартфона. В конце статьи вы найдете видео и можете посмотреть, что же у нас получилось.

Мы собрали очень простую двухколесную тележку, что бы продемонстрировать вам, как построить систему дистанционного управления. В тележке использованы следующие компоненты (мы не претендуем на качество изготовления, тележка собрана для демонстрации возможностей ресурса RemoteXY):

  • Платформа — ее мы вырезали из листового материала. Для простоты использовали ДВП;
  • Переднее колесо — поворотное колесико от кресла;
  • Мотор-редукторы 2 шт.;
  • Колеса , с осью подходящей к мотор-редукторам 2 шт. Колеса мы приобретали совместно с мотор редукторами;
  • Батарейный отсек с выключателем, на 4-е пальчиковые батарейки (тип АА);
  • Arduino , мы использовали все тот же клон Seeeduino;
  • Модуль Bluetooth HC-06 ;
  • Драйвер моторов на чипе L298N;

Все детали можно заказать на китайском сайте за копейки. Правда придется ждать немного. но лучше сэкономить чем переплатить

Электрическая часть и схема подключения всех модулей машинки представлена на следующем рисунке.

Программа управления

Войдите в редактор на этом ресурсе и сконструируйте следующий интерфейс управления:

Установите по центру экрана «Джойстик». В свойствах джойстика выберите установку дополнительного элемента управления «Включить G сенсор». Выберите положение переключателя G-сенсора «Низ-лево». Так же в настройках можете изменить цвет на красный. В дальнейшем джойстиком мы будем управлять движением машинки.

Установите «Переключатель». Разместите его левее джойстика. Можете так же изменить его цвет. Переключателем мы будем управлять светодиодом на плате Arduino на пине 13.

Если вы все правильно сделали, у вас должен получиться примерно такой интерфейс управления:

В настройках проекта выберите целевую платформу, для которой мы получаем исходный код «Arduino (SoftwareSerial)». Нажимаем кнопку «Получить код» и загружаем исходный код на свой компьютер.

Откроем загруженный скетч в IDE Arduino. Скетч прекрасно компилируется без ошибок. Однако, в нем конечно же нет кода для управления нашей машинкой. Наша задача написать этот код. Для образца мы будем использовать загруженный пример.

Обратите внимание на определение структуры RemoteXY_TypeDef в файлеremotexy.h . Структура содержит поля, полностью соответствующие установленным на интерфейсе управления элементам управления. Мы видим переменные joystick_1_x иjoystick_1_y , отражающие координаты x и y нашего джойстика, а так же переменную switch_1 , отражающую переключатель.

/* структура определяет все переменные вашего интерфейса управления */ typedef struct {

/* input variable */ signed char joystick_1_x; /* =-100..100 координата x положения джойстика */ signed char joystick_1_y; /* =-100..100 координата y положения джойстика */ unsigned char switch_1; /* =1 если переключатель включен и =0 если отключен */

/* other variable */ unsigned char connect_flag; /* =1 if wire connected, else =0 */

} RemoteXY_TypeDef;

Далее приводится основной код программы, в который уже встроено управление моторами нашей машинки. Вы можете просто скопировать данный код в свой скетч, или же выборочно добавить необходимые куски кода в загруженный пример.

#include #include #include "remotexy.h"

/* определяем пины управления правым мотором */
#define PIN_MOTOR_RIGHT_UP 7
#define PIN_MOTOR_RIGHT_DN 6
#define PIN_MOTOR_RIGHT_SPEED 10

/* определяем пины управления левым мотором */
#define PIN_MOTOR_LEFT_UP 5
#define PIN_MOTOR_LEFT_DN 4
#define PIN_MOTOR_LEFT_SPEED 9

/* определяем пин управления светодиодом */
#define PIN_LED 13

/* определяем два массива с перечислением пинов для каждого мотора */
unsigned char RightMotor = {PIN_MOTOR_RIGHT_UP, PIN_MOTOR_RIGHT_DN, PIN_MOTOR_RIGHT_SPEED};
unsigned char LeftMotor = {PIN_MOTOR_LEFT_UP, PIN_MOTOR_LEFT_DN, PIN_MOTOR_LEFT_SPEED};

/*
управление скоростью мотора
motor — ссылка на массив пинов
v — скорость мотора, может принимать значения от -100 до 100
*/
void Wheel (unsigned char * motor, int v)
{
if (v>100) v=100;
if (v<-100) v=-100;
if (v>0) {
digitalWrite(motor, HIGH);
digitalWrite(motor, LOW);
analogWrite(motor, v*2.55);
}
else if (v<0) {
digitalWrite(motor, LOW);
digitalWrite(motor, HIGH);
analogWrite(motor, (-v)*2.55);
}
else {
digitalWrite(motor, LOW);
digitalWrite(motor, LOW);
analogWrite(motor, 0);
}
}

void setup()
{
/* инициализация пинов */
pinMode (PIN_MOTOR_RIGHT_UP, OUTPUT);
pinMode (PIN_MOTOR_RIGHT_DN, OUTPUT);
pinMode (PIN_MOTOR_LEFT_UP, OUTPUT);
pinMode (PIN_MOTOR_LEFT_DN, OUTPUT);
pinMode (PIN_LED, OUTPUT);

/* инициализация модуля RemoteXY */
RemoteXY_Init ();

void loop()
{
/* обработчик событий модуля RemoteXY */
RemoteXY_Handler ();

/* управляем пином светодиода */
digitalWrite (PIN_LED, (RemoteXY.switch_1==0)?LOW:HIGH);

/* управляем правым мотором */
Wheel (RightMotor, RemoteXY.joystick_1_y — RemoteXY.joystick_1_x);
/* управляем левым мотором */
Wheel (LeftMotor, RemoteXY.joystick_1_y + RemoteXY.joystick_1_x);
}

В самом начале определяются номера пинов, которые будут использованы для управления моторами. Далее номера пинов группируются в два массива, для правого и левого мотора соответственно. Для управления каждым мотором через драйвер на чипе L298N необходимо использовать 3 сигнала: два дискретных, указывающих направление вращения мотора, и один аналоговый, определяющий скорость вращения. Данными преобразованиями у нас занимается функция Wheel . На вход функции передаем ссылку на массив пинов выбранного мотора, и скорость вращения как знаковое число от -100 до 100. Если передали скорость 0, то мотор отключается.

В предопределенной функции setup настраиваются пины на работу как выходы. Для аналогового сигнала используются пины, которые могут работать как ШИМ преобразователи. Это пины 9 и 10. Они не требуют настройки в среде Arduino.

В предопределенной функции loop в каждой итерации работы программы вызывается обработчик модуля RemoteXY. Далее происходит управление зажиганием светодиода, далее управление моторами. Для управления моторами из структуры RemoteXY считываются поля по координатам джойстика X и Y, на основе координат выполняется математическая операция расчета скорости для каждого мотора, и вызывается функция Wheel , задающая скорость мотора. Данные вычисления выполняются в каждом цикле работы программы, обеспечивая непрерывность вычисления управляющих импульсов моторов на основе координат джойстика.

Залейте получившейся скетч Arduino в контроллер. Загрузите и запустите Android мобильное приложение на ваш смартфон или планшет. Соединитесь с вашим устройством и можете им управлять. Джойстиком можно управлять в обычном режиме, перемещая движок пальцем. Можно включить G-сенсор, и движок джойстика будет перемещаться сам в зависимости от наклона вашего смартфона.

Если после сборки вашего устройства, один или оба мотора вращаются в противоположном направлении, поменяйте провода местами при подключении мотора.